Supporting Information for

Nanoporous Gold Nanoparticles and Au/Al₂O₃ Hybrid Nanoparticles with large Tunability of Plasmonic Properties

Wenye Rao[†], Dong Wang[†]*, Thomas Kups[†], Eszter Baradács[‡], Bence Parditka[‡], Zoltán Erdélyi[‡], and Peter Schaaf[†]

[†] Group Materials for Electronics, Institute of Materials Engineering and Institute of Microand Nanotechnologies MacroNano[®], Technische Universität Ilmenau, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau, Germany

[‡] Department of Solid State Physics, University of Debrecen, P.O. Box 2, H-4010 Debrecen, Hungary

* Corresponding author: dong.wang@tu-ilmenau.de

Keywords: nanoporous gold, nanoparticle, plasmon resonance, hybrid, nanophotonics

Figure S1. (a) Histograms of the particle size distribution of the 4 types of NPG-NPs in Fig. 1, the values m and σ denote the mean particle diameter and its standard deviation. (b) Plots of radially averaged autocorrelation function of the induced particles, arrows indicate the corresponding characteristic particle spacing (at first maximum).

Figure S2. (a) left panel: histograms of the ligament size (diameter) distribution of the 4 types of NPG-NPs in Fig. 1, and (b) right panel: histograms of the pore size (pore channel diameter) distribution of the 4 types of NPG-NPs in Fig. 1. The values d_l , d_p and σ denote the mean ligament size, mean pore size and their standard deviation.

Figure S3. EDS spectrum of the NPG-NP. Inset is the SEM image of the investigated NPG-NP. The orange square in the SEM image is the selected area for the EDS investigation. The strong Si and O signal were from the substrate.

Figure S4. The peak position of dipole plasmon mode versus particle diameter. Data extracted from Figure 3 and Figure 4.

Figure S5. Polarization vectors of solid gold NPs (D = 393 nm) for dipole, quadrupole and octupole resonances at 1100, 620 and 535 nm, respectively.

Figure S6. (a) Calculated extinction spectra of spherical NPG-NPs (D = 233 nm) of various volume porosities. (b) The relationship between the wavelength of plasmon mode peak and the volume porosity of the NPG-NPs. (c) The intensity ratio of dipole mode and quadrupole mode plotted as a function of the volume porosity of the NPG-NPs. The pore size is fixed at 20 nm. The volume porosities of the NPG-NPs are 0%, 10%, 20%, 30%, 40%, 50%, 60% and 66%, respectively.

Figure S7. (a) left panel: histograms of the ligament size (diameter) distribution of the 3 types of NPG-NPs in Fig. 6, and (b) right panel: histograms of the pore size (pore channel diameter) distribution of the 3 types of NPG-NPs in Fig. 6. The values d_l , d_p and σ denote the mean ligament size, mean pore size and their standard deviation.

Figure S8. (a) Calculated extinction spectra of spherical NPG-NPs (D = 233 nm) of various pore sizes. (b) The relationship between the wavelength of plasmon mode peak and the pore size of the NPG-NPs. (c) The intensity ratio of dipole mode and quadrupole mode plotted as a function of the pore size of the NPG-NPs. The volume porosity of the NPG-NPs is fixed at 66%. The pore sizes are 20, 40, 60, 80 and 100 nm, respectively.

Figure S9. (a) SEM image of a cross-sectioned Au/5nm-Al₂O₃ hybrid porous NP, (b) EDS mapping of Al, and (c) EDS mapping of Au.