In Vivo Multiscale and Spatially-Dependent Biomechanics Reveals Differential Strain Transfer Hierarchy in Skeletal Muscle

Soham Ghosh¹, James G. Cimino², Adrienne K. Scott¹, Frederick W. Damen², Evan H. Phillips², Alexander I. Veress³, Corey P. Neu^{1,2,*}, Craig J. Goergen^{2,*}

¹Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, UCB 427, Boulder, Colorado 80309, United States

²Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Drive, West Lafayette, Indiana 47907, United States

³Department of Mechanical Engineering, University of Washington, 352600 Stevens Way, Seattle, Washington 98195, United States

*Corresponding authors

Corey P. Neu, Phone: 303.492.7330, E-mail: cpneu@colorado.edu

Craig J. Goergen, Phone: 765.494.1517, E-mail: cgoergen@purdue.edu

Supplementary movie 1. Axial section view of mouse hind limb imaged using ultrasound. Undeformed (without stimulation) and deformed (with stimulation).

Supplementary movie 2. Coronal section view of mouse hind limb imaged using ultrasound. Undeformed (without stimulation) and deformed (with stimulation).

Supplementary movie 3. Coronal plane view of a part of the tibialis anterior muscle. The white elongated dots are the nuclei. Imaged using optical microscopy (10X). Undeformed (without stimulation) and deformed (with stimulation).

Supplementary movie 4. High magnification (40X) Coronal plane view of a nucleus in the tibialis anterior muscle. Imaged using optical microscopy. Undeformed (without stimulation) and deformed (with stimulation).