Identification of Pyridinium with Three Indole Moieties as an Antimicrobial Agent

Masahiro Okada, $\dagger_{\neq *}^{*}$ Tomotoshi Sugita, $\dagger \neq$ Chin Piow Wong, \dagger Toshiyuki Wakimoto, \dagger, \S Ikuro Abe $\dagger^{*}$$\dagger$ Graduate School of Pharmaceutical Sciences, The University of Tokyo,
Bunkyo-ku, Tokyo 113-0033, Japan
Table of Contents
NMR, IR, and UV spectra of natural tricepyridinium acetate (1a) (Figure S1-S4) 2
Synthetic protocols and NMR spectra (Scheme S1, Figure S5-S27) 4
Plausible biosynthetic pathway (Scheme S2) 20
Cytotoxic activity (Table S1) 21

Figure S1. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ spectrum of $\mathbf{1 a}$.

Figure S2. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of $\mathbf{1 a}$.

Figure S3. IR $\left(\mathrm{CaF}_{2}\right)$ spectrum of $\mathbf{1 a}$.

Figure S4. UV (MeOH) spectrum of 1a.

Synthetic Protocols

C

$R=H(9 b)$
$R=\operatorname{Br}(10 b)$

Scheme S1. Synthetic schemes of tricepyridinium analogs.

Synthesis of 1-Ethyl-3,5-di(3-indolyl)pyridinium Bromide (6b).

To a solution of $5(23.9 \mathrm{mg}, 77.3 \mu \mathrm{~mol})$ in acetonitrile (1.0 mL), bromoethane ($4.0 \mathrm{~mL}, 53.8 \mathrm{mmol}$) was added, and the mixture was stirred at $50^{\circ} \mathrm{C}$ for 19 h in refluxed bromoethane. After the mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, EtOAc was added, and the mixture was extracted with $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was evaporated to give $\mathbf{6 b}(17.7 \mathrm{mg}, 42.3 \mu \mathrm{~mol}, 55 \%)$ as a yellow solid, which was used without any further purification. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$: $\delta_{\mathrm{H}} 8.90(2 \mathrm{H}, \mathrm{s}), 8.78(1 \mathrm{H}, \mathrm{s})$, 8.02-7.89 (4H, m), 7.52-7.44 (2H, m), 7.27-7.17 (4H, m), 4.75-4.65 ($2 \mathrm{H}, \mathrm{m}$), 1.76-1.65 (3H, m); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta_{\mathrm{C}} 137.6,136.0,135.8,126.5,126.3,124.4,122.7,121.1,118.2,112.2$, 109.5, 57.3, 16.0; HRESIMS $m / z 338.1660[M]^{+}$(calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{3}, 338.1652$).

Synthesis of 3-[3-(1-Boc)-indolyl]pyridine (12).

To a solution of 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine $\mathbf{1 1}$ ($214 \mathrm{mg}, 1.04 \mathrm{mmol}$) in DMSO (10 mL), 1-Boc-3-bromoindole ($370 \mathrm{mg}, 1.25 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($725 \mathrm{mg}, 5.25 \mathrm{mmol}$), and $\mathrm{PdCl}_{2}(\mathrm{dppf})_{2}(58.0 \mathrm{mg}, 71.0 \mu \mathrm{~mol})$ were added. After the mixture was stirred at $90^{\circ} \mathrm{C}$ for 2.5 h , it was quenched with water and filtered through Celite to remove the palladium catalyst. The filtrate was extracted with EtOAc , washed with saturated aqueous NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by silica gel column chromatography (hexane/acetone $=15 / 1$ to $4 / 1$) to give $12(227 \mathrm{mg}, 0.771 \mathrm{mmol}, 74 \%)$ as a white powder. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 8.90(1 \mathrm{H}, \mathrm{s})$, $8.59(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}), 8.23(1 \mathrm{H}, \mathrm{brs}), 7.97-7.85(1 \mathrm{H}, \mathrm{m}), 7.75(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.43-7.27(3 \mathrm{H}$, m), $1.69(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 149.6,149.0,148.4,136.0,135.1,130.0,128.6$, 125.0, 123.7, 123.5, 123.3, 119.6, 118.7, 115.7, 84.3, 28.3; HRESIMS: $m / z 295.1436[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}, 295.1441$).

