Supporting Information

Synthesis of Spiro-Dihydroquinoline and Octahydrophenanthrene Derivativesvia Palladium-Catalyzed Intramolecular Oxidative ArylationZhong-Lin Zang, ${ }^{\dagger}$ Shuklachary Karnakanti, ${ }^{\dagger}$ Sheng Zhao, Ping Hu, Zhen Wang, Pan-Lin Shao*, andYun He*
School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, P.R. China. E-mail: yun.he@cqu.edu.cn, shaopl@cqu.edu.cn
Table of Contents:

1. General Information:2
2. Synthesis of Starting Materials: 3
3. Optimization and Substrate Scope of Alkenyl Aniline Compounds 20
4. Optimization and Substrate Scope of $\boldsymbol{\alpha}$-Aryl Alkenyl Aamides 26
5. Versatile Transformations of the Product 29
6. Deuterium Labeling Experiments and Mechanistic Studies 31
7. X-ray Crystallographic Data of Compound 2n, 5c and 7: 40
8. References: 44
9. Experimental Spectra: 45

1. General Information:

Unless otherwise noted, reactions were carried out in oven-dried glassware or sealed tube under atmosphere of nitrogen. Toluene and acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ were distilled from calcium hydride. Tetrahydrofuran (THF) and diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ were dried and distilled from sodium. Methanol (MeOH) was dried under reflux with magnesium and then distilled. N, N-Dimethylformamide (DMF) was dried over calcium hydride and distilled under vacuum. Reactions were monitored by analytical thin-layer chromatography (TLC) on Merck silica gel $60 \mathrm{~F}_{254}$ plates (0.25 mm), visualized by ultraviolet light (254 nm) or by staining with ceric ammonium molybdate or basic potassium permanganate solutions as appropriate. ${ }^{1} \mathrm{H}$ NMR spectra were obtained on an Agilent 400 MR or 600MR DD2 spectrometer at ambient temperature. Data were reported as follows: chemical shift on the δ scale using residual proton solvent as internal standard $\left[87.26\left(\mathrm{CDCl}_{3}\right)\right.$; TMS: 0.00 ppm$]$, multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublets $)$, integration, and coupling constant (J) in hertz $(\mathrm{Hz}) .{ }^{13} \mathrm{C}$ NMR spectra were obtained with proton decoupling on an Agilent 400 MR DD2 $(100 \mathrm{MHz})$ spectrometer and were reported in ppm with residual solvent for internal standard $\left[\delta 77.16\left(\mathrm{CDCl}_{3}\right)\right]$. High resolution mass spectra were obtained on a Bruker SolariX 7.0T spectrometer.

2. Synthesis of Starting Materials:

2.1 General Scheme for the Synthesis of Dricted Groups:

2.1.1 Synthesis of \mathbf{N}-(2-(cyclohex-1-en-1-yl)ethyl)-N-methylaniline (Me-1a):

Procedure SI-A ${ }^{[1]}$:

A mixture of iodobenzene ($1.50 \mathrm{~g}, 7.50 \mathrm{mmol}$), 2-(cyclohex-1-en-1-yl)ethan-1-amine ($0.94 \mathrm{~g}, 7.50 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(2.12 \mathrm{~g}, 2.0 \mathrm{mmol}), \mathrm{CuI}(0.10 \mathrm{~g}, 0.50 \mathrm{mmol})$, and L-proline ($115.0 \mathrm{mg}, 1.0 \mathrm{mmol}$) in 3.0 mL of DMSO was heated at $100^{\circ} \mathrm{C}$ until the start material was consumed as indicated by TLC. The cooled mixture was partitioned between water and ethyl acetate. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residual oil was loaded on a silica gel column and eluted with 1:20 to 1:5 ethyl acetate/petroleum ether to afford the corresponding product SI-1 ($940.0 \mathrm{mg}, 63 \%$) as a colorless oil. $\mathrm{R}_{f}=0.50$ (silica, hexanes: EtOAc, 10:1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18(\mathrm{dd}, \mathrm{J}=8.5,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{t}, \mathrm{J}=7.9,1 \mathrm{H}), 6.64-6.60(\mathrm{~m}, 2 \mathrm{H}), 5.54(\mathrm{dt}, \mathrm{J}=3.6,1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 1 \mathrm{H}), 3.17(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.07-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 2 \mathrm{H})$, $1.70-1.52(\mathrm{~m}, 4 \mathrm{H})$.

N -(2-(cyclohex-1-en-1-yl)ethyl)-N-methylaniline

To a stirred solution of SI-1 ($800.0 \mathrm{mg}, 1.0$ equiv) in dry THF was added NaH (240.0 mg , 1.50 equiv) slowly at $0{ }^{\circ} \mathrm{C}$. After 1 h , MeI ($0.40 \mathrm{~mL}, 1.5$ equiv) was added $0^{\circ} \mathrm{C}$. After completion of reaction as monitored by TLC, $\mathrm{H}_{2} \mathrm{O}$ was added dropwise and the reaction mixture was stirred for 10 \min at $0^{\circ} \mathrm{C}$. The aqueous phase was extracted with $\operatorname{EtOAc}(20 \mathrm{~mL} x 3)$ and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, then the crude material was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, Hexanes / EtOAc) to afford the title compound $\mathrm{Me}-\mathbf{1 a}(0.5 \mathrm{~g}, 58 \%)$ as a pale yellow oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22$ (ddd, J = 10.8, 6.0, 2.3 Hz, 2H), 6.78-6.62 (m, 3H), $5.45(\mathrm{~s}, 1 \mathrm{H}), 3.39(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 2.24-2.12$ $(\mathrm{m}, 2 \mathrm{H}), 1.98(\mathrm{ddt}, \mathrm{J}=6.6,4.4,2.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.72-1.48(\mathrm{~m}, 4 \mathrm{H})$.
2.1.2 Synthesis of tert-butyl (2-(cyclohex-1-en-1-yl)ethyl)(phenyl)carbamate: ${ }^{[2]}$

Aniline SI-1 ($0.50 \mathrm{~g}, 2.50 \mathrm{mmol}$), Di-tert-butyl dicarbonate ($0.68 \mathrm{~g}, 3.00 \mathrm{mmol}$) and 4-(dimethylamino)pyridine $(61.0 \mathrm{mg}, 0.5 \mathrm{mmol})$ were combined and the mixture was stirred at $90^{\circ} \mathrm{C}$ for 17 hours. Di-tert-butyl dicarbonate $(0.68 \mathrm{~g}, 3.00 \mathrm{mmol})$ was added to the mixture. After addition, the mixture was stirred for an additional 5 hours at $90^{\circ} \mathrm{C}$ and concentrated in vacuo. To the resulting residue was added Di-tert-butyl dicarbonate ($0.68 \mathrm{~g}, 3.00 \mathrm{mmol}$) and the mixture was stirred overnight at $90^{\circ} \mathrm{C}$. The mixture was concentrated in vacuo and then the crude product was purified by flash column chromatography to yield Boc-1a ($430.0 \mathrm{mg}, 57 \%$) as a colorless oil. $\mathrm{R}_{f}=0.45$ (silica, hexanes: EtOAc, 5:1); ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H})$, $3.70(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.43$ ($\mathrm{s}, 9 \mathrm{H}$). ${ }^{\mathbf{1 3} \mathbf{C}} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.7,142.8,134.9,128.6,127.3,125.9,123.3,80.0,48.8,37.1,28.5,28.2$, 25.4, 23.0, 22.4. HRMS (ESI): calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{Na}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 324.1934, found 324.1932.

2.1.3 Synthesis of \mathbf{N}-(2-(cyclohex-1-en-1-yl)ethyl)-4-methyl-N-phenylbenzenesulfonamide:

To a solution of amine SI-1 ($0.29 \mathrm{~g}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{M})$ at $0^{\circ} \mathrm{C}$ was added triethylamine (3 equiv) followed by 4-metylbenzenesulfonyl chloride ($0.28 \mathrm{~g}, 1.0$ equiv) and the reaction allowed to room temperature. After stirring overnight, and water was added (equivalent to amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent in reaction), the layers separated, and the organic layer extracted once with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Flash chromatography, using silica gel and Hexane / AcOEt afforded to yield the corresponding p-toluenesulfonyl protected amine $\mathbf{T s}-1 \mathbf{1 a}(260.0 \mathrm{mg}, 53 \%)$ as a white solid. $\mathrm{R}_{f}=0.40$ (silica, hexanes: EtOAc, $2: 1$); ${ }^{1} \mathbf{H} \mathbf{N M R}$ (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{dd}, J=7.6,2.1 \mathrm{~Hz}$, $2 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 3.60(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.82$ (m, 2H), $1.60-1.47(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 143.3,139.4,135.6,134.1,129.4,129.1,128.9$, 127.8, 123.7, 49.2, 37.1, 28.2, 25.3, 22.9, 22.4, 21.7. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{SNa}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 378.1498$, found 378.1495 .

2.1.4 Synthesis of \mathbf{N}-(2-(cyclohex-1-en-1-yl)ethyl)-N-phenylpicolinamide:

To a solution of amine ($10.0 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{M})$ at $0^{\circ} \mathrm{C}$ was added benzaldehyde ($11.0 \mathrm{mmol}, 1.10$
equiv) followed by $\mathrm{MgSO}_{4}(10.0 \mathrm{~g})$ and the reaction allowed to room temperature. After stirring overnight, the misture was flitted off, and concentrated in vacuo. The mixture was dissolved in $\mathrm{EtOH}(0.1 \mathrm{M})$ and added NaBH_{4} ($15.0 \mathrm{mmol}, 1.50$ equiv). The reaction was stirred at room temperature for 2 hours. Then water was added, the layers separated, and the organic layer extracted once with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to yield the crude amine which was used in next step without purification.

To a solution of the picolinic acid $(10.50 \mathrm{mmol})$ in $\mathrm{DCM}(20 \mathrm{~mL})$ at room temperature was added SOCl_{2} (2 mL) and one drop of dry DMF. The reaction was allowed to stir at $40^{\circ} \mathrm{C}$ for 4 hours. The solvent was then removed under reduced pressure to afford the corresponding crude acid chloride. Then DCM (20 mL) was added and the solution was cooled to $0^{\circ} \mathrm{C}$ followed by dropwise addition of $\mathrm{NEt}_{3}(3.5 \mathrm{~mL})$, DMAP $(0.25 \mathrm{mmol})$ and amine (10.0 $\mathrm{mmol}, 1.0 \mathrm{eq})$. The reaction mixture was stirred at room temperature overnight, extracted by DCM, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated, then purified by flash chromatography(petroleum ether/ $\mathrm{EtOAc}=2: 1)$ to give Bn-1a $(2.0 \mathrm{~g}, 62 \%)$ as a white solid. $\mathrm{R}_{f}=0.50$ (silica, hexanes: EtOAc, $\left.2: 1\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.59(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 8.55(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.79(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.74(\mathrm{td}, J=$ $7.7,1.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.67(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.61(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.42-7.24(\mathrm{~m}, 6 \mathrm{H}), 5.47(\mathrm{~s}, 0.5 \mathrm{H}), 5.27$ $(\mathrm{s}, 0.5 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=8.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.46-3.39(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.16(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{p}$, $J=3.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.3,169.0,155.0,155.0,148.4,148.3,137.5,137.4,137.0,136.9$, $135.1,134.3,128.7,128.7,128.2,127.7,127.6,127.4,124.4,124.3,123.8,123.6,123.1,52.4,48.6,47.2,44.2,37.1$, $35.4,28.4,28.2,25.4,25.3,23.1,22.8,22.5,22.2$. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{ONa}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 343.1781$, found 343.1778.

2.1.5 General Scheme for the Synthesis of N-(2-(cyclohex-1-en-1-yl)acetyl)-N-phenylpicolinamide:

To a stirred solution of (Z) - 2-cyclohexenylacetic acid $(0.50 \mathrm{~g}, 3.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14 \mathrm{~mL})$ was added DCC (1.11 $\mathrm{g}, 5.4 \mathrm{mmol})$ and $\operatorname{DMAP}(0.058 \mathrm{~g}, 0.72 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}, 10$ minutes later, aniline $(0.66 \mathrm{~mL}, 7.2 \mathrm{mmol})$ was added and the reaction was warmed up to $23^{\circ} \mathrm{C}$. After overnight, the reaction was quenched with $\mathrm{HCl}(1.0 \mathrm{~N}$ aqueous, 3 mL) and extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL} x 3)$. The combined organic layer was washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated. The residue was purified by silica gel chromatography $(\mathrm{EA} / \mathrm{PE}=15 / 85)$ to give DG-1 $(0.45 \mathrm{~g})$, yield 59%. White solid. $\mathrm{mp}: 117-118{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{brs}, 1 \mathrm{H}), 7.06-$ $7.57(\mathrm{~m}, 5 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 3.04(\mathrm{~s}, 2 \mathrm{H}), 2.04-2.17(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.74(\mathrm{~m}, 4 \mathrm{H})$.

2.1.6 N-(2-(cyclohex-1-en-1-yl)ethyl)-N-phenylnicotinamide (DG-2):

DG-2

Prepared according to general procedure SI-B. from SI-1 $(290.0 \mathrm{mg}, 1.45 \mathrm{mmol}, 1.00$ equiv) to yield DG-2 $(400.0 \mathrm{mg}, 90 \%)$ as a colorless oil. $\mathrm{R}_{f}=0.50$ (silica, hexanes: EtOAc, 2:1); ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.45(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{dd}, J=4.9,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.55(\mathrm{dt}, J=7.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=7.9,4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.01(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.09-1.81(\mathrm{~m}, 5 \mathrm{H}), 1.68-$ $1.41(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.8,150.2,149.6,143.0,136.1,134.7,132.4,129.4,128.2,127.3$, 123.5, 122.7, 49.1, 36.0, 28.3, 25.4, 22.9, 22.4. HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{ONa}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 329.1624$, found 329.1620 .

