1 Measured saturation vapour pressures of

² phenolic and nitro-aromatic compounds

- ³ ¹Thomas J Bannan, ¹A Murray Booth, ¹Benjamin T Jones, ¹Simon O'Meara, ¹Mark H Barley, ³Ilona
- 4 *Riipinen, ¹Carl J. Percival, ^{1,2}David Topping.*
- 5 ¹ School of Earth, Environmental and Atmospheric Science, University of Manchester, Manchester,
- 6 UK
- ² National Centre for Atmospheric Science, University of Manchester, Manchester, UK.
- 8 ³Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University,
- 9 Stockholm, Sweden.
- 10 Supplementary Information
- 11 Number of Pages
- 12 5
- 13 Contents
- 14 Table S1
- 15 Figure S1a
- 16 Figure S1b
- 17
- 18
- 19
- 20
- 21
- 22

Table S1: Estimates of the sub-cooled liquid vapour pressure at 298 K (Pa). The estimates are N_Tb/N_Vp (Nannoolal boiling point, Nannoolal Vapour pressure) N_Tb/M_Vp (Nannoolal boiling point, Moller vapour pressure) N_Tb/MY_Vp (Nannoolal boiling point, Myrdal and Yalkowsky vapour pressure) N_Tb/LK_Vp (Nannoolal boiling point, Lee-Kesler vapour pressure) S_Vp (SIMPOL vapour pressure) SB_Tb/N_Vp (Stein and Brown boiling point, Nannoolal vapour pressure) SB_Tb/M_Vp (Stein and Brown boiling point, Moller vapour pressure) SB_Tb/MY_Vp (Stein and Brown boiling point, Mydral and Yalkowsky vapour pressure) SB_Tb/LK_Vp (Stein and Brown boiling point, Lee-Kesler vapour pressure).

										Experiment
	N_Tb &	N_Tb &	N_Tb &	N_Tb &		SB_Tb &	SB_Tb &	SB_Tb &	SB_Tb &	al
	N_Vp (Pa)	M_Vp (Pa)	MY_Vp (Pa)	LK_Vp (Pa)	S_Vp (Pa)	N_Vp (Pa)	M_Vp (Pa)	MY_Vp (Pa)	LK_Vp (Pa)	(Pa)
1-napthol	4.34×10^{-1}	7.34×10^{-1}	3.06×10^{-1}	4.69 × 10 ⁻²	6.68×10^{-1}	1.37	2.50	$9.99 imes 10^{-1}$	1.72 × 10 ⁻¹	8 × 10 ⁻²
2-napthol	$4.34\times10^{\text{-1}}$	7.34×10^{-1}	3.06×10^{-1}	4.69×10^{-2}	6.68×10^{-1}	1.37	2.50	$9.99 imes 10^{-1}$	1.72×10^{-1}	1.26 × 10 ⁻¹
1,3-										5.7×10^{-7}
dihydroxynapthalene	$4.48 imes 10^{-3}$	1.88×10^{-2}	$8.98 imes 10^{-3}$	$7.38 imes 10^{-5}$	$5.13 imes 10^{-3}$	3.12×10^{-2}	1.46×10^{-1}	$5.53\times10^{\text{-2}}$	$7.40 imes 10^{-4}$	
2,3-										5.46×10^{-5}
dihydroxynapthalene	$6.39 imes 10^{-3}$	$2.39 imes 10^{-2}$	1.10×10^{-2}	$1.28 imes 10^{-4}$	$5.13 imes 10^{-3}$	3.53×10^{-2}	1.46×10^{-1}	$5.53 imes 10^{-2}$	$9.56 imes 10^{-4}$	
1,7-										1.6×10^{-7}
dihydroxynapthalene	$4.29\times10^{\text{-3}}$	$1.82 imes 10^{-2}$	8.72 × 10 ⁻³	7.10 × 10 ⁻⁵	5.13 × 10 ⁻³	3.09×10^{-2}	1.46 × 10 ⁻¹	5.53 × 10 ⁻²	7.40×10^{-4}	
2,7-										1.04×10^{-7}
dihydroxynapthalene	4.29 × 10 ⁻³	1.82×10^{-2}	8.72 × 10 ⁻³	7.10 × 10 ⁻⁵	5.13 × 10 ⁻³	3.09×10^{-2}	1.46×10^{-1}	5.53 × 10 ⁻²	7.40×10^{-4}	
1,5-										2 × 10 ⁻⁵
dihydroxynapthalene	4.29 × 10 ⁻³	1.82×10^{-2}	8.72 × 10 ⁻³	7.10 × 10 ⁻⁵	5.13 × 10 ⁻³	3.09×10^{-2}	1.46 × 10 ⁻¹	5.53×10^{-2}	7.40×10^{-4}	
1-nitronapthalene	8.85 × 10 ¹	7.71×10^{1}	7.18×10^{1}	1.35 × 10 ¹	8.70 × 10 ¹	4.62×10^{1}	3.78 × 10 ¹	3.58×10^{1}	5.93	3.98 × 10 ⁻²

