Enantioselective Iridium-Catalyzed Allylic Alkylation Reactions of Masked Acyl Cyanide Equivalents

J. Caleb Hethcox, ${ }^{\dagger}$ Samantha E. Shockley, ${ }^{\ddagger}$ and Brian M. Stoltz*
The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States

Table of Contents

Materials and Methods S1
General Procedure for the Synthesis of Electrophiles S2
Spectroscopic Data for the Synthesis of Electrophiles S3
General Procedure for Optimization Reactions S4
General Procedure for the Ir-Catalyzed Allylic Alkylation S4
Procedure for the Preparatory Scale Reaction S5
Spectroscopic Data for the Ir-Catalyzed Allylic Alkylation Products S5
Determination of Enantiomeric Excess S11
References S13
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and IR Spectra S14

Materials and Methods

Unless otherwise stated, reactions were performed in flame-dried glassware under an argon or nitrogen atmosphere using dry, deoxygenated solvents. Solvents were dried by passage through an activated alumina column under argon. Commercially obtained reagents were used as received. Chemicals were purchased from Sigma Aldrich/Strem/Alfa Aesar/Oakwood Chemicals and used as received. Reaction temperatures were controlled by an IKAmag temperature modulator. Glove box manipulations were performed under a nitrogen atmosphere. Thin-layer chromatography (TLC) and preparatory TLC was performed using E. Merck silica gel 60 F254 precoated plates (0.25 mm) and visualized by UV fluorescence quenching, KMnO_{4} or p anisaldehyde staining. SiliaFlash P60 Academic Silica gel (particle size 0.040-0.063 mm) was used for flash chromatography. Analytical chiral HPLC was performed with an Agilent 1100 Series HPLC utilizing a Chiralpak IC column ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$) or a Chiralpak AD column ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), both obtained from Daicel Chemical Industries,

Ltd. with visualization at 210 nm . Analytical SFC was performed with a Mettler SFC supercritical CO_{2} analytical chromatography system utilizing a Chiralpak IC-3 column ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$) obtained from Daicel Chemical Industries, Ltd. with visualization at $210 \mathrm{~nm} .{ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker Avance HD 400 MHz spectrometer and are reported relative to residual CHCl_{3} ($\delta 7.26 \mathrm{ppm}$). ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance HD 400 MHz spectrometer and are reported relative to residual $\mathrm{CDCl}_{3}(\delta 77.16 \mathrm{ppm})$. Data for ${ }^{1} \mathrm{H}$ NMR are reported as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{p}=$ pentet, sept $=$ septuplet, $\mathrm{m}=$ multiplet, $\mathrm{br} \mathrm{s}=$ broad singlet. Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shifts ($\delta \mathrm{ppm}$). Some reported spectra include minor solvent impurities of benzene ($\delta 7.36 \mathrm{ppm}$), water ($\delta 1.56$ ppm), ethyl acetate ($\delta 4.12,2.05,1.26 \mathrm{ppm}$), methylene chloride ($\delta 5.30 \mathrm{ppm}$), grease (δ $1.26,0.86 \mathrm{ppm}$), and/or silicon grease ($\delta 0.07 \mathrm{ppm}$), which do not impact product assignments. IR spectra were obtained using a Perkin Elmer Paragon 1000 spectrometer using thin films deposited on NaCl plates and reported in frequency of absorption $\left(\mathrm{cm}^{-1}\right)$. High resolution mass spectra (HRMS) were obtained from the Caltech Mass Spectral Facility using a JEOL JMS-600H High Resolution Mass Spectrometer in fast atom bombardment ($\mathrm{FAB}+$) or electron ionization (EI +) mode, or an Agilent 6200 Series TOF with an Agilent G1978A Multimode source in electrospray ionization (ESI+), atmospheric pressure chemical ionization (APCI +), or mixed ionization mode (MM: ESIAPCI+). Optical rotations were measured with a Jasco P-2000 polarimeter operating on the sodium D-line (589 nm), using a 100 mm pathlength cell and are reported as: $[\alpha]_{\mathrm{D}}{ }^{\mathrm{T}}$ (concentration in $\mathrm{g} / 100 \mathrm{~mL}$, solvent).

List of Abbreviations: ee - enantiomeric excess, HPLC - high-performance liquid chromatography, SFC - supercritical fluid chromatography, TLC - thin-layer chromatography, EtOAc - ethyl acetate, THF - tetrahydrofuran, MeOH - methanol, $\mathrm{Et}_{2} \mathrm{O}$ - diethyl ether, TBD - 1,5,7-triazabicyclo[4.4.0]dec-5-ene, cod - cis,cis-1,5cyclooctadiene, DIBAL - diisobutylaluminium hydride, MAC - masked acyl cyanide

Preparation of Known Compounds: Previously reported methods were used to prepare ligand $\left(S, S_{a}\right)-\mathbf{3}^{1}$ as well as starting materials $\mathbf{1 a -} \mathbf{c}^{2}, \mathbf{2}^{3}, \mathbf{5 a}^{3}, \mathbf{5 b}^{\mathbf{3}}, \mathbf{5 c}^{4}, \mathbf{5 d}^{5}, \mathbf{5 h}^{1 \mathrm{~b}}, \mathbf{5 i}^{5}, \mathbf{5 j}^{6}$, $\mathbf{5 k}^{7}, \mathbf{5 l}^{4}$.

