Supporting Information

Amplified Peroxidase-Like Activity in Iron Oxide Nanoparticles using Adenosine

Monophosphate: Application to Urinary Protein Sensing

Ya-Chun Yang¹ a Yen-Ting Wang¹, nd Wei-Lung Tseng*^{1,2,3}

¹. Department of Chemistry, National Sun Yat-sen University, Taiwan

². School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Taiwan

³. Center for Nanoscience and Nanotechnology, National Sun Yat-sen University,

Taiwan

Correspondence: Dr. Wei-Lung Tseng, Department of Chemistry, National Sun Yat-sen

University, 70, Lien-hai Road, Kaohsiung, Taiwan 804.

E-mail: tsengwl@mail.nsysu.edu.tw

Fax: 011-886-7-3684046.

Abstract

In the section of supporting information, we include detail information associated

with DLS spectra of the Fe₃O₄ NPs and the AMP-Fe₃O₄ NPs, the fluorescence of the oxidized AU obtained from the different catalytic conditions, the effect of storage

time of the AMP-induced enhancement of the Fe₃O₄ NP activity, determination of

the net charge of AU by capillary electrophoresis, the use of reversed-phase high

performance liquid chromatography for the detection of AMP hydrolysis under

different catalytic conditions, and BET analyses of the Fe₃O₄ NPs and the AMP-Fe₃O₄

NPs.

S-1

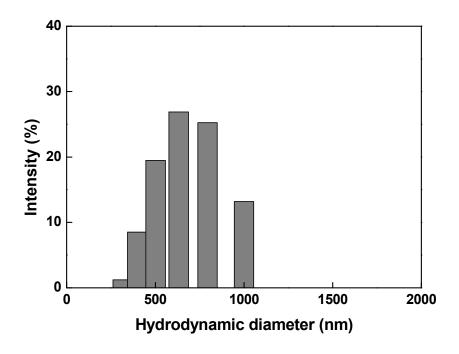
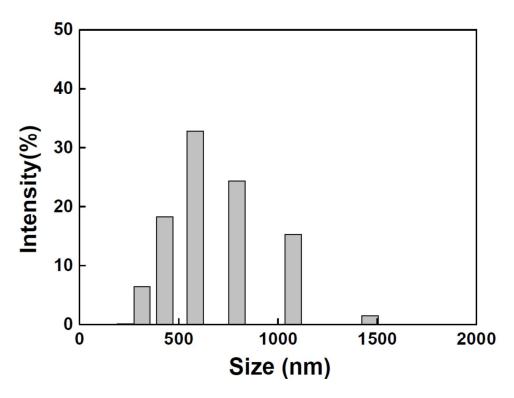
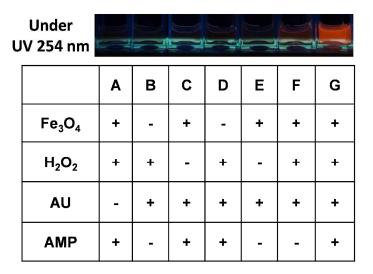
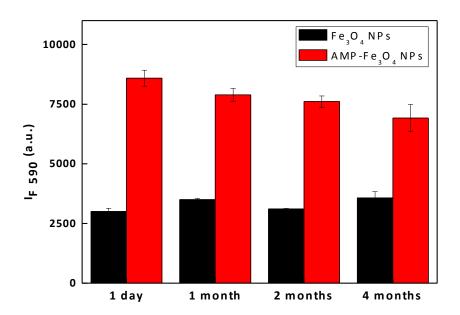
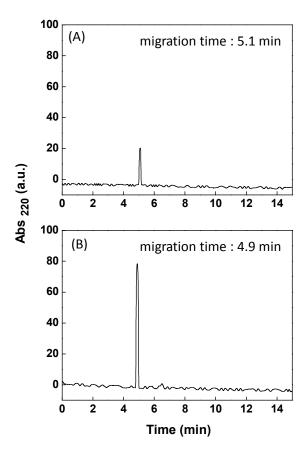


Figure S1. DLS spectrum of the as-prepared Fe_3O_4 NPs.


Figure S2. DLS spectrum of the AMP-Fe₃O₄ NPs.

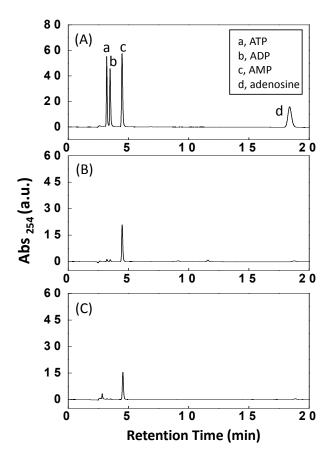

Figure S3. Visual analyses demonstrate that the production of the oxidized AU only occurred in the presence of (F) Fe₃O₄ NPs, H₂O₂, AU and (G) Fe₃O₄ NPs, H₂O₂, AU AMP. The Fe₃O₄ NPs were incubated with adenosine analogs for 1 min in 10 mM Tris-HCl (pH 7.0). The concentrations of NPs, AMP, AU, and H₂O₂ are 1 mg/ml, 0,1 mM, 5 μ M, and 2.5 mM, respectively.

Figure S4. Effect of storage time on the catalytic activity of the Fe $_3O_4$ NPs in the absence (black bar) and presence (red bar) of 0.1 mM AMP. At each storage time, the catalytic activity of the Fe $_3O_4$ NPs was measured by incubating 1 mg/mL Fe $_3O_4$ NPs with 2.5 mM H $_2O_2$ and 5 μ M AU in 10 mM Tris-HCl (pH 7.0) at 37 °C for 25 min. Additionally, the AMP-induced improvement of the catalytic activity of the Fe $_3O_4$ NPs was examined by mixing 1 mg/mL Fe $_3O_4$ NPs with 0.1 mM AMP, following by the above mentioned procedure.

Figure S5. Detection of (A) benzyl alcohol and (B) AU by capillary electrophoresis. Electrophoretic conditions: 60-cm capillary (10-cm to detector); separation buffer, 10 mM Tris-HCl at pH 7.0; applied voltage, 15 kV; hydrodynamic injection at 20-cm height for 10 s; and direct UV detection at 220 nm.

Figure S6. (A) Separation of a mixture of ATP, ADP, AMP, and adenosine by reversed-phase HPLC. (B) Detection of the supernatant 1 by reversed-phase HPLC. A mixture of the Fe_3O4 NPs, and AMP was treated with an external magnetic field. After collecting the Fe_3O_4 NPs, the supernatant 1 was detected by reversed-phase HPLC. (C) Detection of the supernatant 2 by reversed-phase HPLC. A mixture of the Fe_3O_4 NPs, AMP, AU, and H_2O_2 was treated with an external magnetic field. After collecting the Fe_3O_4 NPs, the supernatant 2 was detected by reversed-phase HPLC. The flow rate of the mobile phase is 1 mL/min. The composition of the mobile phase includes 90% of 0.1 M phosphate buffer (pH 6.0) and 10% of methanol. The concentration of each adenosine analog is 100 μM.

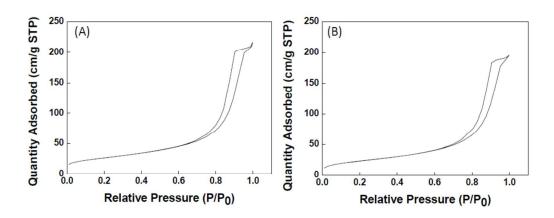


Figure S7. BET analyses of (A) the Fe_3O_4 NPs and (B) the AMP- Fe_3O_4 NPs.