2.1.7 General Scheme for the Synthesis of \mathbf{N}-(2-(cyclohex-1-en-1-yl)acetyl)-N-phenylpicolinamide ${ }^{[5]}$:

A mixture of \mathbf{N}-phenylpicolinamide $(0.5 \mathrm{~g}, 2.50 \mathrm{mmol})$, toluene (5 mL), thionyl chloride (2.0 mL) and DMF (20 $\mu \mathrm{L}$) was refluxed for 2.5 h . The resulting solution was concentrated under reduced pressure at $45^{\circ} \mathrm{C}$ to afford crude 10a as a yellow air-sensitive oil; This material was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$ and added to a solution of 2-(cyclohex-1-en-1-yl)acetic acid ($268.0 \mathrm{mg}, 1.91 \mathrm{mmol}$) and N, N-diisopropylethylamine $(1.5 \mathrm{~mL}, 1.1 \mathrm{~g}, 8.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ at $0-5^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at this temperature and then warmed to room temperature overnight. The resulting solution was washed with 10% aqueous citric acid $(2 \times 15 \mathrm{~mL})$ followed by saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, dried over sodium sulfate and concentrated in vacuo. Purification by flash chromatography on silica gel eluting with 20% ethyl acetate in hexanes afforded DG-3 ($0.20 \mathrm{~g}, 25 \%$) as a light brown foam. $\mathrm{R}_{f}=0.50$ (silica, hexanes: EtOAc, $\left.2: 1\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.53(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.82$ $-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{dd}, J=8.3,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 2 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 3.11(\mathrm{~s}, 2 \mathrm{H})$, $2.02-1.91(\mathrm{~m}, 4 \mathrm{H}), 1.60(\mathrm{tdd}, J=7.9,4.7,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.56-1.44(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.8$, $172.2,153.1,148.5,138.7,136.9,131.0,129.5,129.0,128.6,126.7,125.7,123.7,46.1,28.4,25.4,22.8,22.0$. HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{Na}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 343.1417$, found 343.1415.

2.1.8 N-(2-(cyclohex-1-en-1-yl)ethyl)-6-nitro-N-phenylnicotinamide (DG-4):

Prepared according to general procedure SI-B. from SI-1 $(290.0 \mathrm{mg}, 1.45 \mathrm{mmol}, 1.00$ equiv) to yield DG-4 ($400.0 \mathrm{mg}, 90 \%$) as a colorless oil. $\mathrm{R}_{f}=0.50$ (silica, hexanes: EtOAc, 2:1); ${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 9.09(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{dd}, J=$ $8.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{~d}, J=7.4 \mathrm{~Hz}$,
$2 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.01-1.87(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.45(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.4,159.8,143.8,143.2,141.9,134.4,131.4,129.1,128.0,127.3,123.7,123.5,48.7$, 35.8, 28.2, 25.3, 22.8, 22.3. HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 374.1475$, found 374.1478 .

2.2 General Scheme for the Synthesis of SI-9, 10, 11, 12:

Procedure SI-A ${ }^{[1]}$:

A mixture of aryl bromide $(1.0 \mathrm{mmol})$, Amine ${ }^{[4]}(2 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(2.0 \mathrm{mmol}), \mathrm{CuI}(0.10 \mathrm{mmol})$, and L-proline (0.20 mmol) in 1 mL of DMSO was heated at 80 to $100^{\circ} \mathrm{C}$ until the start material was consumed as indicated by TLC. The cooled mixture was partitioned between water and ethyl acetate. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residual oil was loaded on a silica gel column and eluted with $1: 20$ to $1: 5$ ethyl acetate/petroleum ether to afford the corresponding product (SI-5, 6, 7, 8).

Procedure SI-B ${ }^{[3]}$:

To a solution of the picolinic acid (2.50 mmol) in $\mathrm{DCM}(20 \mathrm{~mL})$ at room temperature was added $\mathrm{SOCl}_{2}(2 \mathrm{~mL})$ and one drop of dry DMF. The reaction was allowed to stir at $40^{\circ} \mathrm{C}$ for 4 hours. The solvent was then removed under reduced pressure to afford the corresponding crude acid chloride. Then $\mathrm{DCM}(20 \mathrm{~mL})$ was added and the solution was cooled to $0^{\circ} \mathrm{C}$ followed by dropwise addition of $\mathrm{NEt}_{3}(1.5 \mathrm{~mL}), \mathrm{DMAP}(0.25 \mathrm{mmol})$ and amine $(2.50 \mathrm{mmol}, 1.0$ eq). The reaction mixture was stirred at room temperature overnight, extracted by DCM, the organic layer was dried
over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated, then purified by flash chromatography(petroleum ether/ $\mathrm{EtOAc}=2$: 1).

2.2.2 General Scheme for the Synthesis of 1b, 10, 11, 12 :

Procedure SI-C ${ }^{[3]}$:

A mixture of aryl bromide $(1.10 \mathrm{mmol})$, Amine($\mathbf{S I}-9,1.0 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(2.0 \mathrm{mmol}), \mathrm{CuI}(0.10 \mathrm{mmol})$, and Lproline $(0.20 \mathrm{mmol})$ in 1 mL of DMSO was heated at 80 to $100^{\circ} \mathrm{C}$ until the start material was consumed as indicated by TLC. The cooled mixture was partitioned between water and ethyl acetate. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residual oil was loaded on a silica gel column and eluted with $1: 20$ to $1: 5$ ethyl acetate/petroleum ether to afford the corresponding product (SI-5, 6, 7, 8)

N -(2-(cyclohex-1-en-1-yl)ethyl)-N-phenylpicolinamide (1a):

1a

Prepared according to general procedure SI-B. from SI-1 (290.0 mg, $1.45 \mathrm{mmol}, 1.00$ equiv) to yield $\mathbf{1 a}(400.0 \mathrm{mg}, 90 \%)$ as a colorless oil. $\mathrm{R}_{f}=0.50$ (silica, hexanes: EtOAc , 2:1); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H})$, $7.24-6.96(\mathrm{~m}, 6 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 4.03(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.05-1.85(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.43$ (m, 4H). ${ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.5,154.8,148.5,143.0,136.1,134.8,128.9,127.9,126.6,123.7,123.6$, 123.2, 48.7, 36.0, 28.3, 25.3, 22.9, 22.4. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) \delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~s}$, $1 \mathrm{H}), 7.13(\mathrm{~s}, 2 \mathrm{H}), 7.09(\mathrm{~s}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 2 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 2 \mathrm{H}), 1.93(\mathrm{~s}, 4 \mathrm{H}), 1.54(\mathrm{~s}, 2 \mathrm{H}), 1.49$ $(\mathrm{d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 55^{\circ} \mathrm{C}\right) \delta 8.33(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.18$ $(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.02(\mathrm{~m}, 4 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.96(\mathrm{~s}, 2 \mathrm{H})$, $1.91(\mathrm{~s}, 2 \mathrm{H}), 1.58-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.50(\mathrm{~m}, 2 \mathrm{H}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}\right.$, Benzene- $\left.\mathrm{d}_{6}\right) \delta 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, \mathrm{~J}$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-6.88(\mathrm{~m}, 5 \mathrm{H}), 6.81(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{t}, \mathrm{J}=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.39(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.96-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.39(\mathrm{~m}, 4 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz, Benzene-d $\left.{ }_{6}\right) \delta$ $168.3,155.7,148.1,144.2,135.9,135.2,128.8,128.3,126.2,124.1,123.5,123.3,49.2,36.6,28.5,25.7,23.3,22.8$. HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{ONa}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 329.1624$, found 329.1624.

N -(2-(cyclohex-1-en-1-yl)ethyl)-N-(2-methoxyphenyl)picolinamide (1b):

1b

Prepared according to general procedure SI-C. from SI-9 (500.0 mg, $2.17 \mathrm{mmol}, 1.00$ equiv) and 1-bromo-2-methoxybenzene ($450.0 \mathrm{mg}, 2.39 \mathrm{mmol}, 1.10$ equiv) to yield 1b $(437.0 \mathrm{mg}, 60 \%)$ as a colorless oil. $\mathrm{R}_{f}=0.30$ (silica, hexanes: EtOAc, $2: 1$); ${ }^{1} \mathbf{H} \mathbf{~ N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.00(\mathrm{~m}, 3 \mathrm{H}), 6.76(\mathrm{td}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-6.65(\mathrm{~m}, 1 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{ddd}, J=$ $13.2,9.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{ddd}, J=13.2,9.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{qd}, J=14.0,11.7,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.98$ $-1.83(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.42(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 169.2,154.9,154.7,148.2,135.7,135.1,131.7$, 130.2, 128.5, 123.7, 122.7, 122.6, 120.5, 111.4, 55.4, 47.8, 35.7, 28.4, 25.4, 23.0, 22.5. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 359.1730$, found 359.1728

N-(2-(cyclohex-1-en-1-yl)ethyl)-N-(3-methoxyphenyl)picolinamide (1c):

Prepared according to general procedure SI-C. from SI-9 $(500.0 \mathrm{mg}, 2.17 \mathrm{mmol}, 1.00$ equiv) and 1-bromo-3-methoxybenzene ($450.0 \mathrm{mg}, 2.39 \mathrm{mmol}, 1.10$ equiv) to yield $\mathbf{1 c}$ $(495.0 \mathrm{mg}, 68 \%)$ as a colorless oil. $\mathrm{R}_{f}=0.30$ (silica, hexanes: EtOAc, 2:1); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (400 MHz, Benzene- d_{6}) $\delta 8.06(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dt}, J$ $=9.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.54-6.44(\mathrm{~m}, 1 \mathrm{H}), 6.38(\mathrm{t}, J=$ $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 4 \mathrm{H}), 1.55-1.41$ ($\mathrm{m}, 4 \mathrm{H}$). ${ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.5,159.9,154.9,148.7,144.1,136.2,134.8,129.5,123.8,123.4,123.3$, $120.1,113.7,112.4,55.4,48.8,36.0,28.4,25.4,22.9,22.4$. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}^{+}\left[\mathrm{M}_{+} \mathrm{Na}^{+}\right]$: 359.1730 , found 359.1728 .

N -(2-(cyclohex-1-en-1-yl)ethyl)-N-(4-methoxyphenyl)picolinamide (1d):

Prepared according to general procedure SI-C. from SI-9 (500.0 mg, $2.17 \mathrm{mmol}, 1.00$ equiv) and 1-bromo-4-methoxybenzene $(450.0 \mathrm{mg}, 2.39 \mathrm{mmol}, 1.10$ equiv) to yield $\mathbf{1 d}$ $(460.0 \mathrm{mg}, 63 \%)$ as a colorless oil. $\mathrm{R}_{f}=0.30$ (silica, hexanes: EtOAc, $2: 1$) ; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.34(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.04-1.86(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.50(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 168.5,157.9,154.9,148.6,136.0,135.6,134.8,129.1,123.4,123.2,123.0,113.9,55.3,48.6,35.8,28.3,25.3,22.9$, 22.3. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$]: 359.1730, found 359.1728.

N -(2-(cyclohex-1-en-1-yl)ethyl)-N-(p-tolyl)picolinamide (1e):

Prepared according to general procedure SI-C. from SI-9 (500.0 mg, $2.17 \mathrm{mmol}, 1.00$ equiv) and 1-bromo-4-methylbenzene ($410.0 \mathrm{mg}, 2.39 \mathrm{mmol}, 1.10$ equiv) to yield $\mathbf{1 e}$ $(450.0 \mathrm{mg}, 65 \%)$ as a colorless oil. $\mathrm{R}_{f}=0.40$ (silica, hexanes: EtOAc, $2: 1$); ${ }^{1} \mathbf{H} \mathbf{~ N M R}$ (400 MHz, Benzene- d_{6}) $\delta 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H})$, $6.74(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.38(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.92$ $(\mathrm{d}, J=11.5 \mathrm{~Hz}, 7 \mathrm{H}), 1.58-1.40(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.5,154.9,148.6,140.3,136.3,136.0$, $134.8,129.5,127.6,123.5,123.4,123.1,48.7,35.8,28.3,25.3,22.9,22.4,21.0$. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{ONa}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 343.1781$, found 343.1778 .

4-chloro-N-(2-(cyclohex-1-en-1-yl)ethyl)aniline (SI-1f).

SI-1f

Prepared according to General Procedure SI-A: from 2-(cyclohex-1-en-1-yl)ethan-1amine ($0.78 \mathrm{~g}, 6.28 \mathrm{mmol}, 1.5$ equiv) and 4-chlorobenzonitrile ($1.0 \mathrm{~g}, 4.19 \mathrm{mmol}, 1.0$ equiv) to yield SI-1f ($0.86 \mathrm{~g}, 87.9 \%$) as pale yellow liquid. $\mathrm{R}_{f}=0.80$ (silica, EtOAc:hexanes, $1: 9) ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.11(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), \quad 6.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.52$ $(\mathrm{s}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 1 \mathrm{H}), 3.12(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.04-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.66$ $-1.54(\mathrm{~m}, 4 \mathrm{H})$.
N-(4-chlorophenyl)- N-(2-(cyclohex-1-en-1-yl)ethyl)picolinamide (1f).

1f Prepared according to General Procedure SI-B: from 4-chloro- N-(2-(cyclohex-1-en-1yl)ethyl)aniline ($0.7 \mathrm{~g}, 2.97 \mathrm{mmol}, 1.00$ equiv) and picolinoyl chloride ($0.5 \mathrm{~g}, 3.57$ mmol, 1.2 equiv) to yield $1 \mathbf{1 f}(0.91 \mathrm{~g}, 91.0 \%)$ as brown liquid. $\mathrm{R}_{f}=0.70$ (silica, EtOAc:hexanes, 1:3); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.31(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.45$ $(\mathrm{s}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 3 \mathrm{H}), 6.96(\mathrm{~s}, 2 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 2 \mathrm{H}), 2.27(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{~s}, 4 \mathrm{H}), 1.55-1.49(\mathrm{~m}$, $4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=168.17,154.17,148.32,141.60,136.26,134.44,132.00,128.92,123.88$, 123.61, 123.31, 48.65, 35.80, 28.10, 25.16, 22.70, 22.17; HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{NaO}^{+}\left[\mathrm{M}_{+} \mathrm{Na}^{+}\right]$: 363.1231, found 363.1234 .

4-((2-(cyclohex-1-en-1-yl)ethyl)amino)benzonitrile (SI-1g).

SI-1g

Prepared according to General Procedure SI-A: from 2-(cyclohex-1-en-1-yl)ethan-1amine ($0.81 \mathrm{~g}, 6.55 \mathrm{mmol}, 1.5$ equiv) and 4-iodobenzonitrile $(1.0 \mathrm{~g}, 4.36 \mathrm{mmol}, 1.0$ equiv) to yield $\mathbf{S I - 1 g}(0.82 \mathrm{~g}, 83.8 \%)$ as pale yellow liquid. $\mathrm{R}_{f}=0.70$ (silica, EtOAc:hexanes, $1: 9) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.53(\mathrm{~s}$,
$1 \mathrm{H}), 4.16(\mathrm{~s}, 1 \mathrm{H}), 3.19(\mathrm{q}, J=8.0,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.04-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.92(\mathrm{~m}, 2 \mathrm{H})$, 1.67-1.53 (m, 4H).
N-(4-cyanophenyl)- N-(2-(cyclohex-1-en-1-yl)ethyl)picolinamide (1g).

