SUPPORTING INFORMATION

Chiral Self-assembly of Nonplanar 10,10'-dibromo-9,9'-bianthryl Molecules on Ag(111)

Yixian Shen^{1,2}, Guo Tian¹, Han Huang^{1,3}*, Yanwei He¹, Qiliang Xie¹, Yunhao Lu⁴,

Pingshan Wang², Yongli Gao^{1,3,5}

¹ Hunan Key Laboratory of Super-microstructure and Ultrafast Process, College of Physics and Electronics, Central South University, Changsha 410083, P. R. China

² College of Chemistry and Chemical Engineering, Central South University,

Changsha 410083, Hunan, P. R. China

³ State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China

⁴ College of Materials Science and Engineering, Zhejiang University, Hangzhou

310027, P. R. China

⁵ Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA

E-mail: physhh@csu.edu.cn

Figure S1. Enlarged image of the inset in Fig 2b. The arrow points out a defect assembly. The overlaid model shows a tentative molecular arrangement. (V_{tip} = -0.6V)

Figure S2. STM image of nanographene units produced after annealing the sample to 450 K (V_{tip} =0.01V). The protrusions (pointed out by black arrows) beside the nanographene units are considered to be the detached Br atoms. 1,2

Figure S3. (a) STM image showing the deviation of DBBA islands (V_{tip} =1.2V). Defects of adsorbing two homochiral molecules back to back are marked with colored rods. Such defects are considered to cause a deviation of 22° between domains and the reversion of domain chirality. (b) Tentative model of the deviation. The angle between the C-Br bonds of the homochiral molecules at the corner is 22°.

Figure S4. Enlarged image of the inset in Figure 3. (V_{tip} = -2.0V)

Figure S5. Enlarged images of Fig 4b (left, V_{tip} = 0.5V) and 4c (right, V_{tip} = -2.5V). The colored rods show the up-tilted phenyl groups, where green for L-DBBA and blue for R-DBBA. The overlaid model shows a tentative molecular arrangement.

Figure S6. STM image showing the gliding between adjacent N-rows (V_{tip} = -2.0V). A dimer period is tentatively considered as 5 lattice constant of Ag(111), so the gliding distance between neighboring rows is 0.5 lattice constant.

Figure S7. Tentative model of W-rows. DBBA molecules adsorb on the top site of surface atoms with C-Br axis deviate +10° from <1 $\bar{1}$ 0>_{Ag}. The angle between tetramer axis and <1 $\bar{1}$ 0>_{Ag} is 66°. Unit cell matrix is $\binom{a}{b} = \binom{5}{5} \binom{0}{14} \binom{a_s}{b_s}$.

Figure S8. Enlarged images of the insets in Fig 5a (left, V_{tip} = -2.5V) and 5b (right, V_{tip} = -2.0V). The black arrows show the rotate direction of protrusion arrangement. The overlaid model shows a tentative molecular arrangement.

REFERENCES

- (1) Huang, H.; Wei, D.; Sun, J.; Wong, S. L.; Feng, Y. P.; Neto, A. H.; Wee, A. T. S. Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons. *Sci. rep.* **2012**, *2*, 983.
- (2) Simonov, K. A.; Vinogradov, N. A.; Vinogradov, A. S.; Generalov, A. V.; Zagrebina, E. M.; Svirskiy, G. I.; Cafolla, A. A.; Carpy, T.; Cunniffe, J. P.; Taketsugu, T.; et al. From graphene nanoribbons on Cu(111) to nanographene on Cu(110): Critical role of substrate structure in the bottom-up fabrication strategy. *ACSnano* **2015**, *9*, 8997-9011.