Supporting Information

Correlating Membrane Morphological Responses with Micellar Aggregation Behavior of Capric Acid and Monocaprin

Bo Kyeong Yoon 1,2 , Joshua A. Jackman 1,2 , Min Chul Kim 1,2 , Tun Naw Sut 1,2 , Nam-Joon Cho *,1,2,3

¹School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore

²Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore

³School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive 637459, Singapore

*Corresponding author

E-mail: njcho@ntu.edu.sg

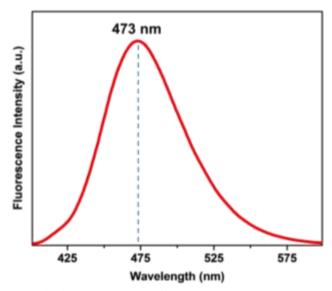


Figure S1. Fluorescence emission spectrum of 1-pyrenecarboxaldehyde in PBS solution. The excitation wavelength was 365.5 nm.

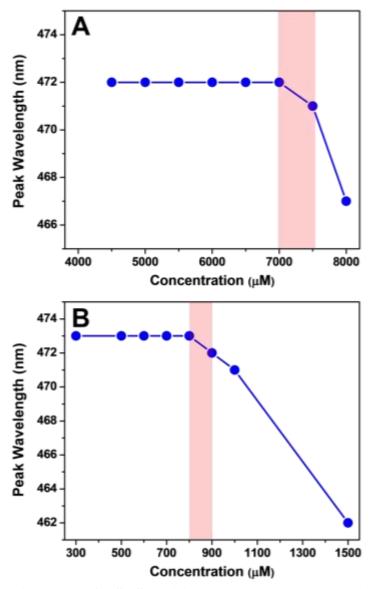


Figure S2. Determination of SDS critical micelle concentration using the 1-pyrenecarboxaldehyde fluorescence probe. Peak wavelength is presented as a function of SDS concentration in (A) distilled water and (B) PBS. Each data point is the average of six technical replicates (n = 6).

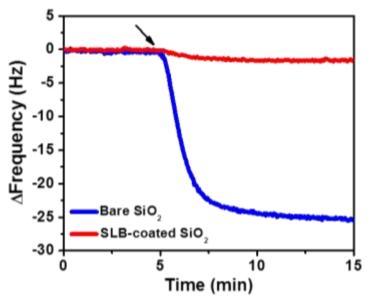


Figure S3. QCM-D measurement of BSA protein adsorption onto bare and SLB-coated silicon dioxide surfaces. Changes in the QCM-D frequency signal were monitored as a function of time. The measurement baseline was recorded in PBS solution, and BSA protein was added starting at t=5 min (see arrow).