General Procedure for the Synthesis of Electrophiles

(E)-3-(3-Chlorophenyl)allyl methyl carbonate (5e). To a solution of methyl (E)-3-(3-chlorophenl)prop-2-enoate ${ }^{8}\left(1.4 \mathrm{~g}, 7.0 \mathrm{mmol}, 1\right.$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(28 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added DIBAL ($3.0 \mathrm{~g}, 21 \mathrm{mmol}, 3$ equiv) dropwise. The resulting reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 2.5 h , whereupon the reaction was quenched with a saturated aqueous Rochelle's salt solution (10 mL). The cooling bath was then removed and the reaction was stirred for 18 h at ambient temperature. The aqueous layer was extracted
with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 50 \mathrm{~mL}$) and the combined organic layers were washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure.

The crude material was then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$. Pyridine $(1.7 \mathrm{~mL}, 21 \mathrm{mmol}, 3$ equiv) was added followed by methyl chloroformate ($0.81 \mathrm{~mL}, 11$ $\mathrm{mmol}, 1.5$ equiv) dropwise. The resulting solution was allowed to warm to ambient temperature and stirred for 18 h . The reaction was quenched with the addition of 1 M $\mathrm{HCl}(10 \mathrm{~mL})$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 50 \mathrm{~mL})$. The combined organic layers were washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography ($5 \% \mathrm{EtOAc}$ /hexanes) to give carbonate $\mathbf{5 e}$ as a colorless oil (1.0 $\mathrm{g}, 63 \%$ yield): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 3 \mathrm{H})$, $6.69-6.60(\mathrm{~m}, 1 \mathrm{H}), 6.32(\mathrm{dt}, J=15.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{dd}, J=6.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.84$ (s, 3H) ; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 155.7,138.0,134.7,133.2,130.0,128.3,126.7$, 125.0, 124.2, 68.1, 55.1; IR (Neat Film, NaCl) 3010, 2956, 2856, 1748, 1594, 1567, 1442, 1377, 1261, 1091, 1078, 962, 791, 777, $682 \mathrm{~cm}^{-1}$; HRMS (MM: FAB+) m / z calc'd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ClO}_{3}[\mathrm{M}]^{+}: 226.0397$, found 226.0398.

Spectroscopic Data for the Synthesis of Electrophiles

(E)-3-(Benzo[d][1,3]dioxol-5-yl)allyl methyl carbonate (5f). Carbonate $\mathbf{5 f}$ was prepared from methyl (2E)-3-(1,3-benzodioxol-5-yl)acrylate ${ }^{9}$ according to the general procedure and isolated by silica gel flash column chromatography (5% EtOAc/hexanes) as a colorless solid ($0.79 \mathrm{~g}, 48 \%$ yield): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.93$ (d, $J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.83$ (ddd, $J=7.9,1.6,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.73(\mathrm{~m}, 1 \mathrm{H}), 6.60(\mathrm{dt}, J=15.7,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.12(\mathrm{dt}, J=15.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 2 \mathrm{H}), 4.76(\mathrm{dd}, J=6.6,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.8,148.2,147.9,134.9,130.6,121.8,120.7$, 108.4, 106.0, 101.3, 68.7, 55.0; IR (Neat Film, NaCl) 3003, 2956, 2895, 2781, 1747, 1504, 1491, 1446, 1384, 1355, 1252, 1194, 1126, 1103, 1039, 933, 863, $791 \mathrm{~cm}^{-1}$; HRMS (FAB+) m / z calc'd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{5}[\mathrm{M}]^{+}: 236.0685$, found 236.0674.

(E)-Methyl (3-(3,4,5-trimethoxyphenyl)allyl) carbonate (5g). Carbonate $\mathbf{5 g}$ was prepared from methyl 3,4,5-trimethoxycinnamate ${ }^{10}$ according to the general procedure and isolated by silica gel flash column chromatography ($5 \% \mathrm{EtOAc} /$ hexanes) as a colorless oil ($1.2 \mathrm{~g}, 65 \%$ yield): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.65-6.56(\mathrm{~m}, 3 \mathrm{H}), 6.21$ $(\mathrm{dt}, J=15.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{dd}, J=6.5,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 6 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.81$
(s, 3H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 155.8,153.4,138.4,135.0,131.8,122.0,103.9$, 68.5, 61.1, 56.2, 55.0; IR (Neat Film, NaCl) 2999, 2956, 2840, 1748, 1583, 1508, 1452, 1420, 1339, 1265, 1128, 1010, 941, 850, $792 \mathrm{~cm}^{-1}$; HRMS (FAB+) m / z calc'd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{6}[\mathrm{M}]^{+}: 282.1103$, found 282.1114 .

