High-Throughput Continuous Hydrothermal Synthesis of Transparent Conducting Aluminium and Gallium Co-doped Zinc Oxides

Dougal P. Howard[†], Peter Marchand[†], Liam McCafferty[†], Claire J. Carmalt[†], Ivan P. Parkin[†] and Jawwad A. Darr[†]*

SUPPLEMENTARY INFORMATION

Table S1. Electrical characterization information on AGZO samples synthesized by CHFS, including nominal atomic percentages of the metal ions in the precursor solutions.

Sample	Zn / at%	Al / at%	Ga / at%	Resistivity x 10 ⁻³ / Ω cm
A _{0.5} G _{0.5} ZO	99.0	0.5	0.5	32.5 ± 0.3
A _{0.5} G _{1.5} ZO	98.0	0.5	1.5	41.9 ± 0.4
$A_{1.0}G_{1.0}ZO$	98.0	1.0	1.0	33.9 ± 0.5
$A_{1.5}G_{0.5}ZO$	98.0	1.5	0.5	35.6 ± 0.4
$A_{0.5}G_{2.5}ZO$	97.0	0.5	2.5	11.4 ± 7.0
$A_{1.0}G_{2.0}ZO$	97.0	1.0	2.0	9.1 ± 3.6
A _{1.5} G _{1.5} ZO	97.0	1.5	1.5	31.9 ± 0.6
$A_{2.0}G_{1.0}ZO$	97.0	2.0	1.0	35.2 ± 0.4
$A_{2.5}G_{0.5}ZO$	97.0	2.5	0.5	50.5 ± 0.4
$A_{0.5}G_{3.5}ZO$	96.0	0.5	3.5	21.6 ± 0.3
$A_{1.0}G_{3.0}ZO$	96.0	1.0	3.0	16.2 ± 0.2
$A_{1.5}G_{2.5}ZO$	96.0	1.5	2.5	23.8 ± 0.6
$A_{2.0}G_{2.0}ZO$	96.0	2.0	2.0	9.3 ± 2.3
$A_{2.5}G_{1.5}ZO$	96.0	2.5	1.5	20.7 ± 8.1
$A_{3.0}G_{1.0}ZO$	96.0	3.0	1.0	9.4 ± 7.7
A _{3.5} G _{0.5} ZO	96.0	3.5	0.5	52.9 ± 0.3
A _{0.5} G _{4.5} ZO	95.0	0.5	4.5	43.4 ± 0.4
$A_{1.0}G_{4.0}ZO$	95.0	1.0	4.0	20.6 ± 0.1
A _{1.5} G _{3.5} ZO	95.0	1.5	3.5	20.7 ± 1.1
A _{2.0} G _{3.0} ZO	95.0	2.0	3.0	22.4 ± 3.2

[†]Department of Chemistry, University College London, London WC1H oAJ, United Kingdom

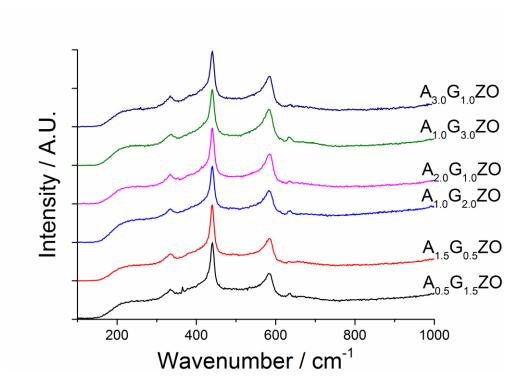


Figure S1. Raman spectra of the six representative AGZO samples. With regards to the observed dominating modes, the [E2 (high) – E2 (low)] mode of ZnO appeared at 331 cm $^{-1}$, the E2 high signal appeared at 438 cm $^{-1}$, the E1(LO) mode appeared at 581 cm $^{-1}$. Additionally, a small peak appeared at 632 cm $^{-1}$, caused by the presence of $Ga_2O_3(A_g \text{ mode})$. This peak was observed more strongly for those samples with more gallium in the precursor solutions.

- 1. High- Damen, T. C.; Porto, S. P. S.; Tell, B. Raman effect in Zinc Oxide. Physical Reviews 1966, 142, 570-574
- **2.** Park, G.-S.; Choi, W.-B.; Kim, J.-M.; Choi, Y. C.; Lee, Y. H.; Lim, C.-B. Structural investigation of gallium oxide (beta- Ga₂O₃) nanowires grown by arc-discharge. *Journal of Crystal Growth* 2000, *220*, 494-500