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Materials Characterization. The crystalline phases of the resultant materials were characterized by powder X-

ray diffraction (XRD, PANalytical B.V.), which was carried out using Cu Kα radiation (λ = 1.5406 Å) from 2θ 

= 10° to 80°. The morphology and microstructure were observed with a field emission scanning electron 

microscope (FE-SEM, Nova NanoSEM 450) and a field emission transmission electron microscopy (FE-TEM; 

Tecnai G2 F30). Raman spectroscopy was collected on an inVia Reflex (Renishaw) spectrometer using a 785 

nm laser. X-ray photoelectron spectra (XPS) were recorded on a VG MultiLab 2000 system with a 

monochromatic A1 Kα X-ray source (ThermoVG Scientific). 

 

Electrochemical Measurements. The electrodes were fabricated by mixing the active material, Super P, and 

Na-carboxymethyl cellulose (CMC) in a weight ratio of 8:1:1 in deionized water, followed by pasting the slurry 

onto copper foil by scraping with a knife. After drying in vacuum at 80 °C for 24 h, it was cut into small pieces 

with a diameter of 8 mm. The 2032 cells were assembled in an argon filled glovebox, using lithium metal as the 

counter electrode, Celgard 2300 membrane as the separator, and 1 M LiPF6 dissolved in ethylene carbonate, 

diethyl carbonate and dimethyl carbonate (EC-DEC-DMC) mixed solvent (1:1:1 by weight) as the electrolyte. 

The electrochemical performances were recorded on a Land battery measurement system (Wuhan, China) with a 

cut-off voltage of 0.01–2.80 V vs. Li/Li+ at room temperature. Cyclic voltammetry (CV) curves were recorded 

on an electrochemical workstation (CHI 660d) at a scan rate of 0.1 mV s-1 between 0.01 and 2.80 V.
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Figure S1. XPS spectra of ZGO-2: a) Zn 2p peak, b) Ge 3d peak, and c) O 1s peak. 
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Figure S2. EDS spectra of ZGO-0 (a), ZGO-1 (b), ZGO-2 (c), and ZGO-3 (d), respectively. The 

microanalyses confirmed the presence of Zn, Ge, and O species, as well as signals of C and Pt, which 

were generated from the carbon conductive tape and by Pt sputtering to decrease the charging effects 

under the SEM-imaging conditions. 
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Figure S3. HRTEM images and corresponding FFT patterns of ZGO-0 (a, b) and ZGO-2 (c, d), 

respectively. 
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(d)  

 

Figure S4. Discharge and charge profiles of ZGO-0 (a), ZGO-1 (b), and ZGO-3 (c) at a current density 

of 0.5 A g-1 for the 1st, 2nd, 50th, and 150th cycles, (d) Cycling performances of  ZGO-0 and ZGO-2 at 

the charge/discharge current density of 1 A g-1 between 0.01 and 2.80 V. 
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Figure S5. Cyclic voltammograms for the first 5 cycles of ZGO-0 (a), and ZGO-2 (b). 
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Figure S6. (a) X-ray diffraction patterns of the cycled ZGO-0 and ZGO-2 electrodes, and 

the cycled SEM images of ZGO-0 (b) and ZGO-2 (c) electrode. 
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Table S1. Comparison of the capacity of present work with rported Zn2GeO4-based materials. 

 

 

Sample 

Current density  

(A g
−1

) 

Cycle number 

 (n) 

Capacity  

(mA h g
−1

) 

 

Ref 

 

Zn2GeO4 nanorods 

 

0.4 

 

100 

 

616 

 

[1] 

 

Zn2GeO4 /N-doped 

graphene 

 

0.1 

 

100 

 

1044 

 

[2] 

 

Zn2GeO4 hollow 

nanoparticles 

 

0.2 

 

60 

 

1175 

 

[3] 

 

Amorphous Zn2GeO4 

nanoparticles 

 

0.4 

 

500 

 

1250 

 

[4] 

 

Zn2GeO4/g-C3N4 hybrids 

 

0.2 

 

140 

 

1370 

 

[5] 

 

Coaxial Zn2GeO4 @ 

carbon nanowires 

 

0.2 

 

100 

 

1112 

 

[6] 

 

Sandwiched 

Zn2GeO4−graphene oxide 

 

0.2 

 

100 

 

1150 

 

[7] 

 

Mn-doped Zn2GeO4 

nanosheets 

 

0.1 

 

100 

 

1301 

 

[8] 

 

Interlaced porous 

Zn2GeO4 nanofibe 

 

0.2 

 

50 

 

1084 

      

           [9] 

 

Fascicular Zn2GeO4  

 

0.5 

 

160 

 

1034 

 

In this  

work 
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