Halogen-Bond-Promoted Photoactivation of Perfluoroalkyl Iodides:
A Photochemical Protocol for Perfluoroalkylation Reactions

Yaxin Wang, ${ }^{\text {a }}$ Junhua Wang, ${ }^{\text {a }}$ Guo-Xing Li, ${ }^{a}$ Gang He, ${ }^{\text {a }}$ and Gong Chen*a, ${ }^{\text {b }}$

${ }^{a}$ State Key Laboratory and Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.
${ }^{\mathrm{b}}$ Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Supporting Information

Content

1. Reagents S2
2. Instruments S2
3. Synthesis of substrates S3
4. Evaluation of synthesis phenanthridine 3 from 2-isocyanobiphenyl and $\mathrm{C}_{4} \mathrm{~F}$-I via a radical cascade process. S15
5. Evaluation of amine promoters for synthesis of 3 under CFL irradiation S16
6. General procedures and substrate scope of phenanthridine synthesis S18
7. General procedures and substrate scope for addition of perfluorobutyl iodide to alkenes and alkynes. 25
8. General procedure and substrate scope for C-H perfluorobutylation of electron-rich arene and heteroarene. S30
9. Titration experiment of $\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}$ with TEEDA S36
10. Determination of binding stoichiometry of halogen bond complex S37
11. Determination of the association constant (K_{a}) S41
12. Evaluation of different light source S47
13. References S49
14. Spectra S50

1. Reagents

All commercial materials were used as received unless otherwise noted. Perfluoroalkyl iodides ($\left.\mathrm{CF}_{3} \mathrm{I}, \mathrm{C}_{3} \mathrm{~F}_{7} \mathrm{I}, \mathrm{C}_{4} \mathrm{~F}_{9} \mathrm{I}, \mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{I}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{I}, \mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}\right)$ and $\mathrm{BrCF}_{2} \mathrm{COOCH}_{3}$ were purchased from J\&K Chemical, Energy Chemical or TCI. N,N,N', $N^{\prime}-$ tetraethylenediamine (TEEDA) was purchased from Energy Chemical. Dry solvents (THF (99.5\%), 2-MeTHF (99.0\%), THP (99.0\%), dioxane (99.5\%), $\mathrm{Et}_{2} \mathrm{O}(99.0 \%)$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (99.0\%), $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ (98.9\%), CHCl_{3} (99.0\%), MeCN (99.9\%)) and deuterated solvents $\left(\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD}\right)$ were purchased from $\mathrm{J} \& \mathrm{~K}$ Chemical. TLC were performed on silica gel Huanghai HSGF254 plates and visualization of the developed chromatogram was performed by fluorescence quenching ($\lambda_{\max }=254 \mathrm{~nm}$). Flash chromatography was performed using Silica gel (200-300 mesh) purchased from Qingdao Haiyang Chemical Co., China.

2. Instruments

NMR spectra were recorded on Bruker AVANCE AV 400 instruments and all NMR experiments were reported in units, parts per million (ppm), using residual solvent peaks $\left(\mathrm{CDCl}_{3}(\delta=7.26 \mathrm{ppm})\right.$ or $\mathrm{CD}_{3} \mathrm{OD}(\delta=3.31 \mathrm{ppm})$ for ${ }^{1} \mathrm{H} \mathrm{NMR}$, chloroform $(\delta=$ $77.16 \mathrm{ppm}) \mathrm{CD}_{3} \mathrm{OD}(\delta=49.00 \mathrm{ppm})$ for ${ }^{13} \mathrm{C}$ NMR $)$ as internal reference. Multiplicities are recorded as: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{m}=$ multiplet. HRMS were obtained on Varian 7.0T FTMS instrument. UV-vis data were recorded on a HITACHI U-3900 spectrophotometer.

All reactions were carried out in a 4 mL glass vial (Thermo SCIENTIFIC National B7999-2, made from superior quality 33 expansion borosilicate clear glass), sealed with PTEF cap on bench top.

Lights: PHILIPS TORNADO 25W CFL, Cnlight 220V/25W UV (254nm), Cnlight 220V/25W UV (365nm), Cnlight LED lights 25 W (red LED, yellow LED, green LED, blue LED, purple LED, white LED) were used in the perfluoroalkylation reactions

3. Synthesis of substrates

1

7-1

8-1

21-1

20-1

4-1

5-1

9-1

22-1

19-1

25-1

28-1

29-1

30-1

27-1

35-1

36-1

34-1

26-1

37-1

Scheme S1. List of all substrates used in this study

Compounds 21-1, 24-1, 27-1, 28-1, 29-1, 30-1, 33-1, and 34-1 were commercial available and used as received. Compounds $\mathbf{1}^{1}, \mathbf{4 - 1}{ }^{1}, \mathbf{5 - 1} \mathbf{1}^{1}, \mathbf{6 - 1}{ }^{1}, \mathbf{7 - 1} \mathbf{1}^{2}, \mathbf{8 - 1} \mathbf{1}^{3}, \mathbf{9 - 1}^{3}, \mathbf{1 9 - 1}{ }^{4}$, $\mathbf{2 0 - 1}{ }^{6}, \mathbf{2 5 - 1} \mathbf{1}^{7}, \mathbf{2 6 - 1} \mathbf{1}^{5}$ and $\mathbf{3 6 - 1}{ }^{8}$ were known compounds and were synthesized following the reported procedures. Compounds 22-1, 23-1, 35-1, 37-1 were new compounds
3.1 General procedure for synthesis of 2-Isocyanobiaryl substrates ${ }^{1}$

Scheme S2

2-Bromoarylamine ($10.0 \mathrm{mmol}, 1.0$ equiv), aryl boronic acid ($12.0 \mathrm{mmol}, 1.2$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}\left(6.2 \mathrm{~g}, 45.0 \mathrm{mmol}, 4.5\right.$ equiv) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(140.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 0.02$ equiv) were added to a mixture of $\mathrm{EtOH}(20 \mathrm{~mL})$ and water $(20 \mathrm{~mL})$ at room temperature. The mixture was heated to reflux for 2 h under Ar. After been cooled to room temperature, the mixture was extracted with EtOAc. The combined organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by chromatography on silica gel (eluted with hexane/acetone (v/v 40:1)) to afford compound 1-1.

