Chiral Self-assembly of Nonplanar 10,10'-dibromo-9,9'-bianthryl Molecules on $\operatorname{Ag}(111)$

Yixian Shen ${ }^{1,2}$, Guo Tian ${ }^{l}$, Han Huang ${ }^{l, 3 *}$, Yanwei He ${ }^{l}$, Qiliang Xie ${ }^{l}$, Yunhao Lu ${ }^{4}$, Pingshan Wang ${ }^{2}$, Yongli Gao ${ }^{1,3,5}$
${ }^{1}$ Hunan Key Laboratory of Super-microstructure and Ultrafast Process, College of Physics and Electronics, Central South University, Changsha 410083, P. R. China
${ }^{2}$ College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
${ }^{3}$ State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
${ }^{4}$ College of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
${ }^{5}$ Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
E-mail: physhh@csu.edu.cn

Figure S1. Enlarged image of the inset in Fig 2b. The arrow points out a defect assembly. The overlaid model shows a tentative molecular arrangement. $\left(\mathrm{V}_{\text {tip }}=-0.6 \mathrm{~V}\right)$

Figure S2. STM image of nanographene units produced after annealing the sample to $450 \mathrm{~K}\left(\mathrm{~V}_{\text {tip }}=0.01 \mathrm{~V}\right)$. The protrusions (pointed out by black arrows) beside the nanographene units are considered to be the detached Br atoms. ${ }^{1,2}$

Figure S3. (a) STM image showing the deviation of DBBA islands $\left(\mathrm{V}_{\text {tip }}=1.2 \mathrm{~V}\right)$.
Defects of adsorbing two homochiral molecules back to back are marked with colored rods. Such defects are considered to cause a deviation of 22° between domains and the reversion of domain chirality. (b) Tentative model of the deviation. The angle between the $\mathrm{C}-\mathrm{Br}$ bonds of the homochiral molecules at the corner is 22°.

Figure S4. Enlarged image of the inset in Figure 3. $\left(\mathrm{V}_{\text {tip }}=-2.0 \mathrm{~V}\right)$

Figure S5. Enlarged images of Fig 4 b (left, $\mathrm{V}_{\text {tip }}=0.5 \mathrm{~V}$) and $4 \mathrm{c}\left(\right.$ right, $\left.\mathrm{V}_{\text {tip }}=-2.5 \mathrm{~V}\right)$.
The colored rods show the up-tilted phenyl groups, where green for L-DBBA and blue for R-DBBA. The overlaid model shows a tentative molecular arrangement.

Figure S6. STM image showing the gliding between adjacent N -rows $\left(\mathrm{V}_{\text {tip }}=-2.0 \mathrm{~V}\right)$.
A dimer period is tentatively considered as 5 lattice constant of $\operatorname{Ag}(111)$, so the gliding distance between neighboring rows is 0.5 lattice constant.

Figure S7. Tentative model of W-rows. DBBA molecules adsorb on the top site of surface atoms with $\mathrm{C}-\mathrm{Br}$ axis deviate $+10^{\circ}$ from $\left\langle 1 \overline{1} 0>_{\mathrm{Ag}}\right.$. The angle between tetramer axis and $\left\langle 1 \overline{1} 0>_{\mathrm{Ag}}\right.$ is 66°. Unit cell matrix is $\binom{a}{b}=\left(\begin{array}{ll}5 & 0 \\ 5 & 14\end{array}\right)\binom{a_{s}}{b_{s}}$.

Figure S8. Enlarged images of the insets in Fig 5a (left, $\mathrm{V}_{\text {tip }}=-2.5 \mathrm{~V}$) and 5 b (right, $\left.\mathrm{V}_{\text {tip }}=-2.0 \mathrm{~V}\right)$. The black arrows show the rotate direction of protrusion arrangement. The overlaid model shows a tentative molecular arrangement.

REFERENCES

(1) Huang, H.; Wei, D.; Sun, J.; Wong, S. L.; Feng, Y. P.; Neto, A. H.; Wee, A. T.
S. Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons. Sci. rep. 2012, 2, 983.
(2) Simonov, K. A.; Vinogradov, N. A.; Vinogradov, A. S.; Generalov, A. V.; Zagrebina, E. M.; Svirskiy, G. I.; Cafolla, A. A.; Carpy, T.; Cunniffe, J. P.; Taketsugu, T.; et al. From graphene nanoribbons on $\mathrm{Cu}(111)$ to nanographene on $\mathrm{Cu}(110)$:

Critical role of substrate structure in the bottom-up fabrication strategy. ACSnano 2015, 9, 8997-9011.