1g

Prepared according to General Procedure SI-B: from 4-((2-(cyclohex-1-en-1-yl)ethyl)amino)-benzonitrile ($0.7 \mathrm{~g}, 3.09 \mathrm{mmol}, 1.00$ equiv) and picolinoyl chloride $\left(0.52 \mathrm{~g}, 3.71 \mathrm{mmol}, 1.2\right.$ equiv) to yield $\mathbf{1 g}(0.89 \mathrm{~g}, 87.2 \%)$ as brown liquid. $\mathrm{R}_{f}=0.70$ (silica, EtOAc:hexanes, 1:3); ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.27(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.71-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.921 .87(\mathrm{~m}, 4 \mathrm{H}), 1.52-1.46(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.99,153.36,148.11,136.63,134.16,132.61,127.81,124.51,124.17,123.74,118.23$, 109.60, 48.86, 36.19, 28.03, 25.14, 22.64, 22.11; HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 332.1754 , found 332.1757.

N -(4-acetylphenyl)-N-(2-(cyclohex-1-en-1-yl)ethyl)picolinamide (1h):

Prepared according to general procedure SI-C. from SI-9 (500.0 mg, $2.17 \mathrm{mmol}, 1.00$ equiv) and 1-(4-bromophenyl)ethan-1-one ($480.0 \mathrm{mg}, 2.39 \mathrm{mmol}, 1.10$ equiv) to yield $\mathbf{1 h}(450.0 \mathrm{mg}, 59 \%)$ as a colorless oil. $\mathrm{R}_{f}=0.25$ (silica, hexanes: EtOAc, 2:1); ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{td}, J=7.7$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.96-1.83(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.40(\mathrm{~m}, 4 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 197.1,168.4,154.0,148.4,147.6,136.6,134.7,134.5,129.1,127.3,124.4,124.0,123.7,48.9,36.2,28.2,26.6$, 25.3, 22.8, 22.3. HRMS (ESI): calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 371.1730 , found 371.1727.

Methyl 4-(N-(2-(cyclohex-1-en-1-yl)ethyl)picolinamido)benzoate (1i):

Prepared according to general procedure SI-C. from SI-9 $(500.0 \mathrm{mg}, 2.17 \mathrm{mmol}, 1.00$ equiv) and methyl 4-bromobenzoate ($510.0 \mathrm{mg}, 2.39 \mathrm{mmol}, 1.10$ equiv) to yield $\mathbf{1 i}$ $(420.0 \mathrm{mg}, 53 \%)$ as a colorless oil. $\mathrm{R}_{f}=0.20$ (silica, hexanes: EtOAc, $2: 1$) ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{td}, J=7.7$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-1.84(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.41(\mathrm{~m}, 4 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 168.3,166.4,154.1,148.4,147.5,136.5,134.5,130.3,127.8,127.3,124.3,124.0,123.6,52.2,48.9,36.2,28.2$, 25.3, 22.8, 22.3. HRMS (ESI): calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 387.1679$, found 387.1676.

N -(2-(cyclohex-1-en-1-yl)ethyl)-N-(4-nitrophenyl)picolinamide (1j):

Prepared according to general procedure SI-C. from SI-9 (500.0 mg, $2.17 \mathrm{mmol}, 1.00$ equiv) and 1-bromo-4-nitrobenzene ($540.0 \mathrm{mg}, 2.39 \mathrm{mmol}, 1.10$ equiv) to yield $\mathbf{1 j}$ $(460.0 \mathrm{mg}, 60 \%)$ as a colorless oil. $\mathrm{R}_{f}=0.30$ (silica, hexanes: EtOAc, $\left.2: 1\right) ;{ }^{1} \mathbf{H} \mathbf{~ N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.09-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.64(\mathrm{~m}, 2 \mathrm{H})$, $7.20(\mathrm{ddd}, J=6.9,4.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 2 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 4.08((\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{t}, J=7.5 \mathrm{~Hz}$ $2 \mathrm{H}), 2.00-1.83(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.43(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.2,153.4,149.6,148.3,145.3$, $136.9,134.3,127.7,124.9,124.5,124.3,124.0,49.2,36.4,28.2,25.3,22.8,22.3$. HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 352.1656$, found 352.1654

N -(2-(cyclopent-1-en-1-yl)ethyl)-N-phenylpicolinamide (1k):

1k

Prepared according to general procedure SI-B. from SI-2 (930.0 mg, $5.0 \mathrm{mmol}, 1.00$ equiv) to yield $\mathbf{1 k}(880.0 \mathrm{mg}, 60 \%)$ as a colorless oil. $\mathbf{R}_{f}=0.40$ (silica, hexanes: EtOAc, 2:1); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.23-6.89(\mathrm{~m}, 6 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.32-2.15$ (m, 4H), $1.86-1.71(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 168.6,154.8,148.6,142.9,141.4,136.2$, $129.0,127.9,126.7,125.3,123.8,123.6,48.6,35.2,32.7,29.3,23.4$. HRMS (ESI): calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{ONa}^{+}$ $\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 315.1468$, found 315.1466

N -(2-(cyclohept-1-en-1-yl)ethyl)-N-phenylpicolinamide (11):

Prepared according to general procedure SI-B. from SI-3 $(930.0 \mathrm{mg}, 5.0 \mathrm{mmol}, 1.00$ equiv) to yield $1 \mathbf{1}(800.0 \mathrm{mg}, 50 \%)$ as a colorless oil. $\mathrm{R}_{f}=0.45$ (silica, hexanes: EtOAc, $2: 1) ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-6.92(\mathrm{~m}, 6 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.12-2.03(\mathrm{~m}, 2 \mathrm{H})$, $2.01-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.674-1.615(\mathrm{~m}, 2 \mathrm{H}), 1.412-1.356(\mathrm{~m}, 4 \mathrm{H}) .{ }^{\mathbf{1}} \mathbf{C} \mathbf{~ N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.5,154.8$, 148.5, 143.0, 141.5, 136.1, 128.9, 128.3, 127.9, 126.6, 123.7, 123.6, 49.1, 38.3, 32.8, 32.6, 28.5, 27.2, 26.8. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{ONa}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 343.1781$, found 343.1778.

(E)-N-(2-(cyclooct-1-en-1-yl)ethyl)-N-phenylpicolinamide (1m):

Prepared according to general procedure SI-B. from SI-4 (930.0 mg, $5.0 \mathrm{mmol}, 1.00$ equiv) to yield $\mathbf{1 m}(868.0 \mathrm{mg}, 52 \%)$ as a colorless oil. $\mathrm{R}_{f}=0.45$ (silica, hexanes: EtOAc, 2:1); ${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.30(\mathrm{~m}, 1 \mathrm{H})$, $7.21-6.94(\mathrm{~m}, 6 \mathrm{H}), 5.37(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 2 \mathrm{H}), 2.05(\mathrm{~s}$
$2 \mathrm{H}), 1.43(\mathrm{~s}, 8 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.5,154.7,148.5,142.9,137.7,136.1,128.9,127.8,126.6$, $126.1,123.6,49.3,35.3,29.8,28.9,28.8,26.5,26.4,26.2$. HRMS (ESI): calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{ONa}^{+}\left[\mathrm{M}^{2} \mathrm{Na}^{+}\right]$: 357.1937, found 357.1934 .

N-(3-(cyclohex-1-en-1-yl)propyl)aniline (SI-1n).

Prepared according to General Procedure SI-A: from 3-(cyclohex-1-en-1-yl)propan-1amine $(0.51 \mathrm{~g}, 3.67 \mathrm{mmol}, 1.5$ equiv) and iodobenzene $(0.5 \mathrm{~g}, 2.45 \mathrm{mmol}, 1.0$ equiv) to yield SI-1n $(0.41 \mathrm{~g}, 77.9 \%)$ as brown liquid. $\mathrm{R}_{f}=0.80$ (silica, EtOAc:hexanes, 1:9); Crude compound carried to next step.
N-(3-(cyclohex-1-en-1-yl)propyl)- N-phenylpicolinamide (1n).

1n

Prepared according to General Procedure SI-B: from N-(3-(cyclohex-1-en-1$\mathrm{yl})$ propyl $)$ aniline ($0.45 \mathrm{~g}, 2.09 \mathrm{mmol}, 1.0$ equiv) and picolinoyl chloride ($0.35 \mathrm{~g}, 2.51$ mmol, 1.2 equiv) to yield $\mathbf{1 n}(0.66 \mathrm{~g}, 77.7 \%)$ as brown liquid. $\mathrm{R}_{f}=0.50$ (silica, EtOAc:hexanes, $1: 3) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.32(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H})$, $7.36(\mathrm{~s}, 1 \mathrm{H}), 7.18-7.04(\mathrm{~m}, 6 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 2 \mathrm{H}), 1.94-1.74(\mathrm{~m}, 8 \mathrm{H}), 1.62-1.51(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=168.40,154.58,148.39,136.64,135.97,128.82,127.65,127.60,126.50,123.57,123.40,121.25$, 49.80, 35.12, 33.20, 28.04, 25.11, 22.85, 22.41; HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 343.1778$, found 343.1780 .
2.3 General Scheme for the Synthesis of SI-31 and SI-32:

2.3.1 Procedure SI-D ${ }^{[3]}$:

2-(cyclohex-1-en-1-yl)-1-phenylethan-1-one (SI-10) ${ }^{[4]}$:

SI-10

To a stirred solution of 2-(cyclohex-1-en-1-yl)acetic acid ($560 \mathrm{mg}, 1.0$ equiv), $\mathrm{CH}_{3} \mathrm{NOCH}_{3} \cdot \mathrm{HCl}(546 \mathrm{mg}, 1.3$ equiv), and HATU (1.672 g, 1.1 equiv) in DCM (20 mL) was added DIPEA ($1.65 \mathrm{~mL}, 2.5$ equiv) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 2 h . After completion of reaction as monitored by TLC $\left(\mathrm{R}_{f}=0.70\right.$, silica, EtOAc : hexanes, 1:2), NaHSO_{4}
$(1 \mathrm{M}, 5 \mathrm{~mL})$ was added dropwise and the reaction mixture was stirred for 5 min at $0^{\circ} \mathrm{C}$. The aqueous phase was extracted with EtOAc ($20 \mathrm{~mL} \times 3$) and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel using hexanes/EtOAc as eluent to afford the weinreb amide product (80%). To the solution of above amide product was added the solution of PhLi (1.2 equiv) in dry THF at $-78^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 2 h . After completion of reaction as monitored by $\mathrm{TLC}\left(\mathrm{R}_{f}=0.90\right.$, silica, EtOAc:hexanes, $\left.1: 10\right)$, saturated NaHPO_{4} was added dropwise and the reaction mixture was stirred for 5 min at $0^{\circ} \mathrm{C}$. The aqueous phase was extracted with EtOAc (20 mL x 3) and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel using hexanes/EtOAc as eluent to afford the desired product (SI$\mathbf{1 0}, \mathbf{9 1} \%$). NMR of SI-26 is consistent with the previous report ${ }^{[8]}$. SI-26 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00-7.95$ $(\mathrm{m}, 2 \mathrm{H}), 7.54(t, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(t, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 2.08-1.94(\mathrm{~m}, 6 \mathrm{H}), 1.67-1.51$ (m, 6H).

2.3.2 Procedure SI-E ${ }^{[3]}$:

2-(cyclohex-1-en-1-yl)-1-phenylethan-1-ol (SI-11):

SI-11

To a stirred solution of aldehyde SI-10 ($1.17 \mathrm{~g}, 1.0$ equiv) in $\mathrm{MeOH}(30 \mathrm{~mL})$ was added NaBH_{4} ($640 \mathrm{mg}, 2.0$ equiv) at $0^{\circ} \mathrm{C}$. After completion of reaction as monitored by TLC $\left(\mathrm{R}_{f}=0.60\right.$, silica, EtOAc:hexanes, $\left.1: 10\right), \mathrm{H}_{2} \mathrm{O}$ was added dropwise and the reaction mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$. The aqueous phase was extracted with EtOAc $(10 \mathrm{~mL} x 3)$ and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel using hexanes / EtOAc as eluent to afford the desired product (SI-11, 98\%).

2.3.3 Procedure SI-F ${ }^{[3]}$, Synthesis of SI-12:

 SI-12

A mixture of $\mathrm{HN}(\mathrm{Boc})_{2}\left(478 \mathrm{mg}, 1.0\right.$ equiv), $\mathrm{Ph}_{3} \mathrm{P}(576 \mathrm{mg}, 1.0$ equiv), and alcohol SI-11 ($280 \mathrm{mg}, 1.0$ equiv) in THF (30 mL) was added DIAD ($444 \mathrm{mg}, 1.0$ equiv) in THF dropwise at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature and stirred overnight. After completion of reaction as monitored by TLC $\left(\mathrm{R}_{f}=0.75\right.$, silica, EtOAc : hexanes, 1:5), the solvent was evaporated and the residue suspended in $\mathrm{Et}_{2} \mathrm{O}$. After the precipitate was filtered, the organic extracts were concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel using
hexanes/EtOAc as eluent to afford the desired product (SI-12, 75\%). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{M H z}, \mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.59-5.49(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{dd}, J=13.3,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.61$ $(\mathrm{dd}, J=13.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.06(\mathrm{~s}, 1 \mathrm{H}), 2.02-1.96(\mathrm{~s}, 2 \mathrm{H}), 1.96-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.38(\mathrm{~s}, 18 \mathrm{H})$.

2.3.4 Procedure SI-G ${ }^{[3]}$, Synthesis of SI-13:

SI-13 After completion of reaction as monitored by TLC $\left(\mathrm{R}_{f}=0.10\right.$, silica, EtOAc : hexanes, 1:2), $\mathrm{H}_{2} \mathrm{O}$ was added dropwise and the reaction mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$. The aqueous phase was extracted with $\mathrm{EtOAc}(10 \mathrm{mLx} 3)$ and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to get the crude product which was used to the next step without further purification (SI-13, 99\%).

2.3.5 General Procedure SI-H: preparation of PA substrates:

A mixture of amine (1.0 equiv), picolimic acid (1.1 equiv), HATU (1.1 equiv) and DIPEA ($845 \mathrm{mg}, 3.0$ equiv) in DCM (30 mL) was stirred overnight at room temperature. After completion of reaction as monitored by TLC, $\mathrm{H}_{2} \mathrm{O}$ was added dropwise and the reaction mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$. The aqueous phase was extracted with DCM (20 mL x 3) and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure and purification by flash column chromatography (SiO 2 , hexanes/EtOAc) to afford the compound 1

N -(2-(cyclohex-1-en-1-yl)-1-phenylethyl)picolinamide(3a) ${ }^{[4 a]}$:

Prepared according to general procedure SI-H, White solid (84% Yield); m.p. $=94.5-96.0$
 ${ }^{\mathrm{o}} \mathrm{C} ; \mathrm{R}_{f}=0.65$ (silica, EtOAc:hexanes, $1: 2$); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.54(\mathrm{~d}, J=4.7$ $\mathrm{Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.39(\mathrm{dd}, J=7.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~d}, J$ $=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{q}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.87(\mathrm{~m}, 3 \mathrm{H}), 1.54(\mathrm{p}$, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{qp}, J=12.4,6.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.6,149.0,148.0,142.7,137.2$, $133.9,128.5,127.1,126.4,126.0,125.1,122.2,51.7,45.8,28.2,25.3,22.8,22.2 ;$ HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 329.1615$, found 329.1624 .