1,3-dinitronapthalene	2.63×10^2	2.22×10^{2}	2.33×10^{2}	2.43×10^{1}	8.70×10^{1}	4.21×10^{1}	2.95×10^{1}	3.28×10^{1}	1.80×10^{1}	3.55 × 10 ⁻⁸
2-methyl-1-										3.6×10^{-2}
nitronapthalene	4.27×10^{1}	3.52×10^{1}	3.57×10^{1}	5.57	3.28×10^{1}	1.77×10^{1}	1.32×10^{1}	1.41×10^{1}	1.86	
ortho-amino-benzoic										3.08×10^{-2}
acid	7.37×10^{-3}	2.10×10^{-3}	3.61×10^{-2}	6.62×10^{-3}	1.32×10^{-2}	1.14×10^{-2}	3.62×10^{-3}	5.32×10^{-2}	1.02×10^{-2}	
meta-amino-benzoic										1.28×10^{-4}
acid	5.05×10^{-3}	1.54×10^{-3}	2.89×10^{-2}	5.51×10^{-3}	1.32×10^{-2}	1.01×10^{-2}	3.62×10^{-3}	5.32 × 10 ⁻²	1.08×10^{-2}	
para-amino-benzoic										5.14 × 10 ⁻³
acid	4.06×10^{-3}	1.18 × 10 ⁻³	2.41×10^{-2}	4.50×10^{-3}	1.32×10^{-2}	1.00×10^{-2}	3.62×10^{-3}	5.32 × 10 ⁻²	1.08×10^{-2}	
meta-nitrophenol	1.11×10^{3}	1.46×10^{3}	9.40×10^2	4.05×10^2	3.32 × 10 ¹	1.70×10^{2}	2.29×10^{2}	1.23×10^{2}	3.89 × 10 ¹	9.44 × 10 ⁻³
para-nitrophenol	9.60×10^2	1.27×10^{3}	8.07 × 10 ²	3.40×10^{2}	3.32×10^{1}	1.69×10^{2}	2.29×10^{2}	1.23×10^{2}	3.89 × 10 ¹	4.01 × 10 ⁻³
ortho-nitroanaline	8.43×10^{2}	8.09×10^{2}	8.30×10^{2}	3.12×10^2	1.13×10^{2}	1.07×10^{2}	8.94 × 10 ¹	9.35 × 10 ¹	2.47×10^{1}	1.05 × 10 ⁻²
<i>meta</i> -nitroanaline	6.80×10^2	6.78×10^2	6.96×10^2	2.59×10^{2}	1.13×10^{2}	9.99 × 10 ¹	8.94 × 10 ¹	9.35 × 10 ¹	2.54×10^{1}	5.14 × 10 ⁻³
para-nitroanaline	5.89×10^{2}	5.86×10^2	6.01×10^2	2.19×10^{2}	1.13×10^{2}	9.94 × 10 ¹	8.94 × 10 ¹	9.35 × 10 ¹	2.54×10^{1}	9.44 × 10 ⁻³
Glutarimide	4.39×10^{-6}	3.75×10^{-10}	4.52×10^{-4}	8.39 × 10 ⁻⁵	1.38×10^{-11}	1.24×10^{-4}	1.16×10^{-7}	5.86×10^{-3}	1.22×10^{-3}	6.33×10^{-2}

Figure S1a: Fraction of a component in the condensed phase as a function of its volatility, represented by the C* value (replicated from (1)), for 5 existing condensed mass loadings [red lines, each value given in $\mu g.m^{-3}$] against the measured volatility [solid black line] and range of estimates from predictive techniques [dashed blue lines].

- 51
- 52

Figure S1b: Fraction of a component in the condensed phase as a function of its volatility, represented by the C* value (replicated from (1)), for 5 existing condensed mass loadings [red lines, each value given in $\mu g.m^{-3}$] against the measured volatility [solid black line] and range of estimates from predictive techniques [dashed blue lines].

74 References

1. Valorso, R., Aumont, B., Camredon, M., Raventos-Duran, T., Mouchel-Vallon, C., Ng, N. L., Seinfeld,
J. H., Lee-Taylor, J., and Madronich, S.: Explicit modelling of SOA formation from α-pinene
photooxidation: sensitivity to vapour pressure estimation, *Atmos. Chem. Phys.*, 2011, 11, 6895-6910,
doi:1.5194/acp-11-6895-2