Supporting Information for

Identification of Pyridinium with Three Indole Moieties as an Antimicrobial Agent

Masahiro Okada, †‡* Tomotoshi Sugita, †‡ Chin Piow Wong, † Toshiyuki Wakimoto, †, § Ikuro Abe †*

† Graduate School of Pharmaceutical Sciences, The University of Tokyo,

Bunkyo-ku, Tokyo 113-0033, Japan

Table of Contents

NMR, IR, and UV spectra of natural tricepyridinium acetate (1a) (Figure S1-S4)	2
Synthetic protocols and NMR spectra (Scheme S1, Figure S5-S27)	4
Plausible biosynthetic pathway (Scheme S2)	20

Cytotoxic activity (Table S1)

21

Figure S1. ¹H NMR (500 MHz, CD₃OD) spectrum of 1a.

Figure S2. ¹³C NMR (125 MHz, CD₃OD) spectrum of 1a.

Figure S3. IR (CaF₂) spectrum of 1a.

Figure S4. UV (MeOH) spectrum of 1a.

Synthetic Protocols

Scheme S1. Synthetic schemes of tricepyridinium analogs.

Synthesis of 1-Ethyl-3,5-di(3-indolyl)pyridinium Bromide (6b).

To a solution of **5** (23.9 mg, 77.3 µmol) in acetonitrile (1.0 mL), bromoethane (4.0 mL, 53.8 mmol) was added, and the mixture was stirred at 50 °C for 19 h in refluxed bromoethane. After the mixture was quenched with H₂O, EtOAc was added, and the mixture was extracted with H₂O. The aqueous layer was evaporated to give **6b** (17.7 mg, 42.3 µmol, 55%) as a yellow solid, which was used without any further purification. ¹H NMR (500 MHz, CD₃OD): $\delta_{\rm H}$ 8.90 (2H, s), 8.78 (1H, s), 8.02-7.89 (4H, m), 7.52-7.44 (2H, m), 7.27-7.17 (4H, m), 4.75-4.65 (2H, m), 1.76-1.65 (3H, m); ¹³C NMR (125 MHz, CD₃OD): $\delta_{\rm C}$ 137.6, 136.0, 135.8, 126.5, 126.3, 124.4, 122.7, 121.1, 118.2, 112.2, 109.5, 57.3, 16.0; HRESIMS *m/z* 338.1660 [M]⁺ (calcd for C₂₃H₂₀N₃, 338.1652).

Synthesis of 3-[3-(1-Boc)-indolyl]pyridine (12).

To a solution of 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine **11** (214 mg, 1.04 mmol) in DMSO (10 mL), 1-Boc-3-bromoindole (370 mg, 1.25 mmol), K₂CO₃ (725 mg, 5.25 mmol), and PdCl₂(dppf)₂ (58.0 mg, 71.0 µmol) were added. After the mixture was stirred at 90 °C for 2.5 h, it was quenched with water and filtered through Celite to remove the palladium catalyst. The filtrate was extracted with EtOAc, washed with saturated aqueous NaCl, dried over Na₂SO₄, and evaporated. The residue was purified by silica gel column chromatography (hexane/acetone = 15/1 to 4/1) to give **12** (227 mg, 0.771 mmol, 74%) as a white powder. ¹H NMR (500 MHz, CDCl₃): $\delta_{\rm H}$ 8.90 (1H, s), 8.59 (1H, d, *J* = 5.1 Hz), 8.23 (1H, brs), 7.97-7.85 (1H, m), 7.75 (2H, d, *J* = 8.5 Hz), 7.43-7.27 (3H, m), 1.69 (9H, s); ¹³C NMR (125 MHz, CDCl₃): $\delta_{\rm C}$ 149.6, 149.0, 148.4, 136.0, 135.1, 130.0, 128.6, 125.0, 123.7, 123.5, 123.3, 119.6, 118.7, 115.7, 84.3, 28.3; HRESIMS: *m/z* 295.1436 [M+H]⁺ (calcd for C₁₈H₁₉N₂O₂, 295.1441).

Synthesis of 3-(3-Indolyl)pyridine (8).