2-(cyclohex-1-en-1-yl)-1-(p-tolyl)ethan-1-one (SI-14).

SI-14

Prepared according to General Procedure SI-D: from 2-(cyclohex-1-en-1-yl)-N-methoxy-N-methylacetamide ($5.6 \mathrm{~g}, 30.60 \mathrm{mmol}, 1.0$ equiv) and p-tolylmagnesium bromide (33.6 $\mathrm{mL}, 33.6 \mathrm{mmol}, 1.0 \mathrm{M}$ in toluene) to yield SI-14 (4.5 g, 69\%) as brown liquid. $\mathrm{Rf}=0.70$ (silica, EtOAc:hexanes, 1:9); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $5.57(\mathrm{~s}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.98(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.52(\mathrm{~m}, 4 \mathrm{H})$.

2-(cyclohex-1-en-1-yl)-1-(p-tolyl)ethan-1-ol (SI-15)

Prepared according to General Procedure SI-E: from 2-(cyclohex-1-en-1-yl)-1-(p-tolyl)ethan-1-one ($2.8 \mathrm{~g}, 13.27 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{NaBH}_{4}(1.51 \mathrm{~g}, 39.25 \mathrm{mmol}, 3.0$ equiv $)$

SI-15 to yield SI-15 (1.9 g, 67\%) as colorless liquid. $\mathrm{R}_{f}=0.50$ (silica, EtOAc:hexanes, 1:3); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=7.27-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 4.74-4.71(\mathrm{~m}, 1 \mathrm{H}), 2.34-$ $2.29(\mathrm{~m}, 5 \mathrm{H}), 2.10-2.03(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.56(\mathrm{~m}, 4 \mathrm{H})$.

N-(3-(cyclohex-1-en-1-yl)propyl)- N-phenylpicolinamide (SI-16).

SI-16

Prepared according to General Procedure SI-F: from 2-(cyclohex-1-en-1-yl)-1-(p -tolyl)ethan-1-ol ($1.6 \mathrm{~g}, 7.40 \mathrm{mmol}, 1.0$ equiv) and $16(1.60 \mathrm{~g}, 7.40 \mathrm{mmol}, 1.0$ equiv) to yield SI-16 (1.5 g, 48\%) as colorless liquid. $\mathrm{R}_{f}=0.70$ (silica, EtOAc:hexanes, 1:9); ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.27-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.50(\mathrm{q}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{dd}, J=$ $13.6,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=13.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.21-1.82(\mathrm{~m}, 5 \mathrm{H}), 1.64-1.46(\mathrm{~m}$, $6 \mathrm{H}), 1.38(\mathrm{~s}, 18 \mathrm{H})$

2-(cyclohex-1-en-1-yl)-1-(p-tolyl)ethan-1-amine (SI-17).

SI-17

Prepared according to General Procedure SI-G: from 12 ($1.5 \mathrm{~g}, 3.61 \mathrm{mmol}, 1.0$ equiv) and trifluoroacetic acid ($2.06 \mathrm{~g}, 18.07 \mathrm{mmol}, 5.0$ equiv) to yield SI-17 ($0.62 \mathrm{~g}, 80 \%$) as pale brown liquid. $\mathrm{Rf}=0.40$ (silica, $\mathrm{MeOH}: \mathrm{DCM}, 1: 9$); Crude compound carried to next step.

N-(2-(cyclohex-1-en-1-yl)-1-(p-tolyl)ethyl)picolinamide (3b).

3b

Prepared according to General Procedure SI-H: from 2-(cyclohex-1-en-1-yl)-1-(p-tolyl)ethan-1-amine $(0.5 \mathrm{~g}, 2.32 \mathrm{mmol}, 1.0$ equiv) and picolinic acid $(0.31 \mathrm{~g}, 2.55 \mathrm{mmol}$, 1.1 equiv) to yield $\mathbf{3 b}(0.51 \mathrm{~g}, 68 \%)$ as pale brown liquid. $\mathrm{R}_{f}=0.50$ (silica, EtOAc :hexanes, 1:3); ${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=8.55-8.53(\mathrm{~m}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.15$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~s}$ $1 \mathrm{H}), 5.21(\mathrm{q}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.88(\mathrm{~m}, 4 \mathrm{H}), 1.64-1.42(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=163.49,150.03,148.00,139.77,137.20,136.61,134.01,129.14,126.31,125.98$, $124.92,122.18,51.47,45.72,28.15,25.29,22.80,22.22,21.06$; HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}^{+}\left[\mathrm{M}^{2}+\mathrm{Na}^{+}\right]$: 343.1778, found 343.1780 .

2-(cyclohex-1-en-1-yl)-1-(4-methoxyphenyl)ethan-1-one (SI-18).
 SI-18 bromide ($18.0 \mathrm{~mL}, 18.03 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF) to yield SI-18 $(2.79 \mathrm{~g}, 74 \%)$ as colorless liquid. $\mathrm{R}_{f}=0.80$ (silica, EtOAc:hexanes, 1:9); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.96(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}$, $J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 2.05-1.94(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.52(\mathrm{~m}, 4 \mathrm{H})$.

2-(cyclohex-1-en-1-yl)-1-(4-methoxyphenyl)ethan-1-amine (SI-19).

SI-19

To a solution of 2-(cyclohex-1-en-1-yl)-1-(4-methoxyphenyl) ethan-1-one (2.5 g, 10.86 mmol, 1.0 equiv) and ammonium acetate ($8.36 \mathrm{~g}, 108.6 \mathrm{mmol}, 10.0$ equiv) in abs. methanol (50 mL) was added $\mathrm{NaBH}_{3} \mathrm{CN}(0.47 \mathrm{~g}, 7.60 \mathrm{mmol}, 1.0$ equiv $)$ in one portion at room temperature. The mixture was stirred at room temperature for 48 h . Concentrated HCl was added until $\mathrm{pH}<2$, and the solvent was removed in vacuo. The residue was taken up in 30 mL of water and extracted once with ether $(30 \mathrm{~mL})$. The aqueous solution was brought to $\mathrm{pH}>12$ with solid KOH and extracted with ether $(3 \times 50 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to afford 1.1 g of crude product $\mathbf{S I}-\mathbf{1 9}$ as pale yellow liquid.

N-(2-(cyclohex-1-en-1-yl)-1-(4-methoxyphenyl)ethyl)picolinamide (3c).

3c

Prepared according to General Procedure SI-H: from 2-(cyclohex-1-en-1-yl)-1-(4-methoxyphenyl)ethan-1-amine ($0.37 \mathrm{~g}, 1.60 \mathrm{mmol}, 1.0$ equiv) and picolinic acid $(0.21 \mathrm{~g}$, $1.76 \mathrm{mmol}, 1.1$ equiv) to yield $\mathbf{3 c}(0.41 \mathrm{~g}, 76 \%)$ as brown liquid. $\mathrm{R}_{f}=0.50$ (silica, EtOAc:hexanes, 1:3); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.52(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.31$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-1.86(\mathrm{~m}$, 4H), 1.57-1.42(m,4H); ${ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=163.41,158.53,149.96,147.95,137.17,134.82,133.92$, $127.50,125.94,124.89,122.13,113.77,55.17,51.12,45.56,28.12,25.24,22.75,22.16 ;$ HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 359.1726$, found 359.1730.

2-(cyclohex-1-en-1-yl)-1-(4-fluorophenyl)ethan-1-one (SI-20).

Prepared according to General Procedure SI-D: from 2-(cyclohex-1-en-1-yl)- N -methoxy- N methylacetamide ($5.0 \mathrm{~g}, 27.32 \mathrm{mmol}, 1.0$ equiv) and (4-fluorophenyl)magnesium bromide ($30.0 \mathrm{~mL}, 30.0 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF) to yield SI-20 (3.9 g, 65\%) as brown liquid. $\mathrm{R}_{f}=0.70$ (silica, EtOAc:hexanes, $1: 9) ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.02-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.57$ $(\mathrm{s}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 2 \mathrm{H}), 2.05-1.97(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.53(\mathrm{~m}, 4 \mathrm{H})$

2-(cyclohex-1-en-1-yl)-1-(4-fluorophenyl)ethan-1-ol (SI-21).

SI-21

Prepared according to General Procedure SI-E: from 2-(cyclohex-1-en-1-yl)-1-(4-fluorophenyl)ethan-1-one ($2.7 \mathrm{~g}, 12.66 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{NaBH}_{4}(1.44 \mathrm{~g}, 37.98 \mathrm{mmol}$, 3.0 equiv) to yield SI-21 ($2.46 \mathrm{~g}, 88 \%$) as colorless liquid. $\mathrm{R}_{f}=0.50$ (silica, EtOAc:hexanes, $1: 3) ;{ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{dd}, J=9.0$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.08-1.86(\mathrm{~m}, 4 \mathrm{H}), 1.67-1.54(\mathrm{~m}, 4 \mathrm{H})$.
N-(3-(cyclohex-1-en-1-yl)propyl)- N-phenylpicolinamide (SI-22).

SI-22

Prepared according to General Procedure SI-F: from 2-(cyclohex-1-en-1-yl)-1-(4-fluorophenyl)ethan-1-ol ($2.26 \mathrm{~g}, 10.27 \mathrm{mmol}, 1.0$ equiv $)$ and $16(2.22 \mathrm{~g}, 10.27 \mathrm{mmol}, 1.0$ equiv) to yield SI-22 (1.9 g, 43\%) as colorless liquid. $\mathrm{R}_{f}=0.70$ (silica, EtOAc:hexanes, 1:9); ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.35(\mathrm{dd}, J=8.6,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.52-5.47(\mathrm{~m}, 2 \mathrm{H}), 2.95$ $(\mathrm{dd}, J=13.6,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=13.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-1.83(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.39(\mathrm{~s}, 18 \mathrm{H})$. 2-(cyclohex-1-en-1-yl)-1-(4-fluorophenyl)ethan-1-amine (SI-23).

SI-23

Prepared according to General Procedure SI-G: from $\mathbf{1 2}(1.37 \mathrm{~g}, 3.26 \mathrm{mmol}, 1.0$ equiv $)$ and trifluoroacetic acid (5.59 g, $49.0 \mathrm{mmol}, 15.0$ equiv) to yield SI-23 ($0.71 \mathrm{~g}, 92 \%$) as pale brown liquid. $\mathrm{R}_{f}=0.40$ (silica, $\mathrm{MeOH}: \mathrm{DCM}, 1: 9$); Crude compound carried to next step.
N-(2-(cyclohex-1-en-1-yl)-1-(4-fluorophenyl)ethyl)picolinamide (3d).
Prepared according to General Procedure SI-H: from 2-(cyclohex-1-en-1-yl)-1-(4-
$1: 3) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.56(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$,
$8.14(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.50$ $(\mathrm{s}, 1 \mathrm{H}), 5.20(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-1.85(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.44(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=163.58,163.00,160.57,149.76,148.01,138.48,138.44,137.24,133.58,127.95,127.87,126.08$, $125.28,122.14,115.29,115.08,51.09,45.64,28.09,25.22,22.70,22.11$; HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{FN}_{2} \mathrm{O}^{+}$
$\left[\mathrm{M}+\mathrm{H}^{+}\right]: 325.1708$, found 325.1710.

2-(cyclohex-1-en-1-yl)-1-(3-methoxyphenyl)ethan-1-one (SI-24).

SI-24

Prepared according to General Procedure SI-D: from 2-(cyclohex-1-en-1-yl)-N-methoxy-N-methylacetamide ($3.0 \mathrm{~g}, 16.39 \mathrm{mmol}, 1.0$ equiv) and (3-methoxyphenyl)magnesium bromide ($18.0 \mathrm{~mL}, 18.03 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF) to yield SI-24 (2.70 g, 71\%) as colorless liquid. $\mathrm{Rf}=0.80$ (silica, EtOAc:hexanes, 1:9); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.59-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.33(\mathrm{~m}$, $1 \mathrm{H}), 7.10(\mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 2.07-1.96(\mathrm{~m}, 4 \mathrm{H}), 1.67-1.52(\mathrm{~m}, 4 \mathrm{H})$. 2-(cyclohex-1-en-1-yl)-1-(3-methoxyphenyl)ethan-1-amine (SI-25).

SI-25 Prepared according to General Procedure SI-G: from 2-(cyclohex-1-en-1-yl)-1-(3-methoxyphenyl)ethan-1-one ($1.8 \mathrm{~g}, 7.78 \mathrm{mmol}, 1.0$ equiv) and ammonium acetate (5.99 g , $77.8 \mathrm{mmol}, 10.0$ equiv) to yield SI-25 ($0.8 \mathrm{~g}, 44 \%$) as colorless liquid. $\mathrm{Rf}=0.40$ (silica, MeOH:DCM, 1:9); Crude compound carried to next step.
N-(2-(cyclohex-1-en-1-yl)-1-(3-methoxyphenyl)ethyl)picolinamide (3e).

3e

Prepared according to General Procedure SI-H: from 2-(cyclohex-1-en-1-yl)-1-(3-methoxyphenyl)ethan-1-amine ($0.35 \mathrm{~g}, 1.51 \mathrm{mmol}, 1.0$ equiv) and picolinic acid $(0.20 \mathrm{~g}$, $1.66 \mathrm{mmol}, 1.1$ equiv) to yield $\mathbf{3 e}(0.42 \mathrm{~g}, 82 \%)$ as pale yellow liquid. $\mathrm{R}_{f}=0.50$ (silica, EtOAc:hexanes, $1: 3$); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.55(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.36$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.78-6.75(\mathrm{~m}, 1 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{q}, J=8.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.50$ $(\mathrm{m}, 2 \mathrm{H}), 2.04-1.88(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.42(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=163.51,159.62,149.89,147.97$, $144.42,137.16,133.83,129.42,125.97,125.00,122.13,118.66,112.27,112.21,55.12,51.66,45.67,28.10,25.24$, 22.74, 22.15; HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 359.1726$, found 359.1730.

3. Optimization and Substrate Scope of Alkenyl Aniline

Compounds.

Table 1. Optimization of other DGs of arylation reactions ${ }^{a}$

${ }^{a}$ Reactions conditions: $\mathbf{1}(0.3 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.03 \mathrm{mmol}), \mathrm{PhI}(\mathrm{OAc})_{2}(0.75 \mathrm{mmol}), 2$-Chloro-4cyanopyridine $(0.12 \mathrm{mmol})$, toluene $(5 \mathrm{~mL}), \mathrm{N}_{2}, 2 \mathrm{~h} .{ }^{b}$ Yield is that of the isolated product.