General Procedure for Optimization Reactions (Table 1)

In a nitrogen-filled glove box, to a 1 dram vial (vial A) equipped with a stir bar was added $[\operatorname{Ir}(\mathrm{cod}) \mathrm{Cl}]_{2}(1.3 \mathrm{mg}, 0.0020 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, ligand $3(1.8 \mathrm{mg}, 0.0040 \mathrm{mmol}, 4$ $\mathrm{mol} \%)$, TBD ($1.4 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%$), and THF (0.5 mL). Vial A was stirred at $25^{\circ} \mathrm{C}$ (ca. 10 min) while another 1 dram vial (vial B) was charged with $\mathrm{LiBr}(17 \mathrm{mg}$, $0.20 \mathrm{mmol}, 200 \mathrm{~mol} \%)$, MAC nucleophile $1(0.20 \mathrm{mmol})$, and THF $(0.25 \mathrm{~mL})$. The preformed catalyst solution (vial A) was then transferred to vial B followed by 0.25 mL of a solution of cinnamyl carbonate 2 (0.4 M in THF). The vial was sealed and stirred at the specified temperature. After 18 or 48 h , the vial was removed from the glove box and filtered through a pad of silica, rinsing with EtOAc. The crude mixture was concentrated and $1,2,4,5$-tetrachloro-3-nitrobenzene (0.10 mmol in $0.5 \mathrm{~mL} \mathrm{CDCl}_{3}$) was added. The NMR yield (measured in reference to 1,2,4,5-tetrachloro-3-nitrobenzene $\delta 7.74 \mathrm{ppm}$ (s, $1 \mathrm{H})$) was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude mixture. The residue was purified by preparatory TLC ($15 \% \mathrm{EtOAc} /$ hexanes) to afford product 4, which was analyzed by chiral HPLC ($1 \% \mathrm{IPA}, 1.0 \mathrm{~mL} / \mathrm{min}$, Chiralpak IC column, $\lambda=210 \mathrm{~nm}$).

General Procedure for the Ir-Catalyzed Allylic Alkylation

Please note that the absolute configuration of product $\mathbf{4 c}$ was assigned by conversion to (R)-2-phenylbutanoic acid. ${ }^{11}$ All other products ($\mathbf{6 a - l}$) were assigned by analogy. For respective HPLC and SFC conditions, please refer to Table S1.

(R)-2-(Methoxymethoxy)-2-(1-phenylallyl)malononitrile (4c). In a nitrogen-filled glove box, to a 1 dram vial (vial A) equipped with a stir bar was added $[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2}(2.7$ $\mathrm{mg}, 0.0040 \mathrm{mmol}, 2 \mathrm{~mol} \%$), ligand $3(3.7 \mathrm{mg}, 0.0080 \mathrm{mmol}, 4 \mathrm{~mol} \%)$, TBD (2.8 mg , $0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%$), and THF (1 mL). Vial A was stirred at $25^{\circ} \mathrm{C}$ (ca. 10 min) while another 1 dram vial (vial B) was charged with $\mathrm{LiBr}(35 \mathrm{mg}, 0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$), MAC nucleophile 1c ($50 \mathrm{mg}, 0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$), and THF (0.5 mL). The preformed catalyst solution (vial A) was then transferred to vial B followed by a solution of cinnamyl carbonate $2(38 \mathrm{mg}, 0.20 \mathrm{mmol}, 100 \mathrm{~mol} \%)$ in THF $(0.5 \mathrm{~mL})$. The vial was sealed and stirred at $60^{\circ} \mathrm{C}$. After 18 h , the vial was removed from the glove box and filtered through a pad of silica, rinsing with EtOAc. The crude mixture was concentrated and the resulting residue was purified by silica gel flash column chromatography (10%

EtOAc/hexanes) to give the product 4 c as a colorless oil ($41 \mathrm{mg}, 85 \%$ yield): 95% ee; $[\alpha]_{\mathrm{D}}{ }^{25}-41.3\left(c 2.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.32(\mathrm{~m}, 5 \mathrm{H}), 6.29$ (ddd, $J=16.9,10.3,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.53-5.38(\mathrm{~m}, 2 \mathrm{H}), 5.06-4.94(\mathrm{~m}, 2 \mathrm{H}), 3.97-3.91$ $(\mathrm{m}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.4,131.5,129.6,129.1,128.9$, 122.7, 112.7, 112.7, 96.5, 69.9, 58.4, 57.4; IR (Neat Film, NaCl) 3065, 3033, 2961, 2904, 2851, 2244, 1750, 1496, 1455, 1420, 1267, 1217, 1164, 1109, 1053, 1033, 967, 940, 791, $732,700 \mathrm{~cm}^{-1}$; HRMS (FAB+) m/z calc'd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 243.1131$, found 243.1134; HPLC conditions: 1% IPA, $1.0 \mathrm{~mL} / \mathrm{min}$, Chiralpak IC column, $\lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ $(\mathrm{min}):$ major $=12.831$, minor $=17.466$.