Synthesis of 3-(3-Indolyl)pyridine (8).

To a solution of $\mathbf{1 2}(215 \mathrm{mg}, 0.730 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$, TFA $(6.0 \mathrm{~mL})$ was slowly added at $0^{\circ} \mathrm{C}$, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was quenched and basified with 1 M aqueous KOH . The mixture was extracted with EtOAc, washed with saturated aqueous NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by silica gel column chromatography (hexane/acetone $=6 / 1$ to $3 / 1$) to give $\mathbf{8}(132 \mathrm{mg}, 0.680 \mathrm{mmol}, 93 \%)$ as a yellow powder. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 9.56(1 \mathrm{H}, \mathrm{s}), 8.95(1 \mathrm{H}, \mathrm{m}), 8.55(1 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 7.96$ $(2 \mathrm{H}, \mathrm{m}), 7.60-7.18(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 148.3,146.8,137.0,134.7,132.1$, 125.6, 124.0, 122.8, 122.8, 120.7, 119.3, 114.3, 112.0; HRESIMS $m / z 195.0919[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{2}, 195.0917$).

Synthesis of 1-[2-(3-Indolyl)ethyl]-3-(3-indolyl)pyridinium Bromide (7b).

To a solution of $\mathbf{8}(67.0 \mathrm{mg}, 0.345 \mathrm{mmol})$ in 1,4-dioxane (0.70 mL), 3-(2-bromoethyl)indole (114 mg , 0.509 mmol) was added, and the mixture was stirred at $90{ }^{\circ} \mathrm{C}$ for 24 h . After the mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, EtOAc was added, and the mixture was extracted with $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was evaporated to give $\mathbf{7 b}(34.0 \mathrm{mg}, 81.3 \mu \mathrm{~mol}, 24 \%)$ as a yellow solid, which was used without any further purification. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta_{\mathrm{H}} 8.63(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 8.50(1 \mathrm{H}, \mathrm{d}, J=6.3$ $\mathrm{Hz}), 8.43(\mathrm{~s}, 1 \mathrm{H}), 7.89(1 \mathrm{H}, \mathrm{dd}, J=8.0,5.7 \mathrm{~Hz}), 7.47-7.42(2 \mathrm{H}, \mathrm{m}), 7.40(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.33$ $(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.20-7.09(3 \mathrm{H}, \mathrm{m}), 7.07-6.99(2 \mathrm{H}, \mathrm{m}), 6.93(1 \mathrm{H}, \mathrm{s}), 4.92(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}), 3.49$ $(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta_{\mathrm{C}} 140.7,140.5,139.2,137.6,137.4,137.1$, $137.0,127.6,126.6,126.0,123.9,122.5,121.8,121.1,119.2,117.9,117.3,111.9,111.6,108.8,108.2$, 62.4, 27.2; HRESIMS $m / z 338.1658[M]^{+}$(calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{3}, 338.1652$).

Synthesis of 1-[2-(3-Indolyl)ethyl]pyridinium Bromide (9b).

Pyridine (2 mL) was added to 3-(2-bromoethyl)indole ($104 \mathrm{mg}, 0.464 \mathrm{mmol}$), and the mixture was stirred at $90{ }^{\circ} \mathrm{C}$ for 2 h . After the mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, EtOAc was added, and the mixture was extracted with $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was evaporated to give $7(145 \mathrm{mg}, 0.478 \mathrm{mmol}$, quant.) as a yellow solid, which was used without any further purification. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta_{\mathrm{H}} 8.56(2 \mathrm{H}, \mathrm{t}, J=5.7 \mathrm{~Hz}), 8.37(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 7.81(2 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 7.39-7.21$ $(2 \mathrm{H}, \mathrm{m}), 7.07(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 7.00-6.84(2 \mathrm{H}, \mathrm{m}), 3.40(2 \mathrm{H}, \mathrm{q}, J=6.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta_{\mathrm{C}} 145.2,144.4,136.7,127.6,126.7,123.8,121.6,119.1,117.3,111.4,108.0,62.5,27.0$; HRESIMS $m / z 223.1232[\mathrm{M}]^{+}$(calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2}, 223.1230$).

