Supporting Information

Inhibition and Stabilization: Cucurbituril Induced Distinct Effects on the Schiff Base Reaction
Wanjun Gong, Jun Ma, Zhiyong Zhao, Fang Gao, Feng Liang, Haijun Zhang, Simin Liu*
The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
Table of Contents Page
Table of Contents S1
Partial ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 , 2}$ with/without CB[7] in pD 13.6 S2
Plot of imine percentage at different pD S2
Binding constants for $\mathbf{1}$ and $\mathbf{2}$ with CB[7] S3
Determination of $\mathrm{p} K_{\mathrm{a}}$ shift of $\mathbf{2}$ with/without $\mathrm{CB}[7]$ S3
Partial ${ }^{1} \mathrm{H}$ NMR spectra for the hydrolysis of imine S4
The CIS values for cations in the absence/presence of $\mathrm{CB}[7]$ S5
Volumes of iminium cations and PCs calculation
.............................. S5
Partial ${ }^{1} \mathrm{H}$ NMR spectra of iminium cations with/without CB[7] S6-S7
Lifetime of iminium cations with/without CB[7] S8
Side view of crystal structure of CB[7]•7 S9
Partial ${ }^{1} \mathrm{H}$ NMR spectra of iminium cations with/without CB[6] S10-S11
Lifetime of iminium cations with/without CB[6] S12
Crystal structure of $\mathrm{CB}[7] \cdot 7$ with thermal ellipsoid plot S13
e)
 n \qquad
b)

Figure S1. Partial ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{pD}=13.6$) for a) $\mathbf{1}(2.0 \mathrm{mM})$; b) 1 h after adding $\mathbf{1}(2.0 \mathrm{mM})$ to $\mathbf{2}(2.0 \mathrm{mM})$; c) 1 h after adding $\mathbf{1}(2.0 \mathrm{mM})$ to a $1: 1.1$ mixture of $\mathbf{2}$ (2.0 mM) and $\mathrm{CB}[7]$; d) 1:1.1 mixture of $\mathbf{2}(2.0 \mathrm{mM})$ and $\mathrm{CB}[7]$; e) $\mathbf{2}(2.0 \mathrm{mM})$.

Figure S2. Plot of imine percentage at different pD for the condensation reaction of $\mathbf{1}$ and $\mathbf{2}$.

Table S1. Values of $K_{a}\left[\mathrm{M}^{-1}\right]$ measured by UV-Vis titration for the binding of $\mathbf{1}$ and $\mathbf{2}$ with $\mathrm{CB}[7]$ at different pH .

Guest	$\mathrm{pH}=9.6$	$\mathrm{pH}=13.6$
$\mathbf{1}$	$(6.5 \pm 0.5) \times 10^{2}$	$(4.3 \pm 0.3) \times 10^{2}$
$\mathbf{2}$	$(1.7 \pm 0.3) \times 10^{4}$	$(1.2 \pm 0.1) \times 10^{3}$

Figure S3. pH titration of $2(1.0 \mathrm{mM})$ in the absence of $\mathrm{CB}[7]$ (circle) and in the presence of 5.0 mM CB[7] (square). And the $\mathrm{p} K_{\mathrm{a}}$ values were determined according to the equation (3).

$$
\begin{equation*}
A=\frac{\mathrm{A} 1-\mathrm{A} 2}{1+\exp \left[\frac{[\mathrm{P}-\mathrm{pK}}{\mathrm{K}}\right]}+\mathrm{A} 2 \tag{3}
\end{equation*}
$$

Where " n " denotes a fitting parameter, $\mathrm{p} K_{a}$ represents the negative logarithm of the equilibrium constant $K_{a}=[2]\left[\mathrm{H}^{+}\right] /\left[2 \mathrm{H}^{+}\right], \mathrm{A} 1$ and A 2 are the absorbances at low and high pH , respectively. The non-linear-squares fit of equation (3) to the experimental dates gives p_{a} $=9.68 \pm 0.01$ for 2 in the absence of $C B[7]$ and $p K_{a}=12.10 \pm 0.02$ for $\mathbf{2}$ in the presence of CB[7].
\qquad 9\%

Figure S4. Partial ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) for the hydrolysis of imine with ($\mathrm{b}, \mathrm{d}, \mathrm{f}$) and without ($\mathrm{a}, \mathrm{c}, \mathrm{e}$) $\mathrm{CB}[7]$ in $\mathrm{pD}=13.6(\mathrm{a}, \mathrm{b})$, $\mathrm{pD}=12.5(\mathrm{c}, \mathrm{d})$ and $\mathrm{pD}=11.5$ (e, f). Percentage of imine was calculated until there was no any change on ${ }^{1} \mathrm{H}$ NMR spectra.

Table S2. The CIS values for cations in the absence/presence of $C B[7]$.