Procedure for the Preparatory Scale Reaction

(R)-2-(Methoxymethoxy)-2-(1-phenylallyl)malononitrile (4c). In a nitrogen-filled glove box, a solution of $[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2}(106 \mathrm{mg}, 0.16 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, ligand $3(145 \mathrm{mg}$, $0.32 \mathrm{mmol}, 4 \mathrm{~mol} \%)$, TBD ($110 \mathrm{mg}, 0.79 \mathrm{mmol}, 10 \mathrm{~mol} \%$) in THF (20 mL) was stirred at $25^{\circ} \mathrm{C}$. After 10 minutes, the catalyst mixture was added to a mixture of $\mathrm{LiBr}(0.69 \mathrm{~g}$, $7.9 \mathrm{mmol}, 200 \mathrm{~mol} \%$), MAC nucleophile $1 \mathrm{c}(1 \mathrm{~g}, 7.9 \mathrm{mmol}, 200 \mathrm{~mol} \%)$, and THF (20 $\mathrm{mL})$ followed by cinnamyl carbonate $2(0.76 \mathrm{~g}, 4.0 \mathrm{mmol}, 100 \mathrm{~mol} \%)$. The flask was removed from the glove box and stirred at $60^{\circ} \mathrm{C}$. After 18 h , the crude reaction mixture was concentrated and the resulting residue was purified by silica gel flash column chromatography ($10 \% \mathrm{EtOAc} /$ hexanes) to give the product 4 c as a colorless oil (0.82 g , 86% yield): 95% ee, spectroscopic data vide supra.

Spectroscopic Data for the Ir-Catalyzed Allylic Alkylation Products

(R)-2-(1-(4-Bromophenyl)allyl)-2-(methoxymethoxy)malononitrile (6a). Product 6a was prepared according to the general procedure and isolated by silica gel flash column chromatography ($10 \% \mathrm{EtOAc} /$ hexanes) to give a colorless oil ($60 \mathrm{mg}, 94 \%$ yield): 96% ee; $[\alpha]_{\mathrm{D}}{ }^{25}-44.3\left(c 3.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.32$ $-7.28(\mathrm{~m}, 2 \mathrm{H}), 6.23$ (ddd, $J=16.9,10.3,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.55-5.38(\mathrm{~m}, 2 \mathrm{H}), 5.05-4.96$ $(\mathrm{m}, 2 \mathrm{H}), 3.92(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 133.4, 132.1, 131.3, 130.9, 123.4, 123.2, 112.6, 112.5, 96.6, 69.5, 57.8, 57.5; IR (Neat Film, $\mathrm{NaCl}) 3013,2934,2242,1488,1404,1274,1216,1163,1108,1034,1010,967,939,826$,
$762 \mathrm{~cm}^{-1}$; HRMS (FAB+) m/z calc'd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrO}_{2} \mathrm{~N}_{2}[\mathrm{M}]^{+}: 320.0160$, found 320.0155; HPLC conditions: 1% IPA, $1.0 \mathrm{~mL} / \mathrm{min}$, Chiralpak IC column, $\lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{min})$: major $=15.852$, minor $=11.623$.

(R)-2-(Methoxymethoxy)-2-(1-(4-(trifluoromethyl)phenyl)allyl)malononitrile (6b). Product $\mathbf{6 b}$ was prepared according to the general procedure and isolated by preparatory TLC ($5 \% \mathrm{EtOAc} /$ hexanes, plate eluted three times) to give a pale yellow oil ($36 \mathrm{mg}, 58 \%$ yield): 96% ee; $[\alpha]_{\mathrm{D}}{ }^{25}-25.2$ (c 1.5, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66$ (d, $J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.55(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.27$ (ddd, $J=16.9,10.3,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.57-5.41$ $(\mathrm{m}, 2 \mathrm{H}), 5.09-4.96(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 138.4,131.5,131.1,130.6,130.2,125.9(\mathrm{q}, J=3.9 \mathrm{~Hz}), 125.3,123.6,122.6$, $112.5,112.4,96.7,69.4,58.0,57.6$; IR (Neat Film, NaCl) 2962, 2906, 2835, 2245, 1751, $1618,1445,1417,1445,1417,1327,1269,1218,1166,1127,1069,943,840,792 \mathrm{~cm}^{-1}$; HRMS (MM: $\mathrm{FAB}+$) m / z calc'd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\left[(\mathrm{M}+\mathrm{H})-\mathrm{H}_{2}\right]^{-}: 309.0851$, found 309.0849 ; HPLC conditions: 1% IPA, $1.0 \mathrm{~mL} / \mathrm{min}$, Chiralpak IC column, $\lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ $(\min):$ major $=10.681$, minor $=8.223$.