Scheme S3

Acetic formic anhydride ($18.0 \mathrm{mmol}, 6.0$ equiv), which was newly prepared from the reaction of acetic anhydride ($1.7 \mathrm{~mL}, 18.0 \mathrm{mmol}$) with formic acid ($0.8 \mathrm{~mL}, 20.0 \mathrm{mmol}$) at $55^{\circ} \mathrm{C}$ for 2 h , was added dropwise to a mixture of $\mathbf{1 - 1}(3.0 \mathrm{mmol}, 1.0$ equiv) in THF
$(6.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After the addition was completed, the mixture was warmed to room temperature and stirred for 3 h . Then, the reaction was quenched with Sat. NaHCO_{3} and extracted with EtOAc. The combined organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give compound 1-2. These compound were used for the subsequent dehydration reaction without further purification.

Scheme S4
POCl_{3} ($0.8 \mathrm{~mL}, 9.0 \mathrm{mmol}, 3.0$ equiv) was added via syring pump to a mixture of $\mathrm{Et}_{3} \mathrm{~N}$ ($3.8 \mathrm{~mL}, 27.0 \mathrm{mmol}, 9.0$ equiv) and $\mathbf{1 - 2}$ ($3.0 \mathrm{mmol}, 1.0$ equiv) in THF (6 mL) at $0^{\circ} \mathrm{C}$ within 2 hours. After the addition was completed, the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for another 2 hours. Then, the mixture was quenched with $\mathrm{Sat} . \mathrm{NaHCO}_{3}$ and extracted with CHCl_{3}. The combined organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by chromatography on silica gel (eluted with hexane/acetone (v/v 100:1)) to afford desired product.

Compound $\mathbf{1}(0.46 \mathrm{~g}, 85 \% \text { yield, } 3 \text { steps })^{1}, \mathbf{4 - 1}(0.50 \mathrm{~g}, 86 \% \text { yield, } 3 \text { steps })^{1}, \mathbf{5 - 1}(0.47$ g, $\mathbf{7 5 \%}$ yield, 3 steps $)^{1}, \mathbf{6 - 1}(0.50 \mathrm{~g}, 85 \% \text { yield, } 3 \text { steps })^{1}$, and $\mathbf{7 - 1}(0.48 \mathrm{~g}, 88 \%$ yield, 3 steps) ${ }^{2}$ were synthesized following the above procedure and spectra data are consistent with those reported in literature.
3.2 Synthesis of compound $\mathbf{8 - 1}$ and $\mathbf{9 - 1}{ }^{3}$

Scheme S5

Indole ($702 \mathrm{mg}, 6.0 \mathrm{mmol}$, 1.2 equiv) or pyrrole ($403 \mathrm{mg}, 6.0 \mathrm{mmol}, 1.2$ equiv) was added to a mixture of $\mathrm{CuI}\left(95 \mathrm{mg}, 0.5 \mathrm{mmol}, 0.1\right.$ equiv), $\mathrm{K}_{3} \mathrm{PO}_{4}(2.3 \mathrm{~g}, 10.5 \mathrm{mmol}, 2.1$ equiv), 2-iodoaniline ($1.1 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv) and N, N-dimethylethane-1,2-diamine (DMEDA) ($88.1 \mathrm{mg}, 1.0 \mathrm{mmol}, 0.2$ equiv) in toluene (5 mL) at room temperature. The reaction tube was purged with Argon and sealed with PTFE cap. After been heated at $110{ }^{\circ} \mathrm{C}$ for 24 h , the mixture was cooled to room temperature, diluted with ethyl acetate (50 mL) and filtered through a plug of celite. The filtrate was concentrated in vacuo and the resulting residue was purified by silica gel column chromatography to give the 2-heteroaryl aniline, which was subsequently subjected to the next step.

Scheme S6

Acetic formic anhydride ($18.0 \mathrm{mmol}, 6.0$ equiv), which was newly prepared from the reaction of acetic anhydride ($1.7 \mathrm{~mL}, 18.0 \mathrm{mmol}$) with formic acid ($0.8 \mathrm{~mL}, 20.0 \mathrm{mmol}$) at $55^{\circ} \mathrm{C}$ for 2 h , was added dropwise to a mixture of $\mathbf{8 - 2}(475 \mathrm{mg}, 3.0 \mathrm{mmol}, 1.0$ equiv) or $\mathbf{9 - 2}$ ($625 \mathrm{mg}, 3.0 \mathrm{mmol}, 1.0$ equiv) in THF $(7 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After the addition was completed, the mixture was warmed to room temperature and stirred for 30 mins . Then, the volatiles were removed in vacuo to afford (2-heteroaryl)-formanilide quantitatively. This product was directly used for the subsequent dehydration reaction without further purification.

Scheme S7

POCl_{3} ($0.8 \mathrm{~mL}, 9.0 \mathrm{mmol}, 3.0$ equiv) was added via syring pump to a mixture of $\mathrm{Et}_{3} \mathrm{~N}$ ($3.8 \mathrm{~mL}, 27.0 \mathrm{mmol}, 9.0$ equiv) and (2-heteroaryl)-formanilide ($3.0 \mathrm{mmol}, 1.0$ equiv) in THF (6 mL) at $0{ }^{\circ} \mathrm{C}$ within 2 hour. After the addition was completed, the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for another 2 hour. Then, the mixture was quenched with Sat. NaHCO_{3} and extracted with ethyl acetate ($10 \mathrm{~mL} x 3$). The combined organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by chromatography on silica gel (eluted with hexane/acetone (v / v 100:1)) to give compound $\mathbf{8 - 1}(0.40 \mathrm{~g}, 78 \% \text { yield, } 3 \text { steps })^{3}$ and $\mathbf{9 - 1}(0.52 \mathrm{~g}, 80 \%$ yield, 3 steps $)^{3}$. The spectra data are consistent with those reported in literature.