Table 2. Optimization using other oxidants of the arylation reaction ${ }^{a, b}$

entry	oxidant	temp $\left({ }^{\circ} \mathrm{C}\right)$	solvent	time (h)	result
1	Dess-Martin reagent (2.50 equiv)	110	Toluene	2	71%, some SM remained
2	iodoso-benzen (2.50 equiv)	110	Toluene	2	2.6%, some SM remained
3	$\mathrm{NaIO}_{4}(2.50$ equiv)	110	Toluene	2	7.4%, some SM remained
4	NFSI (2.50 equiv)	110	Toluene	2	no product, no SM left
5	Oxone (2.50 equiv)	110	Toluene	2	16%, some SM remained
6	TBHP (2.50 equiv)	110	Toluene	2	60%, some SM remained
7	benzoquinone (2.50 equiv)	110	Toluene	2	11%, some SM remained
8	$\mathrm{Cu}(\mathrm{OAc})_{2}(2.50$ equiv)	110	Toluene	2	16%, some SM remained

${ }^{a}$ Reactions conditions: $\mathbf{1}(0.3 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.03 \mathrm{mmol})$, oxidant $(0.75 \mathrm{mmol}), 2$-Chloro-4-
cyanopyridine $(0.12 \mathrm{mmol})$, toluene $(4 \mathrm{~mL}), \mathrm{N}_{2}, 2 \mathrm{~h} .{ }^{b}$ Yield is that of the isolated product.

Scheme 1. Synthesis of arylation reactions 1.

General Procedure A: To a solution of $1\left(0.3 \mathrm{mmol}, 1.0\right.$ equiv) and $\operatorname{Pd}(\mathrm{OAc})_{2}(0.015 \mathrm{mmol}, 0.05$ equiv) in anhydrous toluene $(4 \mathrm{~mL})$ at r.t. was added $\mathrm{PhI}(\mathrm{OAc})_{2}(0.75 \mathrm{mmol}, 2.5$ equiv $), 2$-chloroisonicotinonitrile $(16.6 \mathrm{mg}$, 0.12 mmol, 0.4 equiv) in a 15 mL flame-dried sealed tube (purged with N_{2}, sealed with PTFE cap). The mixture was heated at $110^{\circ} \mathrm{C}$ for 2 hours. The reaction mixture was cooled to room temperature, and concentrated in vacuo. The resulting residue was purified by silica gel flash chromatography (petroleum ether / EtOAc) to give the product

(2', 3'-dihydro-1'H-spiro[cyclohexane-1,4'-quinolin]-2-en-1'-yl)(pyridin-2-yl)methanone (2a):

2a

Prepared according to general procedure A. from $1 \mathbf{1 a}(46.0 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{Pd}(\mathrm{OAc})_{2}\left(3.4 \mathrm{mg}, 0.10\right.$ equiv) at $110^{\circ} \mathrm{C}$ for 2 hours to yield $\mathbf{2 a}(37.0 \mathrm{mg}, 80 \%)$ as a colorless oil. When scale up of the reaction from $1 \mathbf{a}(500.0 \mathrm{mg}, 1.63 \mathrm{mmol}, 1.00$ equiv $)$ and $\operatorname{Pd}(\mathrm{OAc})_{2}$ ($34.0 \mathrm{mg}, 0.10$ equiv) at $110^{\circ} \mathrm{C}$ for 2 hours afforded $\mathbf{2 a}(332.0 \mathrm{mg}, 67 \%)$ as a colorless oil. $\mathrm{R}_{f}=0.45$ (silica, hexanes: EtOAc, 2:1); ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.53(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.26(\mathrm{q}, J=4.2 \mathrm{~Hz}, 2.5 \mathrm{H}), 7.12-6.63(\mathrm{~m}, 2.5 \mathrm{H}), 5.96(\mathrm{dt}, J=10.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.97(\mathrm{dt}, J=9.4,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.19-2.07(\mathrm{~m}, 2 \mathrm{H}), 2.10-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.56(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 168.3,154.7,149.0,137.7,137.0,136.5,133.3,128.3,127.9,125.8,124.9,124.3$, 124.2, 123.3, 42.3, 38.4, 35.9, 33.6, 25.1, 18.8. HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{ONa}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 327.1468$, found 327.1466.
(8'-methoxy-2',3'-dihydro-1'H-spiro[cyclohexane-1,4'-quinolin]-2-en-1'-yl)(pyridin-2-yl)methanone (2b):

Prepared according to general procedure A. from $1 \mathbf{1 d}(51.0 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.10$ equiv $)$ at $100^{\circ} \mathrm{C}$ for 2 hours to yield $\mathbf{2 b}\left(48.0 \mathrm{mg}, \mathbf{2 b}: \mathbf{2 b}{ }^{\prime}=2.86: 1\right.$ $94 \%)$ as a colorless oil. $\mathrm{R}_{f}=0.40$ (silica, hexanes: EtOAc, $2: 1$); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.46(\mathrm{~s}, 0.35 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.76-7.66(\mathrm{~m}, 0.35 \mathrm{H}), 7.60(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J$ $=10.8 \mathrm{~Hz}, 0.35 \mathrm{H}), 7.15(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-6.98(\mathrm{~m}, 1.3 \mathrm{H}), 6.91(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1.3 \mathrm{H}), 6.57(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $0.35 \mathrm{H}), 6.43(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 0.35 \mathrm{H}), 5.75(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 0.35 \mathrm{H})$, $5.51(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.20(\mathrm{~m}, 1.35 \mathrm{H}), 3.69(\mathrm{t}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 0.35 \mathrm{H}), 3.42(\mathrm{~s}, 1 \mathrm{H}), 3.17(\mathrm{~s}$, $3 \mathrm{H}), 2.29(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-1.98(\mathrm{~m}, 4 \mathrm{H}), 1.89-1.57(\mathrm{~m}, 6 \mathrm{H}) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 55^{\circ} \mathrm{C}\right) \delta 8.22$
$(\mathrm{s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=29.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.43$ $(\mathrm{s}, 1 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 1 \mathrm{H}), 3.78-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=21.6 \mathrm{~Hz}, 0 \mathrm{H}), 3.19(\mathrm{~s}$, $2 H), 2.55-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.19-1.99(\mathrm{~m}, 3 \mathrm{H}), 1.87-1.58(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.9$, $154.6,151.3,148.2,148.0,140.2,136.2,135.7,133.3,133.0,128.8,128.0,127.7,125.7,125.1,124.5,124.2,123.4$, 122.5, 119.9, 119.3, 109.4, 55.1, 54.6, 43.2, 41.9, 39.3, 37.4, 36.7, 31.4, 25.4, 25.2, 19.3. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 357.1574$, found 357.1571.
(5'-methoxy-2',3'-dihydro-1'H-spiro[cyclohexane-1,4'-quinolin]-2-en-1'-yl)(pyridin-2-yl)methanone (2c):

Prepared according to general procedure A. from $\mathbf{1 e}(51.0 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.00$ equiv) and $\operatorname{Pd}(\mathrm{OAc})_{2}\left(3.4 \mathrm{mg}, 0.10\right.$ equiv) at $110^{\circ} \mathrm{C}$ for 2 hours to yield $2 \mathrm{c}(42.0 \mathrm{mg}, 82 \%)$ as a colorless oil. $\mathrm{R}_{f}=0.40$ (silica, hexanes: EtOAc, 2:1); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.58(\mathrm{~d}, J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.68(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.13(\mathrm{~m}, 2 \mathrm{H}), 5.93(\mathrm{~d}, J=9.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.50(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 2.24-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.92$ $-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.55(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 168.5,157.5,155.1,149.3,137.8,136.7,133.9$, $130.1,128.9,128.3,124.4,123.3,111.5,109.9,55.3,42.6,38.0,36.2,34.3,25.2,19.0 .{ }^{1} \mathbf{H}$ NMR (600 MHz , Benzene $\left.-d_{6}, 70^{\circ} \mathrm{C}\right) \delta 8.13(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{dd}, J=8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{dd}, J=7.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{dt}, J=9.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.47$ (dt, $J=10.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=8.0,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.11-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.82$ $(\mathrm{m}, 2 \mathrm{H}), 1.80-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.48(\mathrm{~m}, 3 \mathrm{H})$. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}^{+}$ $\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 357.1574$, found 357.1571 .
(6'-methoxy-2',3'-dihydro-1'H-spiro[cyclohexane-1,4'-quinolin]-2-en-1'-yl)(pyridin-2-yl)methanone (2d):

Prepared according to general procedure A. from $1 \mathbf{c}(51.0 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{Pd}(\mathrm{OAc})_{2}\left(3.4 \mathrm{mg}, 0.10\right.$ equiv) at $110^{\circ} \mathrm{C}$ for 2 hours to yield $\mathbf{2 d}(37.0 \mathrm{mg}, 73 \%)$ as a colorless oil. $\mathrm{R}_{f}=0.40$ (silica, hexanes: EtOAc, $2: 1$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.55(\mathrm{~s}, 1 \mathrm{H}), 7.65$ $(\mathrm{s}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 6.81(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 5.97(\mathrm{dd}, J=9.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.21-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.06-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.74$ $-1.57(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.9,156.4,154.9,149.1,139.5,136.4,133.1,130.2,128.6,125.9$, $124.1,123.3,113.7,110.8,55.3,41.7,38.7,35.9,33.4,25.1,18.9 .{ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}\right.$, Benzene- $\left.d_{6}, 70{ }^{\circ} \mathrm{C}\right) \delta 8.16$ $(\mathrm{d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{dd}, J=7.6,4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.37(\mathrm{dd}, J=8.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{dt}, J=10.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{dt}, J=10.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{td}, J=$ $11.2,10.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{ddd}, J=13.2,6.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.20-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.78(\mathrm{~m}, 2 \mathrm{H})$,
$1.76-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.44(\mathrm{~m}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz, Benzene- $\left.d_{6}\right) \delta 168.0,156.8$, $156.2,148.5,139.5,136.3,133.9,131.6,126.3,124.1,123.9,114.2,111.1,54.9,42.5,39.1,36.5,33.5$, 25.4, 19.3. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 357.1574 , found 357.1571.
(6'-methyl-2',3'-dihydro-1'H-spiro[cyclohexane-1,4'-quinolin]-2-en-1'-yl)(pyridin-2-yl)methanone (2e):

Prepared according to general procedure A. from $\mathbf{1 b}(48.0 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.00$ equiv $)$ and $\mathrm{Pd}(\mathrm{OAc})_{2}\left(3.4 \mathrm{mg}, 0.10\right.$ equiv) at $110^{\circ} \mathrm{C}$ for 2 hours to yield $\mathbf{2 e}(42.0 \mathrm{mg}, 87 \%)$ as a colorless oil. $\mathrm{R}_{f}=0.50$ (silica, hexanes: EtOAc, 2:1); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.55(\mathrm{~d}, J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.19(\mathrm{~m}, 2.5 \mathrm{H}), 7.04(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1.5 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{dt}, J=10.1$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{dd}, J=10.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.89(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.91(\mathrm{~m}$, $2 \mathrm{H}), 1.92-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.59(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.2,155.0,149.1,137.7,136.5$, $134.5,134.0,133.6,128.5,128.3,126.6,124.8,124.2,123.4,42.3,38.5,36.1,33.8,25.2,21.1,21.1,21.0,19.0 .{ }^{1} \mathbf{H}$ NMR (600 MHz, Benzene- $\left.d_{6}, 70^{\circ} \mathrm{C}\right) \delta 8.14(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.92$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69-6.54(\mathrm{~m}, 2 \mathrm{H}), 5.78(\mathrm{dt}, J=10.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{dt}, J=10.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-3.76$ $(\mathrm{m}, 2 \mathrm{H}), 2.15-2.04(\mathrm{~m}, 4 \mathrm{H}), 2.02-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{pq}, J=6.7,3.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz, Benzene- d_{6}) $\delta 168.3,156.1,148.5,137.8,136.3,136.0,134.3,133.4,128.7,128.2,127.8,126.8,125.2$, $124.1,123.9,42.6,38.8,36.5,33.7,25.5,21.0,19.4$. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{ONa}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 341.1624$, found 341.1622 .
(6'-chloro-2',3'-dihydro-1'H-spiro[cyclohexane-1,4'-quinolin]-2-en-1'-yl)(pyridin-2-yl)methanone (2f).

$2 f$

Prepared according to General Procedure A. from 3a ($105 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{Pd}(\mathrm{OAc})_{2}\left(6.9 \mathrm{mg}, 0.1\right.$ equiv) at $110^{\circ} \mathrm{C}$ for 2 hours to yield $\mathbf{2 f}(65 \mathrm{mg}, 62.5 \%)$ as a brown liquid. $\mathrm{R}_{f}=0.5$ (silica, hexanes: EtOAc, 2:1); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.49(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.21$ $(\mathrm{s}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 2 \mathrm{H}), 5.99-5.95(\mathrm{~m}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.89(\mathrm{~m}, 2 \mathrm{H}), 2.19$ - $1.94(\mathrm{~m}, 4 \mathrm{H}), 1.86-1.55(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=168.23,154.26,148.84,139.47,136.62$, $135.62,132.57,129.60,129.03,127.87,125.93,125.83,124.40,123.44,42.41,38.48,35.57,33.38,24.91,18.65$; HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{NaO}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 361.1074$, found 361.1078.

1'-picolinoyl-2',3'-dihydro-1'H-spiro[cyclohexane-1,4'-quinolin]-2-ene-6'-carbonitrile (2g).

2g

Prepared according to General Procedure A. from $1 \mathrm{~g}(100 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{Pd}(\mathrm{OAc})_{2}\left(6.7 \mathrm{mg}, 0.1\right.$ equiv) at $110^{\circ} \mathrm{C}$ for 2 hours to yield $2 \mathrm{~g}(59.1 \mathrm{mg}, 59.5 \%)$ as a brown liquid. $\mathrm{R}_{f}=0.5$ (silica, hexanes: EtOAc, 2:1); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.46(\mathrm{~d}, J=$ $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-$ $7.30(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.06-6.02(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.06-4.01(m, 1H), 3.93-3.86(m, 1H), 2.16-1.95(m, 4H), 1.89-1.53(m, 4H); ${ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=168.81,153.61,148.73,141.48,138.32,136.96,132.29,132.04,129.81,129.41,125.05,124.99,123.92,119.04$, 107.09, 42.82, 38.30, 35.23, 33.36, 24.92, 18.55; HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 330.1598$, found 330.1600 .