(R)-2-(1-(4-Fluorophenyl)allyl)-2-(methoxymethoxy)malononitrile (6c). Product 6c was prepared according to the general procedure and isolated by preparatory TLC $(9 \%$ EtOAc/hexanes, plate eluted two times) to give a colorless oil ($37 \mathrm{mg}, 69 \%$ yield): 96% ee; $[\alpha]_{\mathrm{D}}{ }^{25}-35.9\left(c 1.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.15$ - $7.02(\mathrm{~m}, 2 \mathrm{H}), 6.25$ (ddd, $J=16.9,10.3,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.57-5.35(\mathrm{~m}, 2 \mathrm{H}), 5.11-4.94$ $(\mathrm{m}, 2 \mathrm{H}), 3.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 164.3$, $161.9,131.5,131.4,131.2,130.2(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 122.9,116.1,115.9,112.7,112.6,96.6$, 69.8 (d, $J=1.6 \mathrm{~Hz}$), 57.5 (d, $J=9.2 \mathrm{~Hz}$); IR (Neat Film, NaCl) 3085, 2964, 2847, 2242, 1606, 1511, 1415, 1281, 1230, 1164, 1108, 1053, 968, 940, 798, $766 \mathrm{~cm}^{-1}$; HRMS (ESI+) m / z calc'd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}: 261.1039$, found 261.1033; HPLC conditions: 1% IPA, $1 \mathrm{~mL} / \mathrm{min}$, Chiralpak IC column, $\lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{min}):$ major $=11.712$, minor $=$ 8.971 .

(R)-2-(Methoxymethoxy)-2-(1-(4-methoxyphenyl)allyl)malononitrile (6d). Product 6d was prepared according to the general procedure and isolated by silica gel flash column chromatography ($5-10 \% \mathrm{EtOAc} /$ hexanes) to give a colorless oil ($52 \mathrm{mg}, 95 \%$ yield): 95% ee; $[\alpha]_{\mathrm{D}}{ }^{25}-51.8\left(c 2.7, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.31(\mathrm{~m}, 2 \mathrm{H})$, 6.92 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.26$ (ddd, $J=16.9,10.3,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.61-5.34(\mathrm{~m}, 2 \mathrm{H}), 5.08$ $-4.94(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 160.1,131.7,130.8,126.3,122.3,114.3,112.82,112.78,96.5,70.1,57.6,57.4$, 55.4; IR (Neat Film, NaCl) 3005, 2962, 2939, 2905, 2838, 2244, 2052, 1890, 1610, 1584, $15112,1459,1305,1252,1216,1182,1162,1107,1031,937,834,783,765,625 \mathrm{~cm}^{-1}$; HRMS (FAB+) m/z calc'd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 273.1239$, found 273.1227; SFC conditions: $3 \% \mathrm{IPA}, 3.5 \mathrm{~mL} / \mathrm{min}$, Chiralpak IC-3 column, $\lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{min})$: major $=$ 6.831, minor $=5.267$.

(R)-2-(1-(3-Chlorophenyl)allyl)-2-(methoxymethoxy)malononitrile (6e). Product 6e was prepared according to the general procedure and isolated by silica gel flash column chromatography ($10 \% \mathrm{EtOAc} /$ hexanes) to give a colorless oil ($47 \mathrm{mg}, 85 \%$ yield): 92% ee; $[\alpha]_{\mathrm{D}}{ }^{25}-38.5\left(c 2.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.28(\mathrm{~m}, 4 \mathrm{H}), 6.23$ (ddd, $J=16.9,10.3,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.57-5.40(\mathrm{~m}, 2 \mathrm{H}), 5.08-4.97(\mathrm{~m}, 2 \mathrm{H}), 3.92$ (d, $J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.4,134.7,130.8,130.2$, $129.9,129.3,127.8,123.3,112.6,112.4,96.6,69.5,57.9,57.5$; IR (Neat Film, NaCl) 3069, 2962, 2849, 2832, 2244, 1751, 1596, 1576, 1478, 1436, 1418, 1277, 1217, 1164, $1109,111055,1032,967,940,884,797,760,730,713,690 \mathrm{~cm}^{-1}$; HRMS (ESI +) m / z calc'd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}: 277.0744$, found 277.0715; SFC conditions: 3% IPA, $3.5 \mathrm{~mL} / \mathrm{min}$, Chiralpak IC-3 column, $\lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{min})$: major $=3.846$, minor $=3.428$.

