On the Hot Carrier Generation and Extraction of Plasmonic Alloy Nanoparticles

Supporting information

Marco Valenti^{1,*}, Anirudh Venugopal¹, Daniel Tordera², Magnus P. Jonsson², George Biskos^{3,4}, Andreas Schmidt-Ott¹ & Wilson A. Smith^{1,*}

¹Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Delft 2628-BL, The Netherlands

²Laboratory of Organic Electronics, Department of Science and Technology, Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden

³Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft 2628-CN. The Netherlands

⁴Energy Environment and Water Research Center, The Cyprus Institute, Nicosia 2121,

Cyprus

*Address correspondence to <u>m.valenti@tudelft.nl</u>, <u>w.smith@tudelft.nl</u>

To be submitted to ACS Photonics

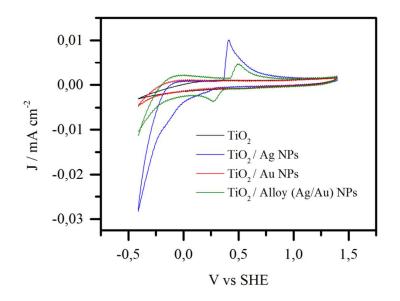
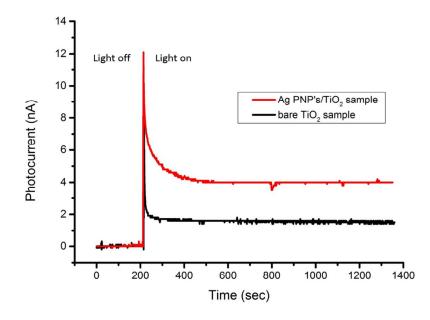



Figure S1. Anodic and cathodic cyclic voltammetry sweeps in the dark for the TiO_2 films with and without decorating plasmonic PNPs.

Figure S2. Photocurrent stability measurements of the bare TiO₂ and TiO₂/Ag PNPs photoelectrodes when illuminated with monochromatic light ($\lambda = 430$ nm) at 0.2 V vs SHE with methanol-phosphate buffer (50 % v/v) as electrolyte.