1-(1'-picolinoyl-2',3'-dihydro-1'H-spiro[cyclohexane-1,4'-quinolin]-2-en-6'-yl)ethan-1-one (2h):

Prepared according to general procedure A. from $\mathbf{1 h}(53.0 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.00$ equiv), $\operatorname{Pd}(\mathrm{OAc})_{2}(6.8 \mathrm{mg}, 0.20$ equiv $)$ and $\mathrm{PhI}(\mathrm{OAc})_{2}(1.50 \mathrm{mmol}, 5.0$ equiv $)$ at $110^{\circ} \mathrm{C}$ for 3 hours to yield $\mathbf{2 h}(33.0 \mathrm{mg}, 61 \%)$ as a colorless oil. $\mathrm{R}_{f}=0.35$ (silica, hexanes: EtOAc, 2:1); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.63-8.41(\mathrm{~m}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{td}, J=7.7$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=8.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{ddd}, J=7.8,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{dt}, J=10.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{dt}, J=10.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{ddd}, J=13.1,6.4,3.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.93(\mathrm{ddd}, J=13.3,11.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.27-2.09(\mathrm{~m}, 2 \mathrm{H}), 2.11-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.78(\mathrm{~m}, 2 \mathrm{H})$, 1.73 - $1.58(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 197.4,168.9,154.3,149.1,141.8,137.7,136.9,133.0,132.8$, $129.4,128.4,126.3,124.9,124.7,123.9,42.9,38.6,35.6,33.7,26.6,25.2,18.9$. HRMS (ESI): calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 369.1574$, found 369.1570.

Methyl 1'-picolinoyl-2',3'-dihydro-1'H-spiro[cyclohexane-1,4'-quinolin]-2-ene-6'-carboxylate (2i):

Prepared according to general procedure A. from $1 \mathbf{i}(55.0 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.00$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(6.8 \mathrm{mg}, 0.20$ equiv $)$ and $\mathrm{PhI}(\mathrm{OAc})_{2}(1.50 \mathrm{mmol}, 5.0$ equiv $)$ at $110^{\circ} \mathrm{C}$ for 3 hours to yield $\mathbf{2 i}(46.0 \mathrm{mg}, 87 \%)$ as a colorless oil. $\mathrm{R}_{f}=0.30$ (silica, hexanes: EtOAc, 2:1); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.54-8.40(\mathrm{~m}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.62-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.02(\mathrm{dt}, J=10.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{dt}, J=10.1,2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.04(\mathrm{ddd}, J=13.1,6.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{ddd}, J=13.3,11.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.27-2.08(\mathrm{~m}$, $2 H), 2.09-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.52(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.9,167.0$,
$154.3,149.1,141.7,137.7,136.9,132.9,129.7,129.3,127.4,125.8,124.8,124.7,123.8,52.1,42.8,38.6,35.7,33.6$, 25.2, 18.9. HRMS (ESI): calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 385.1523$, found 385.1519.

Methyl 1'-picolinoyl-2',3'-dihydro-1'H-spiro[cyclohexane-1,4'-quinolin]-2-ene-6'-carboxylate (2j):

2j Prepared according to general procedure A. from $\mathbf{1 j}(53.0 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.00$ equiv), $\operatorname{Pd}(\mathrm{OAc})_{2}(6.8 \mathrm{mg}, 0.20$ equiv $)$ and $\mathrm{PhI}(\mathrm{OAc})_{2}(1.50 \mathrm{mmol}, 5.0$ equiv $)$ at $110^{\circ} \mathrm{C}$ for 3 hours to yield $\mathbf{2 j}(38.0 \mathrm{mg}, 72 \%)$ as a colorless oil. $\mathrm{R}_{f}=0.20$ (silica, hexanes: EtOAc, 2:1); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, Benzene- d_{6}) $\delta 8.24(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.99-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.62(\mathrm{~d}, \mathrm{~J}=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dt}, \mathrm{J}=9.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dq}, \mathrm{J}=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{dd}, \mathrm{J}=9.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{dt}, \mathrm{J}$ $=7.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{dt}, \mathrm{J}=9.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{dd}, \mathrm{J}=10.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{ddd}, \mathrm{J}=13.2,6.6,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.74(\mathrm{ddd}, \mathrm{J}=13.0,11.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.55-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.45$ $-1.29(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, Benzene- d_{6}) $\delta 168.8,154.2,148.4,144.1,144.0,138.1,136.8,132.1,130.0$, $125.0,125.0,124.6,123.6,121.4,42.9,38.7,35.4,33.0,25.1,19.0 .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.1,153.6$, $148.9,143.7,143.5,138.5,137.2,132.1,130.2,125.3,124.9,124.2,123.8,121.4,43.1,38.7,35.3,33.5,25.1$,
18.7. HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 350.1499$, found 350.1497 .
(2',3'-dihydro-1'H-spiro[cyclopentane-1,4'-quinolin]-2-en-1'-yl)(pyridin-2-yl)methanone (2k):

2k

Prepared according to general procedure \mathbf{A}. from $\mathbf{1 k}(90.0 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.00$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(6.8 \mathrm{mg}, 0.10$ equiv $)$ and $\mathrm{PhI}(\mathrm{OAc})_{2}(1.50 \mathrm{mmol}, 2.50$ equiv $)$ at $110^{\circ} \mathrm{C}$ for 2 hours to yield $\mathbf{2 k}(64.0 \mathrm{mg}, 71 \%)$ as a colorless oil. $\mathbf{R}_{f}=0.40$ (silica, hexanes: EtOAc, 2:1); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.55(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.41(\mathrm{~m}$, $1 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.15-6.84(\mathrm{~m}, 3 \mathrm{H}), 5.96(\mathrm{dt}, J=5.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{dd}, J=5.3$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dt}, J=13.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=14.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 2.03-1.88(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.3,154.8,148.9,137.8,137.6,137.1,136.6,131.5$, 126.9, $125.8,124.8,124.5,124.4,123.6,51.3,43.4,39.0,35.5,31.6$. HRMS (ESI): calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]:$ 291.1492, found 291.1491 .
(2',3'-dihydro-1'H-spiro[cycloheptane-1,4'-quinolin]-2-en-1'-yl)(pyridin-2-yl)methanone (2I):

21 Prepared according to general procedure A. from $11(50.0 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.00$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}\left(3.4 \mathrm{mg}, 0.10\right.$ equiv) and $\mathrm{PhI}(\mathrm{OAc})_{2}\left(0.375 \mathrm{mmol}, 2.50\right.$ equiv) at $110{ }^{\circ} \mathrm{C}$ for 2 hours to yield $21(46.0 \mathrm{mg}, 92 \%)$ as a colorless oil. $\mathrm{R}_{f}=0.40$ (silica, hexanes: EtOAc, 2:1); ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.51(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ $-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.08-6.58(\mathrm{~m}, 2 \mathrm{H}), 5.87(\mathrm{dt}, J=11.7,5.8 \mathrm{~Hz}, 1 \mathrm{H})$,
$5.56(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{q}, J=11.1,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dt}, J=13.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.24-$ $2.07(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.64(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.4$, $154.9,149.1,138.5,136.9,136.6,131.3,127.9,125.9,125.2,124.8,124.4,123.6,44.3,42.5,36.2,35.3,27.9,27.7$,
24.8. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{ONa}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 341.1624 , found 341.1621.
(3,4-dihydrospiro[benzo[b]azepine-5,1'-cyclohexan]-2'-en-1(2H)-yl)(pyridin-2-yl)methanone (2n).

2n

Prepared according to General Procedure A. from $1 \mathrm{n}(96 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{Pd}(\mathrm{OAc})_{2}\left(6.7 \mathrm{mg}, 0.1\right.$ equiv) at $110^{\circ} \mathrm{C}$ for 2 hours to yield $2 \mathrm{n}(41 \mathrm{mg}, 43 \%)$ as a pale yellow liquid. $\mathrm{R}_{f}=0.5$ (silica, hexanes: EtOAc, 2:1); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.16(\mathrm{~d}, J=4.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.59-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.54(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.92-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.70-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-2.94(\mathrm{~m}$, $1 \mathrm{H}), 2.78(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 2 \mathrm{H}), 1.83(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.47$ - $1.28(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=167.26,154.37,147.82,142.57,136.22,135.88,131.28,128.99$, $126.53,126.14,125.97,123.59,123.50,47.45,43.63,40.19,31.80,25.70,25.09,19.03 . ;$ HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}^{+}\left[\mathrm{M}_{+} \mathrm{Na}^{+}\right]: 341.1621$, found 341.1624.

4. Optimization and Substrate Scope of α-Aryl Alkenyl Aamides

Scheme 2. Synthesis of α-Aryl Alkenyl Aamide.
General Procedure B: To a solution of $\mathbf{3}\left(0.3 \mathrm{mmol}, 1.0\right.$ equiv) and $\operatorname{Pd}(\mathrm{OAc})_{2}(0.015 \mathrm{mmol}, 0.05$ equiv) in anhydrous toluene $(4 \mathrm{~mL})$ at r.t. was added $\mathrm{PhI}(\mathrm{OAc})_{2}(0.75 \mathrm{mmol}, 2.5$ equiv), 2-chloroisonicotinonitrile (16.6 mg , $0.12 \mathrm{mmol}, 0.4$ equiv) in a 15 mL flame-dried sealed tube (purged with N_{2}, sealed with PTFE cap). The mixture was heated at $110^{\circ} \mathrm{C}$ for 2 hours. The reaction mixture was cooled to room temperature, and concentrated in vacuo. The resulting residue was purified by silica gel flash chromatography (petroleum ether / EtOAc) to give the product 5 .

General Procedure C: To a solution of $\mathbf{3}\left(0.3 \mathrm{mmol}, 1.0\right.$ equiv) and $\mathrm{Pd}(\mathrm{OAc})_{2}(0.015 \mathrm{mmol}, 0.05$ equiv) in anhydrous toluene $(4 \mathrm{~mL})$ at r.t. was added $\mathrm{PhI}(\mathrm{OAc})_{2}(0.75 \mathrm{mmol}, 2.5$ equiv $), 2$-Dicyclohexylphosphino-2',6'dimethoxybiphenyl (S-phos, $12.5 \mathrm{mg}, 0.03 \mathrm{mmol}, 0.1$ equiv) in a 15 mL flame-dried sealed tube (purged with N_{2},
sealed with PTFE cap). The mixture was heated at $110^{\circ} \mathrm{C}$ for 5 hours. The reaction mixture was cooled to room temperature, and concentrated in vacuo. The resulting residue was purified by silica gel flash chromatography (petroleum ether / EtOAc) to give the product 5.

3'-(picolinamido)-2',3'-dihydrospiro[cyclohexane-1,1'-indene]-2,4'-diyl diacetate (5a) ${ }^{[4 a]}$:
 Prepared according to general procedure \mathbf{B}, from $\mathbf{3 a}(92.0 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv) to give the desired product $\mathbf{5 a}(78.0 \mathrm{mg}, 60 \%)$ as a colorless oil; prepared according to general procedure C, from 3a $(92.0 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv) to give the desired product $\mathbf{5 a}(47.0 \mathrm{mg}, 55 \% \mathrm{brsm}$, 30.0 mg of $\mathbf{3 a}$ was recovered) as a colorless oil $\mathrm{R}_{f}=0.4$ (silica gel, petroleum ether $: \mathrm{EtOAc}=$ $2: 1) ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.83(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=7.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{dd}, J=9.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=12.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.32$ $(\mathrm{m}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=13.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{t}, J=13.9 \mathrm{~Hz}, 2 \mathrm{H})$, $1.53-1.26(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 170.7,169.9,162.4,150.0,149.5,148.0,142.1,137.4,129.0$, $127.2,126.2,125.9,122.3,120.9,83.3,44.3,41.1,36.1,34.8,32.0,25.6,23.6,23.1,21.1$. HRMS (ESI): calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{5}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 445.1734$, found 445.1719.

6'-methyl-3'-(picolinamido)-2',3'-dihydrospiro[cyclohexane-1,1'-indene]-2,4'-diyl diacetate (5b).

Prepared according to General Procedure B. from 3b ($96 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}, 0.1$ equiv $)$ at $110^{\circ} \mathrm{C}$ for 2 hours to yield $\mathbf{5 b}(55 \mathrm{mg}, 42 \%)$ as a colorless liquid. $\mathrm{R}_{f}=0.5$ (silica, hexanes: EtOAc, 2:1); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.39-8.32(\mathrm{~m}$, $2 \mathrm{H}), 8.21(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 5.57$ $(\mathrm{s}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.32(\mathrm{~m}, 4 \mathrm{H}), 2.19-2.12(\mathrm{~m}, 4 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.94-$ $1.91(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.27(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.59,169.89,162.22$, $149.88,149.22,147.81,141.62,138.95,137.27,127.70,126.03,122.73,122.08,121.51,83.31,44.16,40.83,35.91$, 34.62, 31.87, 25.47, 23.47, 22.99, 21.10, 20.91; HRMS (ESI): calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{5}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 459.1886, found 459.1890 .

6'-methoxy-3'-(picolinamido)-2',3'-dihydrospiro[cyclohexane-1,1'-indene]-2,4'-diyl diacetate (5c).

Prepared according to General Procedure B. from 3c (101 mg, $0.30 \mathrm{mmol}, 1.00$ equiv) and $\operatorname{Pd}(\mathrm{OAc})_{2}\left(6.7 \mathrm{mg}, 0.1\right.$ equiv) at $110{ }^{\circ} \mathrm{C}$ for 2 hours to yield $\mathbf{5 c}(44 \mathrm{mg}, 33 \%)$ as a colorless liquid. $\mathrm{R}_{f}=0.5$ (silica, hexanes: EtOAc, 2:1); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.40(\mathrm{~d}, J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.34(\mathrm{~m}$, $1 \mathrm{H}), 6.59(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{q}, J=6.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{q}, J=8.0$, $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.37-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.92(\mathrm{~m}$, $1 \mathrm{H}), 1.76-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.31(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=170.54,169.62,162.21,159.69$, $150.29,149.99,147.82,142.74,137.26,126.00,122.09,118.07,112.04,107.41,83.32,55.38,44.59,40.77,35.86$, 34.64, 31.97, 25.49, 23.46, 22.97, 20.90; HRMS (ESI): calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{6}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 475.1835$, found 475.1839 .

6'-fluoro-3'-(picolinamido)-2',3'-dihydrospiro[cyclohexane-1,1'-indene]-2,4'-diyl diacetate (5d).

Prepared according to General Procedure B. from 3d ($100 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.00$ equiv) and $\operatorname{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}, 0.1$ equiv $)$ at $110^{\circ} \mathrm{C}$ for 2 hours to yield $\mathbf{5 d}(42 \mathrm{mg}, 31 \%)$ as a colorless liquid. $\mathrm{R}_{f}=0.6$ (silica, hexanes: EtOAc, $\left.2: 1\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.40(\mathrm{~d}, J=4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.35$ $(\mathrm{m}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.46(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.43$ $(\mathrm{m}, 2 \mathrm{H}), 2.37-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.70(\mathrm{~m}$, 2H), 1.45-1.30(m, 3H); ${ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.45,169.26,162.27,149.83,147.87,137.34,126.13$, $122.14,113.48,113.28,109.30,109.06,82.97,44.50,40.65,35.72,34.52,31.85,28.06,25.39,23.39,22.93,20.83$; HRMS (ESI): calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{FN}_{2} \mathrm{NaO}_{5}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 463.1637$, found 463.1639 .