(R)-2-(1-(Benzo[d][1,3]dioxol-5-yl)allyl)-2-(methoxymethoxy)malononitrile
(6f).
Product $6 \mathbf{f}$ was prepared according to the general procedure and isolated by silica gel flash column chromatography ($5-10 \% \mathrm{EtOAc} /$ hexanes) to give a colorless oil (51 mg , 90% yield): 96% ee; $[\alpha]_{\mathrm{D}}{ }^{25}-40.6$ (c 3.4, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.91-$ $6.78(\mathrm{~m}, 3 \mathrm{H}), 6.20$ (ddd, $J=16.9,10.3,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 2 \mathrm{H}), 5.51-5.37$ (m, 2H), 5.03 (d, $J=1.4 \mathrm{~Hz}, 2 \mathrm{H}$), $3.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 148.2,148.1,131.5,127.9,123.5,122.5,112.7,109.7,108.7,101.5,96.6,70.0$, 58.1, 57.5; IR (Neat Film, NaCl) 3081, 2972, 2902, 2352, 1505, 1488, 1446, 1368, 1251, $1238,1164,1108,1039,967,934,864,817,800,763 \mathrm{~cm}^{-1}$; HRMS (ESI+) m / z calc'd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 287.1032$, found 287.1039; HPLC conditions: 1\% IPA, 1.0 $\mathrm{mL} / \mathrm{min}$, Chiralpak IC column, $\lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{min})$: major $=24.142$, minor $=19.686$.

(R)-2-(Methoxymethoxy)-2-(1-(3,4,5-trimethoxyphenyl)allyl)malononitrile (6g). Product $\mathbf{6 g}$ was prepared according to the general procedure and isolated by silica gel flash column chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) to give a colorless oil ($54 \mathrm{mg}, 81 \%$ yield): 98% ee; $[\alpha]_{\mathrm{D}}{ }^{25}-28.2\left(c 3.5, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.63$ (s, 2H), 6.23 (ddd, $J=16.8,10.3,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.55-5.35(\mathrm{~m}, 2 \mathrm{H}), 5.11-4.94(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~m}$, $7 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.4,138.5,131.3$, 129.7, 122.6, 112.8, 112.7, 106.6, 96.5, 69.9, 61.0, 58.5, 57.5, 56.3; IR (Neat Film, NaCl) 2941, 2840, 244, 1591, 1509, 1463, 1418, 1333, 1245, 1163, 1127, 1034, 1007, 950, 925, 840, 771, $719 \mathrm{~cm}^{-1}$; HRMS (ESI +) m / z calc'd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 333.1450$, found 333.1450; HPLC conditions: 7% IPA, $1.0 \mathrm{~mL} / \mathrm{min}$, Chiralpak AD column, $\lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ $(\mathrm{min}):$ major $=17.062$, minor $=12.809$.

(R)-2-(Methoxymethoxy)-2-(1-(naphthalen-1-yl)allyl)malononitrile (6h). Product $\mathbf{6 h}$ was prepared according to the general procedure and isolated by preparatory TLC $(9 \%$
$\mathrm{Et}_{2} \mathrm{O} /$ hexanes, plate eluted two times) to give a colorless oil ($24 \mathrm{mg}, 41 \%$ yield): 92% ee; $[\alpha]_{\mathrm{D}}{ }^{25}-30.9\left(c 1.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11(\mathrm{dt}, J=8.5,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.95-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.81$ (dd, $J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{ddd}, J=8.6,6.8,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.57-7.49(\mathrm{~m}, 2 \mathrm{H}), 6.38(\mathrm{ddd}, J=16.7,10.3,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.57-5.43(\mathrm{~m}, 2 \mathrm{H}), 5.05-$ $4.92(\mathrm{~m}, 3 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.1,132.2,132.1,130.8$, 129.6, 129.3, 126.9, 126.6, 126.1, 125.3, 122.8, 122.7, 113.10, 112.72, 96.5, 70.1, 57.5, 51.6; IR (Neat Film, NaCl) 3051, 2960, 2926, 2851, 2244, 1708, 1398, 1215, 1162, 1106, 1030, 960, 925, $783 \mathrm{~cm}^{-1}$; HRMS (ESI +) m / z calc'd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 293.1290$, found 293.1263; HPLC conditions: 1% IPA, $1.0 \mathrm{~mL} / \mathrm{min}$, Chiralpak IC column, $\lambda=210$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}(\min):$ major $=15.134$, minor $=10.197$.

(R)-2-(Methoxymethoxy)-2-(1-(o-tolyl)allyl)malononitrile (6i). Product $\mathbf{6 i}$ was prepared according to the general procedure and isolated by silica gel flash column chromatography ($5 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to give a colorless oil ($33 \mathrm{mg}, 65 \%$ yield): $89 \% \mathrm{ee}$; $[\alpha]_{\mathrm{D}}{ }^{25}-68.7\left(c 1.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.28-$ $7.19(\mathrm{~m}, 3 \mathrm{H}), 6.22(\mathrm{ddd}, J=16.9,10.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.50-5.35(\mathrm{~m}, 2 \mathrm{H}), 5.06-4.98(\mathrm{~m}$, $2 \mathrm{H}), 4.34(\mathrm{dd}, J=8.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 137.4,133.1,132.0,131.2,128.6,128.1,126.6,122.5,113.0,112.8,96.5,69.8$, 57.5, 53.0, 20.3; IR (Neat Film, NaCl) 3023, 2958, 2360, 2243, 1748, 1640, 1603, 1489, 1445, 1382, 1264, 1164, 1109, 1034, 943, 846, 792, 748, $654 \mathrm{~cm}^{-1}$; HRMS (FAB+) m/z calc'd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 257.1290$, found 257.1280; HPLC conditions: 1% IPA, $1.0 \mathrm{~mL} / \mathrm{min}$, Chiralpak IC column, $\lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{min})$: major $=16.719$, minor $=9.761$.