3.3 Synthesis of compound 19-1 and 26-1

Scheme S8

$\mathrm{SOCl}_{2}(2.3 \mathrm{~mL}, 32.0 \mathrm{mmol}, 1.3$ equiv) was added dropwise to a solution of 4chlorobenzoic acid ($3.9 \mathrm{~g}, 25.0 \mathrm{mmol}$, 1.0 equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL}$) at room temperature. The mixture was stirred for 7 h under N_{2}. DCM and excess of SOCl_{2} were then removed under reduced pressure. The crude acyl chloride was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL), and 4-pentenol ($3.2 \mathrm{~g}, 37.5 \mathrm{mmol}, 1.5$ equiv), TEA ($4.9 \mathrm{~mL}, 37.5 \mathrm{mmol}, 1.5$ equiv) were added to this solution at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 12 hour and then quenched with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was seperated, washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The resulting residue was purified by silica gel column chromatography (eluted with hexane) to afford compound $\mathbf{1 9 - 1}$ in 88% yield (4.93 g). The spectra data are consistent with those reported in literature. ${ }^{4}$

Scheme S9

To a solution of 4-chlorobenzoic acid ($3.9 \mathrm{~g}, 25.0 \mathrm{mmol}$, 1.0 equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL) was added SOCl_{2} ($2.3 \mathrm{~mL}, 32.0 \mathrm{mmol}, 1.3$ equiv). The mixture was stirred at room temperature for 7 h under N_{2}. DCM and excess of SOCl_{2} were then removed under reduced pressure. The crude acyl chloride was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, and 5-hexyn-1-ol ($3.7 \mathrm{~g}, 37.5 \mathrm{mmol}, 1.5$ equiv), TEA ($4.9 \mathrm{~mL}, 37.5 \mathrm{mmol}, 1.5$ equiv) were added to this solution at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 12 hour and then quenched with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The resulting residue was purified by silica gel column chromatography (eluted with hexane) to afford compound 26-1 in 90\% yield $(5.31 \mathrm{~g})$. The spectra data are consistent with those reported in literature. ${ }^{5}$

3.4 Synthesis of compound 20-1 and $\mathbf{2 5 - 1}$

Scheme S10

Potassium phthalimide ($3.9 \mathrm{~g}, 21.0 \mathrm{mmol}, 1.1$ equiv) was added to a solution of 6 bromohexene ($3.2 \mathrm{~g}, 19.6 \mathrm{mmol}, 1.0$ equiv) in anhydrous DMF (23 mL) at room temperature. The mixture was heated to $90{ }^{\circ} \mathrm{C}$ for 16 h . After been cooled to room temperature, the reaction mixture was poured into water (75 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic phase was washed with 100 mL of aq. KOH (0.2 M) and water. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The resulting residue was purified by silica gel column
chromatography (eluted with hexane/acetone (v/v 5:1)) to afford the compound $\mathbf{2 0 - 1}$ in 92% yield $(4.13 \mathrm{~g})$. The spectra data are consistent with those reported in literature. ${ }^{6}$

Scheme S11

Potassium phthalimide ($3.9 \mathrm{~g}, 21.0 \mathrm{mmol}, 1.1$ equiv) was added to a solution of 6-bromo-1-hexyne ($3.1 \mathrm{~g}, 19.6 \mathrm{mmol}, 1.0$ equiv) in anhydrous DMF (23 mL) at room temperature. The mixture was heated to $90^{\circ} \mathrm{C}$ for 16 h . After been cooled to room temperature, the reaction mixture was poured into water (75 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 50 \mathrm{~mL}$). The combined organic phase was washed with 100 mL of aq. KOH $(0.2 \mathrm{M})$ and water. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The resulting residue was purified by silica gel column chromatography (eluted with hexane/acetone (v/v 5:1)) to afford compound 25-1 in 86\% yield $(3.83 \mathrm{~g})$. The spectra data are consistent with those reported in literature. ${ }^{7}$
3.5 Synthesis of compound 22-1 and 23-1

Scheme S12

A mixture of $p-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{OH}(0.5 \mathrm{~g}, 3.0 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{NaOEt}(0.3 \mathrm{~g}, 4.5 \mathrm{mmol}$, 1.5 equiv) in $\mathrm{EtOH}(4 \mathrm{~mL}$) was stirred at room temperature for 2 hour. Then 6bromohexene ($0.5 \mathrm{~g}, 3.3 \mathrm{mmol}, 1.1$ equiv) was added slowly. The resulting mixture was heated at reflux for 3 h . After been cooled to room temperature, the solvent was
removed under reduced pressure. The residue was dissolved in ethyl acetate and washed with water and brine. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (eluted with hexane) to afford compound $\mathbf{2 2 - 1}$ as a colorless oil in 60% yield $(0.46 \mathrm{~g}$, $\mathrm{R}_{f}=0.7$, hexane). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.83(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{dd}, J=17.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.92(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.85-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.52(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.28,138.52,132.28,116.35,114.93,112.68,68.07$, 33.51, 28.70, 25.36; HRMS Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrO}$ [M]: 254.0306, Found: 254.0302.

Scheme S13

A mixture of compound $\mathbf{2 3 - 2}$ ($0.8 \mathrm{~g}, 3.0 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{NaOEt}(0.3 \mathrm{~g}, 4.5 \mathrm{mmol}$, 1.5 equiv) in EtOH (4 mL) was stirred at room temperature for 2 hour. Then 6bromohexene ($0.5 \mathrm{~g}, 3.3 \mathrm{mmol}, 1.1$ equiv) was added to this solution. The resulting mixture was heated at reflux for 3 h . After been cooled to room temperature, the solvent was removed under reduced pressure. The residue was dissolved in ethyl acetate and washed with water and brine. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (eluted with hexane) to afford compound $\mathbf{2 3 - 1}$ as a white solid in 65% yield $\left(0.69 \mathrm{~g}, \mathrm{R}_{f}\right.$ $=0.3$, hexane). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=$ 8.6, 2.6 Hz, 1H), $6.65(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.89-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{dd}, J=17.1,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.98(\mathrm{dd}, J=10.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.00-2.80(\mathrm{~m}, 2 \mathrm{H})$, $2.51(\mathrm{dd}, J=18.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J=13.6,7.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.18-1.93 (m, 6H), 1.86-1.73 (m, 2H), 1.69-1.53 (m, 5H), 1.52-1.38 (m, 3H), $0.92(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 220.95,157.17,138.63,137.73,131.91,126.34$,
114.77, 114.58, 112.15, 67.70, 50.46, 48.06, 44.04, 38.45, 35.93, 33.51, 31.65, 29.72, 28.84, 26.64, 25.99, 25.41, 21.65, 13.92; HRMS Calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{2}$ [M]: 352.2402; Found: 352.2401.

