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Optimization of the addition of -angelica lactone to -halo--ketoester: 

 

A 1 dram vial was charged sequentially with 1,3,5-trimethoxybenzene (internal standard, 0.1 mmol), -

halo--ketoester1 (0.1 mmol, 1.0 equiv), and solvent (1.0mL). The -angelica lactone (0.2 mmol, 2.0 

equiv) was then added. The reaction was stirred at room temperature for one min and the catalyst was 

added in one portion. The reaction was stirred at room temperature for the length of the reaction, then 

concentrated in vacuo. The 1H NMR spectra of unpurified reaction mixtures were used to determine 

NMR yields and dr values. (Note 1)  

 

Commentary: Initially, a screen of bases in THF (Table S1, entries 1-5) demonstrated that quinidine 

was the best base for the reaction. Then, by studying the reaction in different solvents (Table S1, entries 

5-10), we found 2-MeTHF to be optimal. We observed that there was no improvement when the reaction 

time was extended to 24 h, either at -20 ºC (Table S1, entry 11) or room temperature (Table S1, entry 

12). Although a low level of enantioselectivity (16% ee) was observed with QN-TU (Table S2, entry 5), 

no enantioselectivity (0% ee) was observed with quinidine (Table S2, entry 6). In cases where the 

reactions worked, no minor diastereomers were observed.(Note 2) Optimized conditions are italicized. 

 

 

Table S1.  Base and Solvent Screen. 

 

Entry Conditions % Yield (1H NMR) dr 

1 10 mol % KOtBu, THF, 6 h, rt 0 - 

2 10 mol % DBU, THF, 6 h, rt 0 - 

3 10 mol % TEA, THF, 6 h, rt Trace product - 

4 10 mol % TMG, THF, 6 h, rt Trace product - 

5 10 mol % quinidine, THF, 6 h, rt 61 >20:1 

6 10 mol % quinidine, EA, 6 h, rt 66 >20:1 

7 10 mol % quinidine, DMSO, 6 h, rt 23 n.d. 

8 10 mol % quinidine, TBME, 6 h, rt 45 >20:1 

9 10 mol % quinidine, Et2O, 6 h, rt 46 >20:1 

10 10 mol % quinidine, 2-MeTHF, 6 h, rt 91 >20:1 

11 10 mol % quinidine, 2-MeTHF, 24 h, -20 ºC 43 >20:1 

12 10 mol % quinidine, 2-MeTHF, 24 h, rt 53 >20:1 
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Note 1. We found that the reaction gives a higher NMR yield (70-80%, at least in the parent case) than 

the isolated yield, and after repeated tries we concluded that the products are not completely stable to 

silica. This conclusion was supported by the fact that new decomposition products can be observed 

coming off the column. 

 

Note 2. In general, we started by looking in the crude NMR spectra to see if anything that could be a 

diastereomer could be identified. Some cases were clearer than others. The most definitive method that 

we found to identify diastereomers or -addition products was to flash the crude material and then flush 

the column with x+10% more polar solvent system (where x was the gradient that allowed the product 

to elute cleanly) in an EA/hexanes gradient for >10 fractions. We then concentrated all fractions on each 

side of the desired product (more polar and less polar) and if we found anything (1H NMR analysis), we 

went back to the crude spectra and calculated the dr. It is possible that a minor diastereomer or -

addition product for some cases might be not isolable due to instability (see Note 1), but this procedure 

was the best readout feasible with the available data. 
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Table S2.  Enantioselectivity data for chiral catalysts. 

Entry Conditions er 

1 10 mol % QN-1, THF, 21 h, rt 58.0:42.0 

2 10 mol % QN-2, THF, 6 h, rt 53.5:46.5 

3 10 mol % QD-1, 2-MeTHF, 6 h, rt 54.0:42.0 

4 10 mol % Ph-Dixon, THF, 19 h, rt 52.5:47.5 

5 10 mol % Ph-Dixon, THF, 16 h, -40 ºC 55.5:44.5 

6 10 mol % quinidine, THF, 6 h, rt 50.5:49.5 
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HPLC traces: 

 

With TEA 

 

With quinidine: 

 

 

 Retention time (min) Peak Area % Area 

With TEA 13.3 43264208.8 49.3 

 15.6 44507069.9 50.7 

With quinidine 13.2 27679403.6 49.5 

 15.5 28248692.7 50.5 
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Determination of relative configuration of 4a: 

 

 

 

COSY and NOESY experiments were performed on 4a (see pp. S45-S46) on a 600 MHz NMR 

spectrometer. COSY analysis allowed the assignment of protons in the 1D 1H NMR spectrum. A 

characteristic NOE correlation was observed between the indicated protons (which appear at δ 3.77 

and δ 4.57), which allowed them to be assigned as syn on the lactone. 
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X-ray structure of 3a:         

 

Thermal ellipsoid plot of compound 3a. Ellipsoids drawn at 50% probability. 
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Crude 1H NMR spectra:         

3a 
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1H and 13C NMR spectra of new compounds: 
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2D NMR experiments on 4a: 

 

1H COSY: 
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1H nOe: 

 