Synthesis of 3,5-Dibromo-1-[2-(3-indolyl)ethyl]pyridinium Bromide (10b).

To a solution 3,5-dibromopyridine ($290 \mathrm{mg}, 1.22 \mathrm{mmol}$) in 1,4-dioxane (1.50 mL), 3-(2-bromoethyl)indole ($168 \mathrm{mg}, 0.750 \mathrm{mmol}$) was added, and the mixture was stirred at $90{ }^{\circ} \mathrm{C}$ for 47 h . After the mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, EtOAc was added, and the mixture was extracted with $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was evaporated to give $\mathbf{1 0 b}$ ($121 \mathrm{mg}, 0.262 \mathrm{mmol}, 35 \%$) as an yellow solid, which was used without any further purification. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta_{\mathrm{H}} 8.68(1 \mathrm{H}, \mathrm{s})$, $8.53(2 \mathrm{H}, \mathrm{s}), 7.37(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 7.10(1 \mathrm{H}, \mathrm{m}), 7.01-6.91(2 \mathrm{H}, \mathrm{m}), 3.32$ $(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta_{\mathrm{C}} 137.6,136.9,133.9,126.6,124.0,121.9,121.8,119.2$, 119.0, 116.8, 111.4, 69.7, 26.8; HRESIMS $m / z 378.9444[M]^{+}$(calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{Br}_{2} \mathrm{~N}_{2}, 378.9440$).

Figure S5. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3}$.

Figure S6. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3}$.

Figure S7. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 4.

Figure S8. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{4}$.

Figure S9. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 5 .

Figure S10. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 5 .

Figure S11. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of $\mathbf{1 b}$.

Figure S12. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of $\mathbf{1 b}$.

Figure S13. COSY ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of $\mathbf{1 b}$.

Figure S14. HMQC ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of $\mathbf{1 b}$.

Figure S15. $\mathrm{HMBC}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ spectrum of $\mathbf{1 b}$.

Figure S16. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of $\mathbf{6 b}$.

Figure S17. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of $\mathbf{6 b}$.

Figure S18. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 2}$.

Figure S19. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 2}$.

Figure S20. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of $\mathbf{8}$.

Figure S21. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of $\mathbf{8}$.

Figure S22. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of 7b.

Figure S23. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of 7b.

Figure S24. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{9 b}$.

Figure S25. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{9 b}$.

Figure S26. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) spectrum of $\mathbf{1 0 b}$.

Figure S27. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of $\mathbf{1 0 b}$.

Scheme S2. Plausible biosynthetic pathway of tricepyridinium.

Table S1. Cytotoxic Activities against P388 Cells of Tricepyridinium Bromide and Its Analogs.

	$\mathrm{IC}_{50}[\mu \mathrm{~g} / \mathrm{mL}](\mu \mathrm{M})$
compound	P 388 cells
$\mathbf{1 b}$	$0.53 \pm 0.01(1.0 \pm 0.1)$
$\mathbf{5}$	$14 \pm 1(45 \pm 3)$
$\mathbf{6 b}$	$0.093 \pm 0.029(0.22 \pm 0.07)$
$\mathbf{7 b}$	$21 \pm 1(50 \pm 3)$
$\mathbf{8}$	$1.9 \pm 0.2(10 \pm 1)$
$\mathbf{9 b}$	$16 \pm 1(53 \pm 3)$
$\mathbf{1 0 b}$	$35 \pm 5(76 \pm 10)$
Doxorubicin	$0.19 \pm 0.10(0.35 \pm 0.02)$
Cisplatin	$14 \pm 1(46 \pm 4)$