3.6 Synthesis of peptides $\mathbf{3 5 - 1}$ and $\mathbf{3 6 - 1}$

Scheme S14

Compound 35-1 was prepared following the general amide coupling procedure: HATU ($3.8 \mathrm{~g}, 10.0 \mathrm{mmol}, 2.0$ equiv) were added to a solution of compound $\mathbf{3 5 - 2}(1.5 \mathrm{~g}, 5.0$ mmol, 1.0 equiv) and compound $\mathbf{3 5 - 3}$ ($1.8 \mathrm{~g}, 6.0 \mathrm{mmol}, 1.2$ equiv) in dry DCM (25 mL) at $0^{\circ} \mathrm{C}$. After 10 min , DIPEA ($4.1 \mathrm{~mL}, 25.0 \mathrm{mmol}, 5.0$ equiv) was added to the reaction mixture. The resulting solution was warmed to room temperature and stirred for 1 hour. Then the reaction mixture was washed with water and brine successively. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel flash chromatography (eluted with hexane/acetone (v/v 3:2)) to give the desired product $\mathbf{3 5 - 1}$ in 89% yield ($2.63 \mathrm{~g}, \mathrm{R}_{f}=0.2,20 \%$ acetone in hexane). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00$ (s, 1H), $6.51(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 1 \mathrm{H})$, $3.60(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=14.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=5.2$ $\mathrm{Hz}, 2 \mathrm{H}$), 1.43 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.53,171.06,155.46,137.45$, $136.34,135.32,131.19,127.38,123.45,122.24,119.70,118.83,111.38,110.14,92.57$, 80.24, 55.18, 53.00, 52.31, 38.67, 37.28, 30.97, 28.32, 28.20; HRMS Calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{IN}_{3} \mathrm{O}_{5} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]:$614.1122, Found: 614.1126.

Scheme S15

Compound 36-1 was prepared following the same amide coupling procedure as compound $\mathbf{3 5 - 1}$ in 87% yield (2.02 g). The spectra data are consistent with those reported in literature. ${ }^{8}$

3.7 Synthesis of compound $\mathbf{3 7 - 1}$

1. TFA/DCM (1:5), rt, 3 h
2. N-Boc-L-valine (1.2 equiv),

3. TFA/DCM (1:5), rt, 3 h

4. N-Boc-L-leucine (1.2 equiv),
37-3

37-1

Scheme S16

Compound $\mathbf{3 7 - 4}$ was synthesized by coupling $\mathbf{3 7 - 5}$ with N-Boc-L-glycine following the amide coupling procdure in 92% yield $(1.72 \mathrm{~g})$. The spectra data are consistent with those reported in literature. ${ }^{9}$

Trifluoroacetic acid (5.0 mL) was added to a solution of cmpound $\mathbf{3 7 - 4}(1.9 \mathrm{~g}, 5.0 \mathrm{mmol}$, 1.0 equiv) in dry dichloromethane (25 mL). The mixture was stirred for 3 hour at room temperature. Then the solvent was removed under reduced pressure and the residue was treated with N-Boc-L-valine ($1.3 \mathrm{~g}, 6.0 \mathrm{mmol}, 1.2$ equiv), HATU ($3.8 \mathrm{~g}, 10.0 \mathrm{mmol}, 2.0$ equiv) and DIPEA ($4.1 \mathrm{~mL}, 25.0 \mathrm{mmol}, 5.0$ equiv) following the general amide coupling procedure to give $\mathbf{3 7 - 3}\left(\mathrm{R}_{f}=0.4,60 \%\right.$ acetone in hexane) in 87% yield (2.06 g). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.09(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-6.98(\mathrm{~m}, 4 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=5.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.07-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=16.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.38-3.13(\mathrm{~m}$, $2 \mathrm{H}), 1.98(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.28(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.57,172.29,168.92$, $156.30,136.28,127.31,123.84,121.99,119.37,118.35,111.63,108.99,80.16,59.73$, 52.48, 52.32, 42.88, 38.66, 31.23, 28.42, 27.33, 26.97, 19.33, 17.50; HRMS Calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 497.2371; Found: 497.2373.

Trifluoroacetic acid (5 mL) was added to a solution of cmpound $\mathbf{3 7 - 3}$ ($2.06 \mathrm{~g}, 4.3 \mathrm{mmol}$,
1.0 equiv) in dry dichloromethane (25 mL). The mixture was stirred for 3 hour at room temperature. Then the solvent was removed under reduced pressure and the residue was treated with N-Boc-L-leucine ($1.2 \mathrm{~g}, 5.2 \mathrm{mmol}, 1.2$ equiv), HATU ($3.3 \mathrm{~g}, 8.6 \mathrm{mmol}, 2.0$ equiv) and DIPEA ($3.5 \mathrm{~mL}, 21.5 \mathrm{mmol}, 5.0$ equiv) following the general amide coupling procedure to give $\mathbf{3 7 - 2}\left(\mathrm{R}_{f}=0.4,5 \% \mathrm{CH}_{3} \mathrm{OH}\right.$ in DCM$)$ in 84% yield (2.12 g). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.48(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.06$ $(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.09(\mathrm{q}, J=9.8,1 \mathrm{H}), 3.85(\mathrm{q}, J=16.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.30-3.28(\mathrm{~m}$, $1 \mathrm{H}), 3.28-3.16(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~s}$, $10 \mathrm{H}), 1.26(\mathrm{~s}, 1 \mathrm{H}), 1.00-0.76(\mathrm{~m}, 14 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz , MeOD) $\delta 174.43,172.55$, $172.36,169.71,156.68,136.57,127.29,123.23,121.08,118.50,117.74,111.01,109.07$, $79.32,58.76,54.40,53.41,53.14,51.38,41.88,40.28,30.60,27.36,27.09,24.48,22.15$, 20.48, 18.38, 17.31, 17.18, 15.86; HRMS Calcd for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{6}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 587.3319$; Found: 587.3320.

