Supporting Information for "Reading the orbital angular momentum of light using plasmonic nanoantennas"

Richard M. Kerber,^{*,†} Jamie M. Fitzgerald,[‡] Doris E. Reiter,^{†,‡} Sang Soon Oh,[‡] and Ortwin Hess^{*,‡}

Institut für Festkörpertheorie, Universität Münster, 48149 Münster, Germany, and Department of Physics, The Blackett Laboratory, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom

E-mail: r.kerber@wwu.de; o.hess@imperial.ac.uk

^{*}To whom correspondence should be addressed

 $^{^\}dagger \mathrm{Institut}$ für Festkörpertheorie, Universität Münster, 48149 Münster, Germany

[‡]Department of Physics, The Blackett Laboratory, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom

Movies of the induced electric field

The movies show the temporal evolution of the induced electric field calculated with the BEM (Dynamics_BEM.avi) and with the analytical antenna model (Dynamics_Antennamodel.avi). We consider an excitation of the nanoantenna array consisting of three rods with twisted light having an OAM of $\ell = 0$ (left), $\ell = +1$ (middle) and $\ell = -1$ (right). The excitation frequency is chosen to match the corresponding resonance frequency $\omega_r = 2\pi c/\lambda_r$. The movies display the intensity of the electric field on a logarithmic scale for four periods $T_r = 2\pi/\omega_r$ at z = 0. We find a good qualitative agreement for the BEM and the analytical model, displaying a rotating mode for $\ell = 0$, a rotating mode with inverted direction for $\ell = +1$ and a breathing mode for $\ell = -1$.