Guest	$\mathrm{N}-\mathrm{C}-\mathrm{H}$ (α moiety)			$\mathrm{N}=\mathrm{C}-\mathrm{C}-\mathrm{H}(\beta$ moiety $)$		
	Free	With CB[7]	CIS	Free	With CB[7]	CIS
$\mathbf{3}$	3.94	3.12	-0.82	2.17	1.96	-0.21
$\mathbf{4}$	3.88	3.46	-0.42	2.82	2.14	-0.68
$\mathbf{5}$	3.99	3.82	-0.17	2.79	1.87	-0.92
$\mathbf{6}$	3.97	3.90	-0.07	2.91	2.06	-0.85
$\mathbf{7}$	3.99	3.97	-0.02	3.23	2.44	-0.79

Table S3. Volumes of iminium cations and PCs.

	β moiety				
	R_{1}	R_{2}	a moiety	Volume for β moiety $\left(\AA^{3}\right)$	PCs
$\mathbf{3}$	Me	Me		62	22.22
$\mathbf{4}$	$-\left(\mathrm{CH}_{2}\right)_{4}-$		86	30.82	
$\mathbf{5}$	$-\left(\mathrm{CH}_{2}\right)_{5}-$		102	36.55	
$\mathbf{6}$	$-\left(\mathrm{CH}_{2}\right)_{6}$		118	42.29	
$\mathbf{7}$				147	52.68

The volumes were calculated by geometry optimization with AM1 semiempirical method for the corresponding alkane and the PCs were calculated based on the CB[7] inner cavity volume which is reported as $279 \AA^{3} .{ }^{1}$

4.0	3.5	3.0	2.5	2.0	1.5

Figure S5. Partial ${ }^{1} \mathrm{H}$ NMR spectra $\left(600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ for a) 3; b) hydrolyzed 3; c) 3 in the presence of CB[7] (1.0 eq). stands for 3 and \star stands for the corresponding ketone and amine.

b)

Figure S6. Partial ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) for a) 4; b) hydrolyzed 4; c) 4 in the presence of CB[7] (1.0 eq). \leqslant stands for 4 and \star stands for the corresponding ketone and amine.

Figure S7. Partial ${ }^{1} \mathrm{H}$ NMR spectra $\left(600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ for a) 5 ; b) hydrolyzed 5 ; c) 5 in the presence of CB[7] (1.0 eq). . stands for 5 and \star stands for the corresponding ketone and amine.

Figure S8. Partial ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) for a) 6; b) hydrolyzed 6; c) 6 in the presence of CB[7] (1.0 eq). stands for 6 and \star stands for the corresponding ketone and amine.

Figure S9. Lifetime of a) 3; b) 4; c) 5; d) $\mathbf{6}$ and e) $\mathbf{7}$ in the absence of CB[7] (square) and in the presence of $\mathrm{CB}[7]$ (circle).

Figure S10. Side view of the crystal structure of $\mathrm{CB}[7] \cdot 7$ showing that the average distances form C145 and C152 to the adjacent oxygens on CB[7] are quite similar.

a)

ppm	4.0	3.5	3.0	2.5	2.0

Figure S11. Partial ${ }^{1} \mathrm{H}$ NMR spectra $\left(600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ for a) $\mathbf{3}$; b) $\mathbf{3}$ in the presence of $\mathrm{CB}[6]$ (1.0 eq). \bullet stands for 3 and \star stands for the corresponding ketone and amine.

a)

ppm	4.0	3.5	3.0	2.5	2.0

Figure S12. Partial ${ }^{1} \mathrm{H}$ NMR spectra $\left(600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ for a) $\mathbf{4}$; b) $\mathbf{4}$ in the presence of $\mathrm{CB}[6]$ (1.0 eq). \bullet stands for 4 and \star stands for the corresponding ketone and amine.
b)

ppm	4.0	3.5	3.0	2.5	2.0

Figure S13. Partial ${ }^{1} \mathrm{H}$ NMR spectra $\left(600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ for a) $\mathbf{5}$; b) 5 in the presence of $\mathrm{CB}[6]$ (1.0 eq). \bullet stands for 5 and \star stands for the corresponding ketone and amine.

Figure S14. Partial ${ }^{1} \mathrm{H}$ NMR spectra $\left(600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ for a) 6; b) 6 in the presence of $\mathrm{CB}[6]$ (1.0 eq). \bullet stands for 6 and \star stands for the corresponding ketone and amine.
b) \qquad $\stackrel{\star}{~} \underbrace{\star}$ Mithi

Figure S15. Partial ${ }^{1} \mathrm{H}$ NMR spectra $\left(600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ for a) 7; b) 7 in the presence of $\mathrm{CB}[6]$ (1.0 eq). \star stands for 7 and \star stands for the corresponding ketone and amine.

Figure S16. Lifetime of iminium cations (\square for $\mathbf{3}$; \circ for $\mathbf{4} ; \Delta$ for 5 ; ∇ for $\mathbf{6} ; \diamond$ for 7) in the absence (dotted line) and presence (solid line) of CB[6] (1.0 eq).

Figure S17. Crystal structure of $\mathrm{CB}[7] \cdot 7$ with thermal ellipsoid plot (50% probability ellipsoids).
(1) Nau, W. M.; Florea, M.; Assaf, K. I. Isr. J. Chem. 2011, 51, 559-577.