37-1
Trifluoroacetic acid (5.0 mL) was added to a solution of cmpound $\mathbf{3 7 - 2}(2.12 \mathrm{~g}, 3.6$ mmol, 1.0 equiv) in dry dichloromethane (25 mL). The mixture was stirred for 3 h at room temperature. Then the solvent was removed under reduced pressure and the residue was treated with N-Boc-L-isoleucine ($1.0 \mathrm{~g}, 4.3 \mathrm{mmol}$, 1.2 equiv), HATU (2.7 $\mathrm{g}, 7.2 \mathrm{mmol}, 2.0$ equiv) and DIPEA ($3.0 \mathrm{~mL}, 18.0 \mathrm{mmol}, 5.0$ equiv) following the general amide coupling procedure to give $\mathbf{3 7 - 1}\left(\mathrm{R}_{f}=0.4,5 \% \mathrm{CH}_{3} \mathrm{OH}\right.$ in DCM$)$ in 81% yield (2.04 g). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.47(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, 2 \mathrm{H}), 6.98(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~m}, 1 \mathrm{H})$, $4.21(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H})$, $3.29(\mathrm{~s}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{q}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.79-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.46(\mathrm{~m}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 10 \mathrm{H}), 1.26(\mathrm{~s}, 1 \mathrm{H}), 1.17-$
$1.04(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz, MeOD) $\delta 174.46,174.37,173.87$, $173.69,170.94,157.78,137.88,128.65,124.55,122.38,119.81,119.06,112.33,110.38$, $80.39,60.44,60.32,55.73,54.81,52.76,52.68,43.25,41.80,38.04,31.86,28.73,28.52$, 25.87, 25.66, 23.52, 22.17, 19.74, 18.96, 17.20, 16.09, 11.39; HRMS Calcd for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{6}\left[\mathrm{M}+\mathrm{H}^{+}\right]:$701.4232; Found: 701.4235.

4. Evaluation of synthesis phenanthridine 3 from 2-isocyanobiphenyl and $\mathrm{C}_{4} \mathrm{~F}_{9}$-I via a radical cascade process

All screening reactions were carried out at a 0.2 mmol scale in a 4 mL glass vial (Thermo Scientific, National B7999-2) sealed with PTEF cap and stirred on bench top. 2-Isocyanobiphenyl 1, $\mathrm{C}_{4} \mathrm{~F}_{9} \mathrm{I}$ and other specified reagents were dispersed in 2 mL of solvent and the resulting mixture was purged with Ar (if necessary) and vigorously stirred at specified temperature under light irradiation (laid 10 CM away from the vial, if necessary) for 20 hour. The solvent of the reaction mixture was removed under reduced pressure. The resulting residue was dissolved in 1 mL of CDCl_{3} along with $\mathrm{Cl}_{2} \mathrm{CHCHCl}_{2}(20 \mu \mathrm{~L})$ as an external standard for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis. The composition of reaction mixture was based on the $\mathrm{Ar}-\mathrm{H}$ at $8.73 \mathrm{ppm}(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$ for compound 3 .

Table S1. Perfluoroalkylation reaction of 2-isocyanobiphenyl 1 with perfluorobutyl iodide 2

3	no additives, Ar^{c}	dioxane	100	20	<2
4	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1.5), Ar^{c}	dioxane	30	20	<2
5	no additives, $\mathrm{CFL}, \mathrm{Ar}$	dioxane	30	20	5
6	no additives, $\mathrm{CFL}, \mathrm{Ar}$	THF	30	20	10
7	no additives, $\mathrm{CFL}, \mathrm{Ar}$	THP	30	20	7
8	no additives, CFL, Ar	DCM	30	20	4
9	no additives, $\mathrm{CFL}, \mathrm{Ar}$	CHCl_{3}	30	20	5
10	no additives, $\mathrm{CFL}, \mathrm{Ar}$	$\mathrm{CH}_{3} \mathrm{CN}$	30	20	<2
11	no additives, $\mathrm{CFL}, \mathrm{Ar}$	DMF	30	20	<2
12	no additives, in dark, Ar	THF	30	20	<2
13	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1.5), $\mathrm{CFL}, \mathrm{Ar}$	THF	30	20	29
14	$\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.5), CFL, Ar	THF	30	20	10
15	$\mathrm{Na}_{2} \mathrm{CO}_{3}$ (1.5), CFL, Ar	THF	30	20	7
16	NaOMe (1.5), CFL, Ar	THF	30	20	4
17	KOt-Bu (1.5), CFL, Ar	THF	30	20	20
18	$\mathrm{Et}_{3} \mathrm{~N}$ (1.5), CFL, Ar	THF	30	20	64
19	$\mathrm{Et}_{3} \mathrm{~N}$ (1.5), UV-Hg (254nm), Ar	THF	30	20	73
20	$\mathrm{Et}_{3} \mathrm{~N}$ (1.5), sunlight (direct irradiation), Ar	THF	30	4	76
21	UV-Hg (254nm), no Et ${ }_{3} \mathrm{~N}, \mathrm{Ar}$	THF	30	20	15
22	$\mathrm{Et}_{3} \mathrm{~N}$ (1.5), CFL, Ar	THP	30	20	57
23	$\mathrm{Et}_{3} \mathrm{~N}$ (1.5), CFL, Ar	2-MeTHF	30	20	52
24	$\mathrm{Et}_{3} \mathrm{~N}$ (1.5), CFL, Ar	$\mathrm{Et}_{2} \mathrm{O}$	30	20	28
25	$\mathrm{Et}_{3} \mathrm{~N}$ (1.5), CFL, Ar	MTBE	30	20	40
26	$\mathrm{Et}_{3} \mathrm{~N}$ (1.5), CFL, Ar	dioxane	30	20	38
27	$\mathrm{Et}_{3} \mathrm{~N}$ (1.5), CFL, Ar	CHCl_{3}	30	20	30
28	$\mathrm{Et}_{3} \mathrm{~N}$ (1.5), CFL, Ar	$\mathrm{CH}_{3} \mathrm{CN}$	30	20	46
29	$\mathrm{Et}_{3} \mathrm{~N}$ (1.5), CFL, Ar	$\mathrm{H}_{2} \mathrm{O}$	30	20	20
30	$\mathrm{Et}_{3} \mathrm{~N}$ (0.2), CFL, Ar	THF	30	20	16
31	$\mathrm{Et}_{3} \mathrm{~N}$ (0.2), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.5), CFL, Ar	THF	30	20	32
32	$\mathrm{Et}_{3} \mathrm{~N}$ (1.5), in dark, Ar	THF	30	20	<2
33	$\mathrm{Et}_{3} \mathrm{~N}$ (1.5), CFL, O_{2} (1 atm)	THF	30	20	4
34	$\mathrm{Et}_{3} \mathrm{~N}$ (1.5), CFL, air	THF	30	20	32
35	$\mathrm{I}_{2}(0.1), \mathrm{CFL}, \mathrm{Ar}$	THF	30	20	<2
36	I_{2} (0.1), CFL, Ar	DCM	30	20	<2

a) CFL: household compact fluorescent lamp, 25 W ; UV (254 nm): low-pressure Hg-vapor lamp, 25 W ; b) Yield are based on ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of crude reaction mixture on a 0.2 mmol scale; c) Conducted in the presence of ambient laboratory light.