(R)-2-(Methoxymethoxy)-2-(1-(pyridin-3-yl)allyl)malononitrile (6j). Product $\mathbf{6 j}$ was prepared according to the general procedure and isolated by silica gel flash column chromatography (25% acetone/hexanes) to give a pale yellow oil ($36 \mathrm{mg}, 74 \%$ yield): 90% ee; $[\alpha]_{\mathrm{D}}{ }^{25}-30.8\left(c 2.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.63(\mathrm{dd}, J=4.7,1.7$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.78 (dddd, $J=8.0,2.3,1.6,0.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.35 (ddd, $J=7.9,4.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.27 (ddd, $J=16.9,10.3,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.63-5.39(\mathrm{~m}, 2 \mathrm{H}), 5.06-4.97(\mathrm{~m}, 2 \mathrm{H}), 4.00$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.1,150.4,136.7,130.4$, 130.3, 123.8, 123.7, 112.5, 112.3, 96.7, 69.4, 57.5, 56.0; IR (Neat Film, NaCl) 2963, 2943, 2905, 2833, 2244, 1751, 1718, 1590, 1577, 1480, 1419, 1430, 1271, 1217, 1164, $1109,2055,1028,970,941,848,817,756,714 \mathrm{~cm}^{-1}$; HRMS (FAB+) m / z calc'd for
$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 244.1086$, found 244.1083; HPLC conditions: 20\% IPA, 1.0 $\mathrm{mL} / \mathrm{min}$, Chiralpak IC column, $\lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{min})$: major $=13.161$, minor $=23.457$.

(R)-2-(1-(Furan-2-yl)allyl)-2-(methoxymethoxy)malononitrile (6k). Product 6k was prepared according to the general procedure and isolated by silica gel flash column chromatography ($10 \% \mathrm{EtOAc} /$ hexanes) to give a colorless oil ($34 \mathrm{mg}, 73 \%$ yield): 96% ee; $[\alpha]_{\mathrm{D}}{ }^{25}-44.9\left(c 1.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47(\mathrm{~s}, 1 \mathrm{H}), 6.53-6.34$ $(\mathrm{m}, 2 \mathrm{H}), 6.14$ (dddd, $J=16.9,10.2,8.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.58-5.43(\mathrm{~m}, 2 \mathrm{H}), 5.10-4.94$ $(\mathrm{m}, 2 \mathrm{H}), 4.16(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 147.4,143.5,129.1,123.5,112.4,112.3,111.0,110.4,96.6,68.9,57.5,52.4$; IR (Neat Film, NaCl) $3125,2091,2964,2942$, 2905, 2833, 2245, 1499, 1444, 14222, 1270, 1217, 1164, 1109, 1030, 922, 797, $743 \mathrm{~cm}^{-1}$; HRMS (ESI+) m / z calc'd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 233.0926, found 233.0948; HPLC conditions: 1% IPA, $1.0 \mathrm{~mL} / \mathrm{min}$, Chiralpak IC column, $\lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{min}):$ major $=13.297$, minor $=10.761$.

(S)-2-(Methoxymethoxy)-2-(1-(thiophen-2-yl)allyl)malononitrile (61). Product 61 was prepared according to the general procedure and isolated by silica gel flash column chromatography ($10 \% \mathrm{EtOAc} /$ hexanes) to give a colorless oil ($49 \mathrm{mg}, 98 \%$ yield): 93% ee; $[\alpha]_{\mathrm{D}}{ }^{25}-40.3\left(c 2.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{dd}, J=5.1,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.20$ (ddd, $J=3.6,1.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.08$ (dd, $J=5.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.21$ (ddd, $J=$ $16.8,10.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.59-5.48(\mathrm{~m}, 2 \mathrm{H}), 5.09(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{dd}, J=8.6$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.7,131.3,128.3,127.1$, 126.9, 123.0, 112.5, 112.4, 96.7, 69.8, 57.6, 54.0; IR (Neat Film, NaCl) 3090, 2963, 2904, 2833, 2245, 2079, 1639, 1433k 1365, 1270, 1238, 1216, 1162, 1108, 1029, 922, 856, 839, $704 \mathrm{~cm}^{-1}$; HRMS (ESI +) m / z calc'd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 249.0698$, found 249.0703; SFC conditions: 3% IPA, $3.5 \mathrm{~mL} / \mathrm{min}$, Chiralpak IC- 3 column, $\lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ $(\mathrm{min}):$ major $=5.289$, minor $=4.010$.

Determination of Enantiomeric Excess

Please note racemic products were synthesized using racemic 3.