5. Versatile Transformations of the Product.

5.1 Synthesis of 2ab:

A sealed tube was charged with alkene $\mathbf{2 a}(92 \mathrm{mg}, 0.30 \mathrm{mmol})$, monobasic sodium hydrogen phosphate (13 mg , 0.11 mmol), finely grounded selenium dioxide $(66.0 \mathrm{mg}, 0.60 \mathrm{mmol})$, quartz sand (150.0 mg) and 1, 4-dioxane (3.0 $\mathrm{ml})$. The flask was evacuated and filled with N_{2} (3 times). The solution was immersed in a $140^{\circ} \mathrm{C}$ oil bath. After stirring for 6 hours, the mixture was filtered through a short silica gel path and washed with ethyl acetate. The organic solvent was evacuated under vacuum and the resulting yellow oil was dissolved in methylene chloride and washed with 1 N aqueous NaOH . The aqueous layer was extracted with methylene chloride. The combined organic layers were dried over sodium sulfate and concentrated in vacuo. The resulting slightly yellow oil was purified by flash chromatography (40% to 60% ethyl acetate in petroleum ether) to give $\mathbf{4 a}(47.0 \mathrm{mg}, 50 \%) . \mathrm{R}_{f}=0.2$ (silica gel, petroleum ether : $\mathrm{EtOAc}=1: 1) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.46(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.69(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-6.87(\mathrm{~m}, 6 \mathrm{H}), 6.33(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{t}, J=6.0 \mathrm{~Hz}$, 2H), $2.20(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 185.7,168.3,153.9,152.7,148.7,138.2,137.1,128.4$, 127.9, 127.7, 127.3, 125.5, 125.3, 125.0, 124.3, 43.4, 42.3, 34.4. HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 339.1104, found 339.1102 .

5.2 Synthesis of 2a':

To a mixture of $\mathrm{THF} / \mathrm{MeOH} / \mathrm{H} 2 \mathrm{O}(16.0 / 4.0 / 4.0 \mathrm{~mL})$ was added compound $\mathbf{2 a}(200 \mathrm{mg}, 0.66 \mathrm{mmol}, 1.0 \mathrm{eq})$ and $\mathrm{NaOH}(200 \mathrm{mg}, 0.33 \mathrm{mmol}, 1.5 \mathrm{eq})$ at room temperature. The mixture was heated to $60^{\circ} \mathrm{C}$ and stirred for 12 hours Water was added and the mixture was extracted with DCM. The combined organic layers was washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by silica gel flash chromatography to give the desired product $\mathbf{2 a}^{\prime}(127.0 \mathrm{mg})$ in 97% yield. $\mathrm{R}_{f}=0.8$ (silica gel, petroleum ether : $\mathrm{EtOAc}=2: 1) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.12(\mathrm{dd}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{td}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.62$ $(\mathrm{td}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{dt}, J=10.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{dt}, J=10.1,2.2 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.91(\mathrm{bs}, 1 \mathrm{H}), 3.45(\mathrm{td}, J=11.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{ddd}, J=11.4,4.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.88-$ $1.75(\mathrm{~m}, 3 \mathrm{H}), 1.77-1.61(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.7,135.5,129.2,128.3,127.5,127.1,116.5$, 114.0, 37.9, 36.9, 36.9, 34.3, 25.3, 18.4. HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 200.1434$, found 200.1432.

Prepared according to general procedure SI-B, from 2a' $(12.0 \mathrm{mg}, 0.06 \mathrm{mmol}, 1.0$ equiv $)$ to give the desired product 2a ($11.0 \mathrm{mg}, 60 \%$) as a colorless oil, $\mathrm{R}_{f}=0.4$ (silica gel, petroleum ether : $\mathrm{EtOAc}=2: 1$);

5.2 Synthesis of $\mathbf{2 b}{ }^{\prime}$:

To a mixture of $\mathrm{THF} / \mathrm{MeOH} / \mathrm{H} 2 \mathrm{O}(4.0 / 1.0 / 1.0 \mathrm{~mL})$ was added compound $\mathbf{2 b}(35.0 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0 \mathrm{eq})$ and $\mathrm{NaOH}(6.0 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5 \mathrm{eq})$ at room temperature. The mixture was heated to $60^{\circ} \mathrm{C}$ and stirred for 12 hours. Water was added and the mixture was extracted with DCM. The combined organic layers was washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by silica gel flash chromatography to give the desired product $\mathbf{2 b}^{\prime}(10.0 \mathrm{mg})$ in 97% yield brsm and $\mathbf{2 b}$ (20.0 mg was recovered). $\mathbf{R}_{f}=$ 0.6 (silica gel, petroleum ether : $\mathrm{EtOAc}=5: 1) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.78(\mathrm{dd}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.68$ $-6.61(\mathrm{~m}, 1 \mathrm{H}), 6.57(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{dt}, J=10.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{dd}, J=9.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 1 \mathrm{H})$, $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.30(\mathrm{~m}, 2 \mathrm{H}), 2.22-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.75-1.60(\mathrm{~m}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.9,135.7,133.6,128.3,127.3,121.4,114.9,107.5,55.6,37.4,37.1,36.9,34.2,25.3,18.6 . \mathrm{MS}$ (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 230.2$, found 230.2. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}^{+}\left[\mathrm{M}_{+} \mathrm{H}^{+}\right]: 230.1539$, found 230.1538

6. Deuterium Labeling Experiments and Mechanistic Studies

To explore the reaction mechanism for this $\mathrm{C}-\mathrm{H}$ oxidative arylation reactions, some deuterium labeling experiments were conducted under the standard reaction condition.
6.1 Deuterium Labeling Experiments for $\mathbf{s p}^{\mathbf{2}} \mathbf{C - H}$ oxidative arylation:

The substrate ($\mathbf{d}^{\mathbf{3}} \mathbf{- 1 a}, 52 \%$ deuterium) was prepared to distinguish double bond between at the 2, 3- and 5, 6-positions (eq 1, Scheme 2). Under the best reaction condition, $\mathbf{d}^{\mathbf{3}} \mathbf{- 2 a}$ was obtained in 30% yield at the 2, 3-position of the cyclohexene, and no 5,6-position double bond product generated. The kinetic isotope effect (KIE) was determined to briefly explore the reaction mechanism when PA was as DG. The KIE $(\mathrm{kH} / \mathrm{D}=1.07)$ was observed in the intermolecular competition experiment. The $\mathrm{C}-\mathrm{H}$ bond of 2 positions is not involved with $\mathrm{C}-\mathrm{H}$ cleavage.
6.1.1. A mixture of iodobenzene ($0.36 \mathrm{~g}, 1.76 \mathrm{mmol}, 1.10 \mathrm{eq}$), Amind $\mathbf{d}^{3} \mathbf{- 1 a}(0.35 \mathrm{~g}, 1.60 \mathrm{mmol}, 1.00 \mathrm{eq}), \mathrm{K}_{2} \mathrm{CO}_{3}$ (3.2 mmol), CuI (0.16 mmol), and L-proline $(0.32 \mathrm{mmol})$ in 4 mL of DMSO was heated at $100{ }^{\circ} \mathrm{C}$ until the start material was consumed as indicated by TLC. The cooled mixture was partitioned between water and ethyl acetate. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residual oil was loaded on a silica gel column and eluted with 1:20 to 1:5 ethyl acetate/petroleum ether to afford the corresponding product $\mathbf{d}^{\mathbf{3}} \mathbf{- 1 a}$ (260.0 mg, 53\%).
6.1.2 To a flame-dried sealed tube was added $\mathrm{PhI}(\mathrm{OAc})_{2}(120.0 \mathrm{mg}, 0.375 \mathrm{mmol}, 2.5$ equiv $), \mathrm{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 10$ $\mathrm{mol} \%$), 2-chloroisonicotinonitrile ($8.0 \mathrm{mg}, 0.06 \mathrm{mmol}, 0.4$ equiv) and starting material ($0.15 \mathrm{mmol}, 1.0$ equiv), then 2.0 mL dry toluene was added to dissolve the mixture under nitrogen. This was stirred at $90{ }^{\circ} \mathrm{C}$ with oil bath. Specificly, reaction would complete within 0.75 h , then cooled to room temperature. The reaction mixture next was purified by silica gel directly without remove solvent.

The calculation of deuterated percentage of $\mathbf{d}^{\mathbf{3}} \mathbf{- 1} \mathbf{1}$ based on the integration of NMR spectrum in
position 2.
$\mathrm{N}_{S M}-\mathrm{H}($ hydrogen percentage in position 1 of starting material $)=51.7 \%$
$\mathrm{N}_{\mathrm{SM}}-\mathrm{D}($ deuterated percentage in position 1 of starting material $)=48.3 \%$
$\mathrm{N}_{\text {тм }}-\mathrm{H}$ (hydrogen percentage in position 1 of terminal material) $=53.4 \%$
$\mathrm{N}_{\mathrm{TM}}-\mathrm{D}($ deuterated percentage in position 1 of terminal material $)=46.6 \%$
$\mathrm{KH} / \mathrm{KD}=\left(\mathrm{NSM}_{\text {SM }}-\mathrm{D} * \mathrm{~N}_{\text {тм }}-\mathrm{H}\right) /\left(\mathrm{N}_{\text {Sм }}-\mathrm{H} * \mathrm{~N}_{\text {тм }}-\mathrm{D}\right)=1.07$

-0.000

Figure $\mathrm{S} 6.1^{1} \mathrm{H}$ NMR spectrum of the substrates $\mathbf{d}^{\mathbf{3}} \mathbf{- 1 a}$

$d^{3}-2 a$

Figure $\mathrm{S} 6.2{ }^{1} \mathrm{H}$ NMR spectrum of the substrates $\mathbf{d}^{\mathbf{3}} \mathbf{- 2 a}$

6.2 Deuterium Labeling Experiments for $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ acetoxylation 1:

6.2.1 The title compound was synthesized by following a similar procedure reported in the literature for the synthesis of iodobenzene ${ }^{[7]}$, by stirring a mixture of D^{6}-benzene $(0.5 \mathrm{~mL}, 5.0 \mathrm{mmol}), \operatorname{AgOTf}(1280.0 \mathrm{mg}, 2.5 \mathrm{mmol})$ and iodine ($1270.0 \mathrm{mg}, 2.5 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ for 15 min at room temperature in dark condition. Reaction mixture was passed through a short celite plug and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Then combined filtrate was washed with dilute $\mathrm{NH}_{4} \mathrm{OH}$ solution, dilute $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and water, followed by organic solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evapourated under reduced pressure. The resulting residue was utilized directly for next step.
6.2.2. A mixture of $\mathbf{d}^{5-P h}$-iodobenzene $(0.60 \mathrm{~g}, 2.87 \mathrm{mmol}, 1.00 \mathrm{eq})$, Amine $(0.54 \mathrm{~g}, 4.30 \mathrm{mmol}, 1.50 \mathrm{eq})$, $\mathrm{K}_{2} \mathrm{CO}_{3}(5.8 \mathrm{mmol}), \mathrm{CuI}(0.29 \mathrm{mmol})$, and L-proline $(0.57 \mathrm{mmol})$ in 3 mL of DMSO was heated at $100{ }^{\circ} \mathrm{C}$ until the start material was consumed as indicated by TLC. The cooled mixture was partitioned between water and ethyl acetate. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residual oil was loaded on a silica gel column and eluted with 1:20 to 1:5 ethyl acetate/petroleum ether to afford the corresponding product $\mathbf{d}^{5-\mathrm{Ph}}$-S1a (435.0 mg, 74\%, 99.7\% D). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.53(\mathrm{~s}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 1 \mathrm{H}), 3.17(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.27(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.11-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.51(\mathrm{~m}, 4 \mathrm{H})$.

6.2.3 Procedure SI-B:

To a solution of the picolinic acid $(10.50 \mathrm{mmol})$ in $\mathrm{DCM}(20 \mathrm{~mL})$ at room temperature was added $\mathrm{SOCl}_{2}(2$ mL) and one drop of dry DMF. The reaction was allowed to stir at $40^{\circ} \mathrm{C}$ for 4 hours. The solvent was then removed under reduced pressure to afford the corresponding crude acid chloride. Then $\mathrm{DCM}(20 \mathrm{~mL})$ was added and the solution was cooled to $0^{\circ} \mathrm{C}$ followed by dropwise addition of $\mathrm{NEt}_{3}(3.5 \mathrm{~mL})$, DMAP $(0.25 \mathrm{mmol})$ and amine (10.0 mmol, 1.0 eq$)$. The reaction mixture was stirred at room temperature overnight, extracted by DCM, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated, then purified by flash chromatography(petroleum ether/ $\mathrm{EtOAc}=2: 1)$ to give $\mathbf{d}^{\mathbf{5 - P h}} \mathbf{- 1 a}(2.0 \mathrm{~g}, 62 \%)$ as a white solid. $\mathrm{R}_{f}=0.50$ (silica, hexanes: EtOAc, $\left.2: 1\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400$
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-6.98(\mathrm{~m}, 1 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H})$, $4.00(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.97-1.80(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.46(\mathrm{~m}, 4 \mathrm{H})$.

Figure S6.3 ${ }^{1} \mathrm{H}$ NMR spectrum of the substrates $\mathbf{d}^{5-\mathrm{Ph}} \mathbf{- S 1 a}$

Figure S6.4 ${ }^{1} \mathrm{H}$ NMR spectrum of the substrates $\mathbf{d}^{5-\mathrm{Ph}} \mathbf{- S 1 a}$

Figure $\mathrm{S} 6.5{ }^{1} \mathrm{H}$ NMR spectrum of the substrates $\mathbf{d}^{\mathbf{5 - P h}} \mathbf{- 2 a}$
6.2.4 To a solution of $\mathbf{d}^{\mathbf{5 - P h}} \mathbf{- 1 a}(43.0 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0$ equiv $)$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(0.015 \mathrm{mmol}, 0.10$ equiv $)$ in anhydrous toluene $(2 \mathrm{~mL})$ at r.t. was added $\mathrm{PhI}(\mathrm{OAc})_{2}(0.37 \mathrm{mmol}, 2.5$ equiv $), 2$-chloroisonicotinonitrile $(8.0 \mathrm{mg}, 0.06 \mathrm{mmol}$, 0.4 equiv) in a 15 mL flame-dried sealed tube (purged with N_{2}, sealed with PTFE cap). The mixture was heated at $110^{\circ} \mathrm{C}$ for 2 hours. The reaction mixture was cooled to room temperature, and concentrated in vacuo. The resulting residue was purified by silica gel flash chromatography (petroleum ether / EtOAc) to give the product $\mathbf{d}^{5-\mathrm{Ph}} \mathbf{- 2 a}$ (23.0 $\mathrm{mg}, 53 \%)$.