5. Evaluation of amine promoters for synthesis of $\mathbf{3}$ under CFL irradiation

2-Isocyanobiphenyl 1 ($36 \mathrm{mg}, 0.2 \mathrm{~mol}, 1.0$ equiv), $\mathrm{C}_{4} \mathrm{~F}_{9} \mathrm{I}$ ($208 \mathrm{mg}, 0.6 \mathrm{~mol}, 3.0$ equiv) and the specific amine ($0.3 \mathrm{~mol}, 1.5$ equiv) were dispersed in 2 mL of solvent. The
reaction vial was then purged with Ar for 1 min, sealed with PTEF cap. The reaction mixture was vigorously stirred at $30^{\circ} \mathrm{C}$ under CFL (25W, laid 10 CM away from the vial) irradiation for 36 hour. Then THF was removed under reduced pressure. The resulting residue was dissolved in 1 mL of CDCl_{3} along with $\mathrm{Cl}_{2} \mathrm{CHCHCl}_{2}(20 \mu \mathrm{~L})$ as an external standard for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis. The composition of reaction mixture was based on the $\mathrm{Ar}-\mathrm{H}$ at $8.73 \mathrm{ppm}(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$ for compound 3 .

CFL: 25 W; UV (254 nm): low-pressure Hg-vapor lamp, 25 W ; sunlight: direct irradiation for 4 h. Yields are based on ${ }^{1} \mathrm{H}$-NMR analysis of crude reaction mixture on a 0.2 mmol scale performed
in 4 mL borosilicate glass vial under Ar. a) Isolated yield on 0.2 mmol scale. b) Isolated yield on 1 mmol scale.

Scheme S17

Procedure of phenanthridine synthesis in sunlight: 2-Isocyanobiphenyl 1 ($36 \mathrm{mg}, 0.2$ mol, 1.0 equiv), $\mathrm{C}_{4} \mathrm{~F}_{9} \mathrm{I}\left(208 \mathrm{mg}, \quad 0.6 \mathrm{~mol}, 3.0\right.$ equiv) and $N, N, N^{\prime}, N^{\prime}-$ Tetraethylenediamine (TEEDA) ($52 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv) were dispersed in 2 mL of THF. The reaction vial was then purged with Ar for 1 min and sealed with PTEF cap. The reaction mixture was vigorously stirred at $30^{\circ} \mathrm{C}$ in sunlight for 4 hour. Then THF was removed under reduced pressure. The resulting residue was dissolved in 1 mL of CDCl_{3} along with $\mathrm{Cl}_{2} \mathrm{CHCHCl}_{2}(20 \mu \mathrm{~L})$ as an external standard for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis.

6. General procedures and substrate scope of phenanthridine synthesis

Scheme S18

General procedure A for the synthesis of compound 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 and 15:

2-Isocyanobiaryl compound ($0.2 \mathrm{mmol}, 1.0$ equiv), perfluoroalkyl iodide (0.6 mmol , 3.0 equiv) and $N, N, N^{\prime}, N^{\prime}$-Tetraethylenediamine (TEEDA) ($0.3 \mathrm{mmol}, 1.5$ equiv) were dispersed in 2 mL of THF. The reaction vial was then purged with Ar for 1 min and sealed with PTEF cap. The reaction mixture was vigorously stirred at $30^{\circ} \mathrm{C}$ under irradiation of CFL lamp (25W, laid 10 CM away from the vial) for 36 hour. Then the mixture was concentrated in vacuo, and the residue was purified by silica gel flash chromatography to give the desired product.

General procedure B for the synthesis of compound 16, 17and 18:
2-Isocyanobiaryl compound ($0.2 \mathrm{mmol}, 1.0$ equiv), alkyl bromide ($1.0 \mathrm{mmol}, 5.0$ equiv) and $N, N, N^{\prime}, N^{\prime}$-Tetraethylenediamine (TEEDA) ($0.6 \mathrm{mmol}, 3.0$ equiv) were dispersed in 2 mL of THF. The reaction vial was then purged with Ar for 1 min and sealed with

PTEF cap. The reaction mixture was vigorously stirred at $30^{\circ} \mathrm{C}$ under irradiation of CFL lamp (25W, laid 10 CM away from the vial) for 36 h . Then the mixture was concentrated in vacuo, and the residue was purified by silica gel flash chromatography to give the desired product.

3

$$
\mathrm{R}_{f}=0.5,1 \% \text { acetone in Hexane }
$$

Compound $\mathbf{3}$ was isolated in 91% yield (72 mg) following the general procedure $\mathbf{A} \cdot{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.67-8.58(\mathrm{~m}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.33-8.23(\mathrm{~m}, 1 \mathrm{H}), 7.93(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.72(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.79(\mathrm{t}, J=24.1 \mathrm{~Hz}), 141.87,134.13,131.34,131.32,129.54$, 129.44, 128.13, 126.36-126.22(m), 124.95, 123.08, 122.75, 122.16, 120-100 (m); ${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.97(\mathrm{t}, J=10.6 \mathrm{~Hz}, 3 \mathrm{~F}),-103.16-106.93(\mathrm{~m}, 2 \mathrm{~F}),-$ 118.09 - -121.23 (m, 2F), -122.18--125.63 (m, 2F); HRMS Calcd for $\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{~F}_{9} \mathrm{~N}$ $\left[\mathrm{M}+\mathrm{H}^{+}\right]: 398.0586$; Found: 398.0588.

$$
\mathrm{R}_{f}=0.5,1 \% \text { acetone in Hexane }
$$

Compound $\mathbf{4}$ was isolated in 85% yield (70 mg) following the general procedure $\mathbf{A} \cdot{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.39$ (s, $1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63$ (dd, $J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.72(\mathrm{t}, J=$ $24.6 \mathrm{~Hz}), 140.24,139.88,133.77,131.19,131.00,127.93,126.23-126.09$ (m), 124.80, 123.16, 122.67, 121.69, 120-100 (m), 22.32; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.98(\mathrm{t}$, $J=10.6 \mathrm{~Hz}, 3 \mathrm{~F}),-102.98--107.39(\mathrm{~m}, 2 \mathrm{~F}),-118.41--121.54(\mathrm{~m}, 2 \mathrm{~F}),-122.31-\mathrm{-}$ 125.62 (m, 2F); HRMS Calcd for $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~F} 9 \mathrm{~N}$ [M+H ${ }^{+}$: 412.0742; Found: 412.0745 .

