Supporting Information

Chlorination of Low-Band-Gap Polymers: Toward High-Performance Polymer Solar Cells

Daize Mo,[†] Huan Wang,[†] Hui Chen,[†] Shiwei Qu,[†] Pengjie Chao,[†] Zhen Yang,[†] Leilei Tian,[‡] Yu-An Su,[§] Yu Gao,[⊥] Bing Yang,[⊥] Wei Chen,^{*,§∥} and Feng He^{*,†}

[†]Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, People's Republic of China

[‡]Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen, 518055, People's Republic of China

[§]Materials Science Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States

^{II} Institute for Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States

¹ State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University, Changchun 130012, People's Republic of China

E-mail: <u>hef@sustc.edu.cn</u>; <u>wchen@anl.gov</u>

Figure S1. (a) X-ray crystal structure of compound **4**; (b) Molecular packing diagram of **4** viewed along the *ab* plane.

Figure S2. Thermogravimertic analysis (TGA) of PBDTHD-ClBTDD, PBDTBO-ClBTDD, PBDTHD-ClBTEH, and PBDTBO-ClBTEH.

Figure S3. UV-vis absorption spectra of **PBDTHD-ClBTDD**/PC₇₁BM blend films in the different thickness.

Figure S4. $J^{1/2} \sim V$ characteristics of the **PBDTHD-ClBTDD** hole-only devices measured at ambient temperature.

Figure S5. $J^{1/2} \sim V$ characteristics of the **PBDTBO-CIBTEH** hole-only devices measured at ambient temperature.

Figure S6. $J^{1/2} \sim V$ characteristics of the **PBDTHD-ClBTEH** hole-only devices measured at ambient temperature.

Figure S7. $J^{1/2}$ ~V characteristics of the **PBDTBO-CIBTDD** hole-only devices measured at ambient temperature.

Figure S8. Normalized PCEs of ITO/ZnO/**PBDTHD-ClBTDD**:PC₇₁BM/MoO₃/Ag device as a function of storage time.

Figure S9. TEM images of the blend films of (a) **PBDTHD-ClBTDD**/PC₇₁BM, (b) **PBDTBO-ClBTEH**/PC₇₁BM, (c) **PBDTHD-ClBTEH**/PC₇₁BM, and (d) **PBDTBO-ClBTDD**/PC₇₁BM.

Figure S10. Photoluminescence of the polymer and their blend films. (a) PBDTHD-CIBTEHandPBDTHD-CIBTEH:PC71BM;(b)PBDTBO-CIBTEHandPBDTBO-CIBTEH:PC71BM;(c)PBDTBO-CIBTDDandPBDTBO-CIBTDD:PC71BM;(d)PBDTHD-CIBTDD and PBDTHD-CIBTDD:PC71BM

Figure S11. Comparison of ¹H NMR spectrum of compound 3 and 4.

Figure S13. ¹³C NMR spectrum of 5b.

Figure S14. ¹H NMR spectrum of 6b.

Figure S15. ¹³C NMR spectrum of 6b.

Figure S14. ¹H NMR spectrum of 5a.

Figure S16. ¹³C NMR spectrum of 5a.

- 0. 02

Figure S17. ¹H NMR spectrum of 6a.

Figure S18. ¹³C NMR spectrum of 6a.