To a solution of **12** (215 mg, 0.730 mmol) in CH₂Cl₂ (2.0 mL), TFA (6.0 mL) was slowly added at 0 °C, and the mixture was stirred at 0 °C for 1 h. The reaction mixture was quenched and basified with 1 M aqueous KOH. The mixture was extracted with EtOAc, washed with saturated aqueous NaCl, dried over Na₂SO₄, and evaporated. The residue was purified by silica gel column chromatography (hexane/acetone = 6/1 to 3/1) to give **8** (132 mg, 0.680 mmol, 93%) as a yellow powder. ¹H NMR (500 MHz, CDCl₃): $\delta_{\rm H}$ 9.56 (1H, s), 8.95 (1H, m), 8.55 (1H, d, *J* = 4.6 Hz), 7.96 (2H, m), 7.60-7.18 (4H, m); ¹³C NMR (125 MHz, CDCl₃): $\delta_{\rm C}$ 148.3, 146.8, 137.0, 134.7, 132.1, 125.6, 124.0, 122.8, 122.8, 120.7, 119.3, 114.3, 112.0; HRESIMS *m/z* 195.0919 [M+H]⁺ (calcd for C₁₃H₁₁N₂, 195.0917).

Synthesis of 1-[2-(3-Indolyl)ethyl]-3-(3-indolyl)pyridinium Bromide (7b).

To a solution of **8** (67.0 mg, 0.345 mmol) in 1,4-dioxane (0.70 mL), 3-(2-bromoethyl)indole (114 mg, 0.509 mmol) was added, and the mixture was stirred at 90 °C for 24 h. After the mixture was quenched with H₂O, EtOAc was added, and the mixture was extracted with H₂O. The aqueous layer was evaporated to give **7b** (34.0 mg, 81.3 µmol, 24%) as a yellow solid, which was used without any further purification. ¹H NMR (500 MHz, CD₃OD): $\delta_{\rm H}$ 8.63 (1H, d, *J* = 8.6 Hz), 8.50 (1H, d, *J* = 6.3 Hz), 8.43 (s, 1H), 7.89 (1H, dd, *J* = 8.0, 5.7 Hz), 7.47-7.42 (2H, m), 7.40 (1H, d, *J* = 8.0 Hz), 7.33 (1H, d, *J* = 8.6 Hz), 7.20-7.09 (3H, m), 7.07-6.99 (2H, m), 6.93 (1H, s), 4.92 (2H, t, *J* = 6.0 Hz), 3.49 (2H, t, *J* = 6.0 Hz); ¹³C NMR (125 MHz, CD₃OD): $\delta_{\rm C}$ 140.7, 140.5, 139.2, 137.6, 137.4, 137.1, 137.0, 127.6, 126.6, 126.0, 123.9, 122.5, 121.8, 121.1, 119.2, 117.9, 117.3, 111.9, 111.6, 108.8, 108.2, 62.4, 27.2; HRESIMS *m/z* 338.1658 [M]⁺ (calcd for C₂₃H₂₀N₃, 338.1652).

Synthesis of 1-[2-(3-Indolyl)ethyl]pyridinium Bromide (9b).

Pyridine (2 mL) was added to 3-(2-bromoethyl)indole (104 mg, 0.464 mmol), and the mixture was stirred at 90 °C for 2 h. After the mixture was quenched with H₂O, EtOAc was added, and the mixture was extracted with H₂O. The aqueous layer was evaporated to give 7 (145 mg, 0.478 mmol, quant.) as a yellow solid, which was used without any further purification. ¹H NMR (500 MHz, CD₃OD): $\delta_{\rm H}$ 8.56 (2H, t, *J* = 5.7 Hz), 8.37 (1H, q, *J* = 7.2 Hz), 7.81 (2H, d, *J* = 6.8 Hz), 7.39-7.21 (2H, m), 7.07 (1H, q, *J* = 7.2 Hz), 7.00-6.84 (2H, m), 3.40 (2H, q, *J* = 6.4 Hz); ¹³C-NMR (125 MHz, CD₃OD): $\delta_{\rm C}$ 145.2, 144.4, 136.7, 127.6, 126.7, 123.8, 121.6, 119.1, 117.3, 111.4, 108.0, 62.5, 27.0; HRESIMS *m/z* 223.1232 [M]⁺ (calcd for C₁₅H₁₅N₂, 223.1230).

Synthesis of 3,5-Dibromo-1-[2-(3-indolyl)ethyl]pyridinium Bromide (10b).