$\mathrm{R}_{f}=0.6,1 \%$ acetone in Hexane

Compound $\mathbf{5}$ was isolated in 71% yield (61 mg) following the general procedure $\mathbf{A} \cdot{ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta 8.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.75(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=9.0,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.41,143.91(\mathrm{t}, J=24.9 \mathrm{~Hz}$), 137.20, 133.35, 132.78, 130.68, 128.11, 126.35, 126.16-126.03 (m), 123.23, 122.64, $120-100(\mathrm{~m}), 119.61,102.60,55.76 ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.98(\mathrm{t}, J=10.6$ $\mathrm{Hz}, 3 \mathrm{~F}),-113.62-\mathrm{-106.12}$ (m, 2F), -118.72--121.21 (m, 2F), -122.31--125.62 (m, 2F); HRMS Calcd for $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~F} 9 \mathrm{NO}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 428.0691; Found: 428.0692.

$\mathrm{R}_{f}=0.5,1 \%$ acetone in Hexane
Compound $\mathbf{6}$ was isolated in 94% yield (78 mg) following the general procedure $\mathbf{A} \cdot{ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$) $\delta 8.72(\mathrm{dd}, J=9.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.61-8.48(\mathrm{~m}, 1 \mathrm{H}), 8.32-8.21$ $(\mathrm{m}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{dd}, J=6.0,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{t}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.56(\mathrm{~d}, J=249.5 \mathrm{~Hz}), 145.91(\mathrm{t}, J=24.6 \mathrm{~Hz})$, 141.52, 131.40, 130.81, 129.97, 129.33, 125.25 (d, $J=8.8 \mathrm{~Hz}$), 124.49, 124.06 ($\mathrm{d}, J=$ $8.9 \mathrm{~Hz}), 121.85,120.90,120.66,120-100(\mathrm{~m}), 111.12(\mathrm{dt}, J=23.8,7.1 \mathrm{~Hz}) ;{ }^{19} \mathbf{F}$ NMR (376 MHz, CDCl_{3}) $\delta-80.97(\mathrm{t}, J=10.7 \mathrm{~Hz}, 3 \mathrm{~F}),-104.39-106.93(\mathrm{~m}, 2 \mathrm{~F}),-109.92(\mathrm{~s}$, 1F), -118.54--121.53 (m, 2F), -122.52--125.31 (m, 2F); HRMS Calcd for $\mathrm{C}_{17} \mathrm{H}_{8} \mathrm{~F}_{10} \mathrm{~N}$ $\left[\mathrm{M}+\mathrm{H}^{+}\right]: 416.0492$, Found: 416.0495.

$\mathrm{R}_{f}=0.4,1 \%$ acetone in Hexane
Compound $\mathbf{7}$ was isolated in 74% yield (59 mg) following the general procedure $\mathbf{A} \cdot{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.37(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.12(\mathrm{dd}, J=4.3,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.55(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.07-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.88$ (ddd, $J=8.4,7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{dd}, J=8.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right)$ $\delta 151.90, \delta 147.63(\mathrm{t}, \mathrm{J}=25.0 \mathrm{~Hz}), 141.46,138.30,136.75,135.06,131.84,129.80$, 125.73-125.55 (m), 125.20, 124.60, 124.42, 120-100 (m); ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.95(\mathrm{t}, J=10.4 \mathrm{~Hz}, 3 \mathrm{~F}),-103.44--107.07(\mathrm{~m}, 2 \mathrm{~F}),-117.91--121.22(\mathrm{~m}, 2 \mathrm{~F}),-$
122.63 - -125.32 (m, 2F); HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{~F}_{9} \mathrm{~N}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 399.0538, Found: 399.0536.

$8 \quad \mathrm{R}_{f}=0.3,1 \%$ acetone in Hexane
Compound $\mathbf{8}$ was isolated in 59% yield (46 mg) following the general procedure $\mathbf{A} \cdot{ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.09-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.90(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.03-6.93(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 142.74(\mathrm{t}, \mathrm{J}=26.2 \mathrm{~Hz}), 134.25,131.35,130.16,127.77$, 125.91, 122.86, $120-100(\mathrm{~m}), 115.50,115.09,113.90,108.88 ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-79.24-$ 82.55 (m, 3F), -111.80--114.94 (m, 2F), -120.59 - -122.95 (m, 2F), -124.20--126.72 (m, 2F); HRMS Calcd for $\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{~F}_{9} \mathrm{~N}_{2}$ [M+H $\left.{ }^{+}\right]$: 387.0538, Found: 387.0542.

$\mathrm{R}_{f}=0.4,1 \%$ acetone in Hexane
Compound $\mathbf{9}$ was isolated in 56% yield (49 mg) following the general procedure $\mathbf{A} \cdot{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{dd}$, $J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.40(\mathrm{t}, \mathrm{J}$ $=25.5 \mathrm{~Hz}$), 134.17, 132.70, 131.86, 131.17, 130.95, 129.21, 125.72, 125.47, 124.69, $123.50,123.43,120-100(\mathrm{~m}), 114.90,114.59,102.33 ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 78.78 - -82.87 (m, 3F), -111.17--114.63 (m, 2F), -119.64--122.95 (m, 2F), -123.59

- -127.19 (m, 2F); HRMS Calcd for $\mathrm{C}_{19} \mathrm{H}_{10} \mathrm{~F}_{9} \mathrm{~N}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 437.0695, Found: 437.0698.