Table S1: Determination of Enantiomeric Excess
Entry

Entry	Product	Assay Conditions	Retention time of major isomer (min)	Retention time of minor isomer (min)	\%ee
7		HPLC Chiralpak IC 1\% IPA isocratic, $1 \mathrm{~mL} / \mathrm{min}$	24.142	19.686	96
8		HPLC Chiralpak AD 7\% IPA isocratic, $1 \mathrm{~mL} / \mathrm{min}$	17.062	12.809	98
9		HPLC Chiralpak IC 1\% IPA isocratic, $1 \mathrm{~mL} / \mathrm{min}$	15.134	10.197	92
10		HPLC Chiralpak IC 1\% IPA isocratic, $1 \mathrm{~mL} / \mathrm{min}$	16.719	9.761	89
11		HPLC Chiralpak IC 20\% IPA isocratic, $1 \mathrm{~mL} / \mathrm{min}$	13.161	23.457	90
12		$\begin{gathered} \text { HPLC } \\ \text { Chiralpak IC } \\ 1 \% \text { IPA } \\ \text { isocratic, } 1 \mathrm{~mL} / \mathrm{min} \end{gathered}$	13.297	10.761	96
13		$\begin{gathered} \text { SFC } \\ \text { Chiralpak IC-3 } \\ 3 \% \text { IPA } \\ \text { isocratic, } 3.5 \mathrm{~mL} / \mathrm{min} \end{gathered}$	5.289	4.010	93

${ }^{1}$ (a) Liu, W.-B.; He, H.; Dai, L.-X.; You, S.-L. Synthesis 2009, 2076-2082; (b) Liu, W .B.; Zheng, C.; Zhuo, C.-X.; Dai, L.-X.; You, S.-L. J. Am. Chem. Soc. 2012, 134, 48124821.
${ }^{2}$ (a) Nemoto, H.; Li, X.; Ma, R.; Suzuki, I.; Shibuya, M. Tetrahedron Lett. 2003, 44, 7375; (b) Yang, K. S.; Nibbs, A. E.; Türkmen, Y. E.; Rawal, V. H. J. Am. Chem. Soc. 2013, 135, 16050-16053.
${ }^{3}$ Pouy, M. J.; Leitner, A.; Weix, D. J.; Ueno, S.; Hartwig, J. F. Org. Lett. 2007, 9, 39493952.
${ }^{4}$ Trost, B. M.; Miller, J. R.; Hoffman, C. M. Jr. J. Am. Chem. Soc. 2011, 133, 81658167.
${ }^{5}$ Ohmura, T.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 15164-15165.
${ }^{6}$ Welter, C.; Moreno, R. M.; Streiff, S.; Helmchen, G. Org. Biomol. Chem. 2005, 3, 3266-3268.
${ }^{7}$ Leitner, A.; Shu, C.; Hartwig, J. F. Org. Lett. 2005, 7, 1093-1096.
${ }^{8}$ Cao, W.; Liu, X.; Peng, R.; He, P.; Lin, L.; Feng, X. Chem. Commun. 2013, 49, 34703472.
${ }^{9}$ Lantaño, B.; Aguirre, J. M.; Ugliarolo, E. A.; Torviso, R.; Pomilio, N.; Moltrasio, G. Y. Tetrahedron, 2012, 68, 913-921.
${ }^{10}$ Nguyen, B. H.; Perkins, R. J.; Smith, J. A.; Moeller, K. D. J. Org. Chem. 2015, 80, 11953-11962.
${ }^{11}$ Li, W.; Wang, J.; Hu, X.; Shen, K.; Wang, W.; Chu, Y.; Lin, L. Liu, X.; Feng, X. J. Am. Chem. Soc. 2010, 132, 8532-8533.

Infrared spectrum (Thin Film, NaCl) of compound $\mathbf{4 c}$.

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{4} \mathbf{c}$.

Infrared spectrum (Thin Film, $\mathbf{N a C l}$) of compound $\mathbf{5 e}$.

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 e}$.

Infrared spectrum (Thin Film, NaCl) of compound $\mathbf{5 f}$.

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 f}$.

Infrared spectrum (Thin Film, NaCl) of compound $\mathbf{5 g}$.

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 g}$.

Infrared spectrum (Thin Film, NaCl) of compound $\mathbf{6 a}$.

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{6 a}$.

Infrared spectrum (Thin Film, NaCl) of compound $\mathbf{6 b}$.

$$
-96.70
$$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{6 b}$.

Infrared spectrum (Thin Film, NaCl) of compound $\mathbf{6 c}$.

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{6 c}$.

Infrared spectrum (Thin Film, NaCl) of compound $\mathbf{6 e}$.

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{6 e}$.

Infrared spectrum (Thin Film, NaCl) of compound $\mathbf{6 f}$.

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{6} \mathbf{f}$.

Infrared spectrum (Thin Film, NaCl) of compound $\mathbf{6 g}$.

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{6 g}$.

Infrared spectrum (Thin Film, NaCl) of compound $\mathbf{6 i}$.