6.2.5 Kinetic isotope effect studies

To a solution of $\mathbf{d}^{\mathbf{5 - P h}} \mathbf{- 1 a}\left(31.1 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0\right.$ equiv), $\mathbf{1 a}\left(30.6 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0\right.$ equiv) and $\operatorname{Pd}(\mathrm{OAc})_{2}(0.02$ mmol, 0.10 equiv) in anhydrous toluene $(3 \mathrm{~mL})$ at r.t. was added $\mathrm{PhI}(\mathrm{OAc})_{2}(0.50 \mathrm{mmol}$, 2.5 equiv $)$, 2chloroisonicotinonitrile ($11.0 \mathrm{mg}, 0.08 \mathrm{mmol}, 0.4$ equiv) in a 15 mL flame-dried sealed tube (purged with N_{2}, sealed with PTFE cap). The mixture was heated at $90^{\circ} \mathrm{C}$ for 0.75 hour. The reaction mixture was cooled to room temperature,
and concentrated in vacuo. The resulting residue was purified by silica gel flash chromatography (petroleum ether / EtOAc) to give the product $\mathbf{d}^{\mathbf{5}-\mathrm{Ph}} \mathbf{- 2 a}$ and $\mathbf{2 a}\left(13.0 \mathrm{mg}, \mathbf{3 4 \%}\right.$). The KIE value was calculated as $\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}=3.39$.

Figure $\mathrm{S} 6.6{ }^{1} \mathrm{H}$ NMR spectrum of the substrates 2a and $\mathbf{d}^{\mathbf{5 - P h}} \mathbf{- 2 a}$
6.3 Deuterium Labeling Experiments for $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ acetoxylation 2:

6.3.1 Procedure for Preparation of palladium Complexe $7^{[6]}$.

To a solution of N-(2-(cyclohex-1-en-1-yl)ethyl)-N,4-dimethylbenzenesulfonamide 3a ($45.0 \mathrm{mg}, 0.15 \mathrm{mmol}$) in 4 mL of dried acetone was added palladium trifluoroacetate $(46.0 \mathrm{mg}, 0.15 \mathrm{mmol})$ and stirred at $0^{\circ} \mathrm{C}$ for 2 hours. A solution of tetra- n-butylammonium chloride $(46.0 \mathrm{mg}, 0.16 \mathrm{mmol})$ in 1 mL of dried acetone was added. The mixture was then stirred for 2 hours. It was then filtered through Celite to remove any metallic palladium, concentrated under reduced pressure to get the crude product. The residue was purified by flash chromatography on silica gel using hexanes/EtOAc $2: 1$ as eluent to afford the desired product $\mathbf{7}$ as yellow solid $(\mathbf{4 9 . 0} \mathbf{~ m g}, \mathbf{8 0 \%}) . \mathrm{R}_{f}=$ 0.15 (silica, hexanes: EtOAc, 1:1); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.21(\mathrm{dd}, J=5.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{td}, J=7.6$,
$1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{ddd}, J=7.4,5.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J$ $=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=16.8,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.87(\mathrm{dd}, J=17.5,10.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.70(\mathrm{dd}, J=16.7,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.04(\mathrm{~m}, 3 \mathrm{H}), 2.00-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.58$ $-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.22(\mathrm{~m}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.0,155.8,148.4,141.6,140.8,139.7,129.0$, 126.9, 125.9, 125.2, 99.7, 58.1, 45.9, 35.1, 26.6, 21.1, 21.0. HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{OPd}^{+}\left[\mathrm{M}^{+}\right]$: 447.0455, found 447.0455, 413.0695, 471.0280.

Procedure for 4a: To a solution of complex $7(20.0 \mathrm{mg}, 0.045 \mathrm{mmol})$ in anhydrous toluene $(0.5 \mathrm{~mL})$ at r.t. was added $\mathrm{PhI}(\mathrm{OAc})_{2}(36.0 \mathrm{mg}, 2.5$ equiv), 2-chloroisonicotinonitrile ($2.5 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.4$ equiv) in a 15 mL sealed tube (purged with N_{2}, sealed with PTFE cap). The mixture was heated at $100^{\circ} \mathrm{C}$ for 1 hours. The reaction mixture was cooled to room temperature, and concentrated in vacuo. The resulting residue was purified by silica gel flash chromatography to give the product $\mathbf{5 a}(5.0 \mathrm{mg}, 26 \%)$.

Figure S6.7 FTMS spectrum of the substrates Pd complex 7.

Figure $\mathrm{S} 6.8{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of the substrates Pd complex 7.

6.3.2 Procedure for Preparation

Significant deuteration occurred at the C 2 position and acetoxylation product $5 \mathbf{a}$ was formed when the reaction was carried out with $\mathrm{D}_{2} \mathrm{O}$ under the standard conditions. This result suggests that acetoxylation firstly occurs through a $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ activation process through the Pd intermediate at the 2-position of the cyclohexene.

To a flame-dried sealed tube was added $\mathrm{PhI}(\mathrm{OAc})_{2}(120.0 \mathrm{mg}, 0.375 \mathrm{mmol}, 2.5$ equiv $), \mathrm{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 10$ $\mathrm{mol} \%$), 2-chloroisonicotinonitrile ($8.0 \mathrm{mg}, 0.06 \mathrm{mmol}, 0.4$ equiv) and starting material 3a($0.15 \mathrm{mmol}, 1.0$ equiv), then 2.0 mL dry toluene was added to dissolve the mixture under nitrogen. This was stirred at $110{ }^{\circ} \mathrm{C}$ for 2 h , then cooled to room temperature. The reaction mixture next was purified by silica gel directly without remove solvent using hexanes/EtOAc 5:1 to $2: 1$ as eluent to afford the desired product $\mathbf{5 a}$ as a pale yellow oil ($3.0 \mathrm{mg}, 9.5 \%$ brsm), $\mathrm{R}_{f}=0.30$ (silica, hexanes: EtOAc, 2:1); the single acetoxylation product $\mathbf{5 a} \mathbf{a}^{\prime}(5.0 \mathrm{mg}, 9 \%)$; and start material $\mathbf{d}^{\mathbf{1}} \mathbf{- 3 a}$ ($23.0 \mathrm{mg}, 50 \%, 22 \% \mathrm{D}$).

Figure $56.9{ }^{1} \mathrm{H}$ NMR spectrum of the substrates 3 a

Figure $\mathrm{S} 6.10{ }^{1} \mathrm{H}$ NMR spectrum of the substrates $\mathbf{d}^{\mathbf{1}} \mathbf{- 3 a}$

7. X-ray Crystallographic Data of Compound 2n, 5c and 7:

The crystal $\mathbf{2 n}, 5 \mathbf{c}, \mathbf{7}$ were prepared from the solution of $\mathbf{2 n}$ in DCM/ hexane at ambient temperature.
7.1 X-ray crystallographic Data of Compound 2n:

Figure 1. X-ray derived ORTEP representation of 2n.

Crystal data and structure refinement for 2n (CCDC: 1528891)	
Identification code	C21H22N2O
Empirical formula	C21H22N2O
Formula weight	318.40
Temperature/K	$293(2)$
Crystal system	monoclinic
Space group	P21/c
a/A	$16.8116(9)$
b / \AA	$12.2054(7)$
c/Å	$8.3966(4)$
α / \circ	90
$\beta /{ }^{\circ}$	$95.080(5)$
$\gamma /{ }^{\circ}$	90
Volume $/ \AA 3$	$1716.15(16)$

Z	4
ρ calcg/cm3	1.232
$\mu / \mathrm{mm}-1$	0.076
$\mathrm{~F}(000)$	680.0
Crystal size/mm3	$? \times ? \times ?$
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$
2 Θ range for data collection/ ${ }^{\circ}$	7.106 to 52.744
Index ranges	$-21 \leq \mathrm{h} \leq 12,-7 \leq \mathrm{k} \leq 15,-9 \leq 1 \leq 10$
Reflections collected	7488
Independent reflections	$3505[\mathrm{Rint}=0.0224, \mathrm{Rsigma}=0.0414]$
Data/restraints/parameters	$3505 / 0 / 217$
Goodness-of-fit on F2	1.090
Final R indexes [l>=2 $\sigma(\mathrm{I})]$	$\mathrm{R} 1=0.0541, \mathrm{wR} 2=0.1231$
Final R indexes [all data]	$\mathrm{R} 1=0.0823, \mathrm{wR} 2=0.1401$
Largest diff. peak/hole /e $\AA-3$	$0.17 /-0.21$

7.2 X-ray crystallographic Data of Compound $\mathbf{5 c}$:

Figure 2. X-ray derived ORTEP representation of 5c.

Empirical formula	$\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}$
Formula weight	452.49
Temperature/K	293(2)
Crystal system	monoclinic
Space group	C2/c
a / \AA	25.1784(14)
b/Å	10.2826(5)
c/Å	19.7614(11)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	110.072(6)
γ°	90
Volume/ A 3	4805.5(5)
Z	8
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.251
μ / mm^{-1}	0.090
F(000)	1920.0
Crystal size/mm ${ }^{3}$	$0.48 \times 0.35 \times 0.27$
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	6.782 to 52.738
Index ranges	$-31 \leq \mathrm{h} \leq 17,-11 \leq \mathrm{k} \leq 12,-24 \leq 1 \leq 24$
Reflections collected	9927
Independent reflections	4893 [$\left.\mathrm{R}_{\text {int }}=0.0188, \mathrm{R}_{\text {sigma }}=0.0336\right]$
Data/restraints/parameters	4893/0/302
Goodness-of-fit on F^{2}	1.089
Final R indexes $[1>=2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0623, \mathrm{wR}_{2}=0.1752$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0964, \mathrm{wR}_{2}=0.1988$
Largest diff. peak/hole / e \AA^{-3}	0.16/-0.16

7.3 X-ray crystallographic Data of Compound 7:

Figure 2. X-ray derived ORTEP representation of 7.

Crystal data and structure refinement for 7 (CCDC: 1534515)

Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{OPd}$
Formula weight	445.22
Temperature/K	293(2)
Crystal system	monoclinic
Space group	Ia
a / \AA	16.3831(3)
b/Å	9.0821(2)
c/Å	26.7621(6)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	107.248(2)
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	3802.94(14)
Z	8
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.555
μ / mm^{-1}	1.126
$\mathrm{F}(000)$	1792.0
Crystal size/mm ${ }^{3}$	$? \times ? \times$?
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	6.698 to 52.718
Index ranges	$\begin{aligned} & -20 \leq \mathrm{h} \leq 20,-11 \leq \mathrm{k} \leq 11,-33 \leq \\ & 1 \leq 33 \end{aligned}$
Reflections collected	28393
Independent reflections	$\begin{aligned} & 7762\left[\mathrm{R}_{\text {int }}=0.0291, \mathrm{R}_{\text {sigma }}=\right. \\ & 0.0284] \end{aligned}$
Data/restraints/parameters	7762/9/451
Goodness-of-fit on F^{2}	1.060
Final R indexes $[1>=2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0323, \mathrm{wR}_{2}=0.0864$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0391, \mathrm{wR}_{2}=0.0919$
Largest diff. peak/hole / e \AA^{-3}	0.97/-0.38
Flack parameter	-0.048(10)

8. References:

[1] a) Zhang, H.; Cai, Q.; Ma, D.-W. J. Org. Chem. 2005, 70, 5164; b) Pan, X.-H.; Cai, Q.; Ma, D.W.Cai, Q.; Ma, D.-W. Org. Lett. 2004, 6, 1809.
[2] a) Yorimitsu, H.; Wakabayashi, K.; Shinokubo, H.; Oshima. K. Bull. Chem. Soc. Jpn. 2001, 74, 1963; b) Miyazaki, H.; Herbert, M. B.; Liu, P.; Dong, X.-F.; Xu, X.-F.; Keitz, B. K.; Houk, K. N.; Grubbs. R. H. J. Am. Chem. Soc. 2013, 135, 5848.
[3] Zhou, J.; Li, B.; Qian, Z.-C.; Shi, B.-F. Adv. Synth. Catal. 2014, 356, 1038.
[4] a) Zang, Z.-L.; Zhao, S.; Karnakanti, S.; Liu, C.-L.; Shao, P.-L.; He, Y. Org. Lett. 2016, 18, 5014; b) Masamune, T.; Sato, S.; Abiko, A.; Ono, M.; Murai, A. Bull. Chem. Soc. Jpn. 1980, 53, 2895.
[5] Zhichkin, P.; Kesicki, E.; Treiberg, J.; Bourdon, L.; Fairfax, D. Org. Lett. 2007, 9, 1415.
[6] a) Trost, B. M.; Strege, P. E.; Weber, L.; Fullerton, T. J.; Dietsche, T. J. J. Am. Chem. Soc. 1978, 100, 3407; b) Trost, B. M.; Metzner, P. J. J. Am. Chem. Soc. 1980, 102, 3572.
[7] Ghorai, D.; Choudhury, J. ACS Catal., 2015, 5, 2692.
[8] Katritxky, A. R.; Harris, P. A. Tetrahedron 1990, 46, 987.

9．Experimental Spectra：

9．1 Experimental Spectra of $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ Acetoxylation

¢\％	\pm	¢⿹\zh26灬onj	毋ix ${ }^{\text {¢ }}$
	i	ジツ்ற்	

Me－1a

$\stackrel{\text { N }}{\text { in }}$

Ts-1a

9ुす¢	¢ ${ }_{\sim}^{\circ}$	-	$\underset{\sim}{\sim}$
monminion in	Firs	$\stackrel{\text { ¢ }}{ }$	$\dot{\sim}$
$\ \ 1 \mathrm{~V} / 1$	V		

Ts-1a

DG-2

DG-2

	\%	ํํํํ	
V vive	i	VV	

$\stackrel{\text { ¢ }}{\square}$	セnane	筞	咢	
1	\VIİ，	＂		

1b

1b

～	以nin	ल		n8	$\infty \bullet$	の	rgintim		
$\stackrel{\infty}{\infty}$	जin	$\stackrel{\square}{\square}$		ت゙®		N	NツO～M	\sim	O
1	1	1	いいに！	$1 /$	\downarrow	\sim	V11		

2c

2c， $600 \mathrm{MHz}, \mathrm{D}^{6}$－Benzene， $70^{\circ} \mathrm{C}$

2d

2d, $600 \mathrm{MHz}, \mathrm{D}^{6}$-Benzene, $70^{\circ} \mathrm{C}$

2e， $600 \mathrm{MHz}, \mathrm{D}^{6}$－Benzene， $70^{\circ} \mathrm{C}$

| ||

1f
$\begin{array}{llllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90\end{array}$
80
060
50
10
 $\underbrace{\infty} \boldsymbol{\sim}$

~

|

$\underbrace{\infty}$

2k

11

21

No

1 m

$\begin{array}{llllllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

	${ }_{\text {m }}$	F	
\|11]	$\stackrel{\sim}{0}$	\%	-2NV107

1n

1n

2n

f1 (ppa)
${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of compound 5 a

3b

5c

2b'

®iniriririririririririb

ì

4a