To a solution 3,5-dibromopyridine (290 mg, 1.22 mmol) in 1,4-dioxane (1.50 mL), 3-(2-bromoethyl)indole (168 mg, 0.750 mmol) was added, and the mixture was stirred at 90 °C for 47 h. After the mixture was quenched with H₂O, EtOAc was added, and the mixture was extracted with H₂O. The aqueous layer was evaporated to give **10b** (121 mg, 0.262 mmol, 35%) as an yellow solid, which was used without any further purification. ¹H NMR (500 MHz, D₂O): $\delta_{\rm H}$ 8.68 (1H, s), 8.53 (2H, s), 7.37 (1H, d, *J* = 8.5 Hz), 7.18 (1H, d, *J* = 7.4 Hz), 7.10 (1H, m), 7.01-6.91 (2H, m), 3.32 (2H, m); ¹³C NMR (125 MHz, CD₃OD): $\delta_{\rm C}$ 137.6, 136.9, 133.9, 126.6, 124.0, 121.9, 121.8, 119.2, 119.0, 116.8, 111.4, 69.7, 26.8; HRESIMS *m/z* 378.9444 [M]⁺ (calcd for C₁₅H₁₃Br₂N₂, 378.9440).

Figure S5. ¹H NMR (500 MHz, CDCl₃) spectrum of **3**.

Figure S6. ¹³C NMR (125 MHz, CDCl₃) spectrum of **3**.

Figure S7. ¹H NMR (500 MHz, CDCl₃) spectrum of 4.

Figure S8. ¹³C NMR (125 MHz, CDCl₃) spectrum of 4.

Figure S9. ¹H NMR (500 MHz, CDCl₃) spectrum of 5.

Figure S10. ¹³C NMR (125 MHz, CDCl₃) spectrum of 5.

Figure S11. ¹H NMR (500 MHz, CD₃OD) spectrum of 1b.

Figure S12. ¹³C NMR (125 MHz, CD₃OD) spectrum of 1b.

Figure S13. COSY (500 MHz, CD₃OD) spectrum of 1b.

Figure S14. HMQC (500 MHz, CD₃OD) spectrum of 1b.

Figure S15. HMBC (500 MHz, CD₃OD) spectrum of 1b.

Figure S16. ¹H NMR (500 MHz, CD₃OD) spectrum of 6b.

Figure S17. ¹³C NMR (125 MHz, CD₃OD) spectrum of 6b.

Figure S18. ¹H NMR (500 MHz, CDCl₃) spectrum of 12.

Figure S19. ¹³C NMR (125 MHz, CDCl₃) spectrum of 12.

Figure S20. ¹H NMR (500 MHz, CD₃OD) spectrum of 8.

Figure S21. ¹³C NMR (125 MHz, CD₃OD) spectrum of 8.

Figure S22. ¹H NMR (500 MHz, CD₃OD) spectrum of 7b.

Figure S23. ¹³C NMR (125 MHz, CD₃OD) spectrum of 7b.

Figure S24. ¹H NMR (500 MHz, CDCl₃) spectrum of 9b.

Figure S25. ¹³C NMR (125 MHz, CDCl₃) spectrum of 9b.

Figure S26. ¹H NMR (500 MHz, D₂O) spectrum of 10b.

Figure S27. ¹³C NMR (125 MHz, CD₃OD) spectrum of 10b.

Scheme S2. Plausible biosynthetic pathway of tricepyridinium.

Table S1. Cytotoxic Activities against P388 Cells of Tricepyridinium Bromide and Its Analogs.

	IC ₅₀ [µg/mL] (µM)
compound	P388 cells
1b	$0.53 \pm 0.01 \ (1.0 \pm 0.1)$
5	$14 \pm 1 \ (45 \pm 3)$
6b	$0.093 \pm 0.029 \ (0.22 \pm 0.07)$
7b	$21 \pm 1 (50 \pm 3)$
8	$1.9 \pm 0.2 \ (10 \pm 1)$
9b	$16 \pm 1 \ (53 \pm 3)$
10b	$35 \pm 5 (76 \pm 10)$
Doxorubicin	$0.19 \pm 0.10 \ (0.35 \pm 0.02)$
Cisplatin	$14 \pm 1 \ (46 \pm 4)$