10 $\mathrm{R}_{f}=0.5,1 \%$ acetone in Hexane
Compound $\mathbf{1 0}$ was isolated in 71% yield (49 mg) following the general procedure \mathbf{A}. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.72(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.67-8.57(\mathrm{~m}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.34-8.22(\mathrm{~m}, 1 \mathrm{H}), 7.92(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.70(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R}$ $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.67(\mathrm{t}, J=24.3 \mathrm{~Hz}), 141.94,134.15,131.38,131.32,129.53$,
129.44, 128.12, 126.42-126.43 (m), 124.96, 123.13, 122.75, 122.16, 120-100 (m); ${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-79.05(\mathrm{t}, J=10.2 \mathrm{~Hz}, 3 \mathrm{~F}),-104.57-107.21(\mathrm{~m}, 2 \mathrm{~F})$, 123.66 ($\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{~F}$); HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{~F}_{7} \mathrm{~N}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 348.0618$, Found: 348.0620 .

$\mathrm{R}_{f}=0.5,1 \%$ acetone in Hexane
Compound $\mathbf{1 1}$ was isolated in 93% yield $(92 \mathrm{mg})$ following the general procedure \mathbf{A}. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.66-8.58(\mathrm{~m}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.34-8.25(\mathrm{~m}, 1 \mathrm{H}), 7.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.70(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.77(\mathrm{t}, J=24.9 \mathrm{~Hz}), 141.89,134.09,131.32,131.25,129.49$, 129.40, 128.09, $126.28(\mathrm{t}, J=6.9 \mathrm{~Hz}), 124.91,123.13,122.69,122.10,120-100(\mathrm{~m}) ;$ ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.82(\mathrm{t}, J=11.6 \mathrm{~Hz}, 3 \mathrm{~F}),-103.30--106.62(\mathrm{~m}, 2 \mathrm{~F})$, -116.99--119.18 (m, 2F), -119.18--121.05 (m, 2F), -121.36--124.22 (m, 2F), -124.82--127.82 (m, 2F); HRMS Calcd for $\mathrm{C}_{19} \mathrm{H}_{9} \mathrm{~F}_{13} \mathrm{~N}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 498.0522, Found: 498.0526.

Compound $\mathbf{1 2}$ was isolated in 93% yield (111 mg) following the general procedure \mathbf{A}. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.66-8.58(\mathrm{~m}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.33-8.24(\mathrm{~m}, 1 \mathrm{H}), 7.92(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.70(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.80(\mathrm{t}, J=24.9 \mathrm{~Hz}), 141.90$, 134.11, 131.33, 131.25, 129.49, 129.40, 128.09, $126.29(\mathrm{t}, J=6.8 \mathrm{~Hz}), 124.92,123.15,122.69,122.11,120-100(\mathrm{~m}) ;$ ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.63-81.09(\mathrm{~m}, 3 \mathrm{~F}),-104.82--105.07(\mathrm{~m}, 2 \mathrm{~F}),-$ $118.50-119.29$ (m, 2F), -119.75 (s, 2F), -121.13--122.26 (m, 4F), -122.76 (s, 2F), -125.73--126.59 (m, 2F); HRMS Calcd for $\mathrm{C}_{21} \mathrm{H}_{9} \mathrm{~F}_{17} \mathrm{~N}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 598.0458$, Found: 598.0462.

13
$\mathrm{R}_{f}=0.7,1 \%$ acetone in Hexane
Compound $\mathbf{1 3}$ was isolated in 94% yield (131 mg) following the general procedure \mathbf{A}. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.72(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.66-8.54(\mathrm{~m}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.35-8.21(\mathrm{~m}, 1 \mathrm{H}), 7.91(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.65(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.81(\mathrm{t}, J=24.7 \mathrm{~Hz}), 141.90$, 134.10, 131.33, 131.23, 129.47, 129.38, 128.07, $126.29(\mathrm{t}, J=6.8 \mathrm{~Hz}), 124.91,123.15,122.68,122.09,120-100(\mathrm{~m}) ;$ ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.82(\mathrm{t}, J=10.6 \mathrm{~Hz}, 3 \mathrm{~F}),-104.63--105.33(\mathrm{~m}, 2 \mathrm{~F})$, -119.02 (s, 2F), -119.76 (s, 2F), -120.30 - -122.55 (m, 8F), -122.77 (s, 2F), -125.89 - 126.61 (m, 2F); HRMS Calcd for $\mathrm{C}_{23} \mathrm{H}_{9} \mathrm{~F}_{21} \mathrm{~N}\left[\mathrm{M}^{2} \mathrm{H}^{+}\right]:$698.0394, Found: 698.0395.

14

$$
\mathrm{R}_{f}=0.7,1 \% \text { acetone in Hexane }
$$

2-Isocyanobiphenyl $1 \quad\left(36 \mathrm{mg}, \quad 0.2 \mathrm{mmol}, \quad 1.0\right.$ equiv) and $N, N, N^{\prime}, N^{\prime}-$ Tetraethylenediamine (TEEDA) ($52 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv) were dispersed in 2 mL of THF. The reaction vial was then purged with $\mathrm{CF}_{3} \mathrm{I}$ for 5 min and sealed with PTEF cap. The reaction mixture was stirred at $30^{\circ} \mathrm{C}$ under irradiation of CFL lamp (25W, laid 10 CM away from the vial) for 36 h . Then the mixture was concentrated in vacuo, and the residue was purified by silica gel flash chromatography to give compound 14 in 66% yield (33 mg). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.60-8.52(\mathrm{~m}$, $1 \mathrm{H}), 8.42-8.33(\mathrm{~m}, 1 \mathrm{H}), 8.31-8.24(\mathrm{~m}, 1 \mathrm{H}), 7.89(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.68(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.61(\mathrm{q}, J=33.0 \mathrm{~Hz}), 141.84,134.05,131.48,131.21$, 129.44, 129.32, 128.16, 126.02 (q, $J=3.1 \mathrm{~Hz}$), 125.21, 123.44, 122.63, 122.17; ${ }^{19} \mathbf{F}$ NMR (376 MHz, CDCl_{3}) δ-63.44 (s, 3F); HRMS Calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{~N}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 248.0682, Found: 248.0685.

$\mathrm{R}_{f}=0.6,1 \%$ acetone in Hexane
Compound $\mathbf{1 5}$ was isolated in 80% yield (56 mg) following the general procedure \mathbf{A}.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.64-8.60(\mathrm{~m}, 2 \mathrm{H}), 8.29-8.14$ $(\mathrm{m}, 1 \mathrm{H}), 7.90(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.66(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $145.90(\mathrm{~d}, J=23.9 \mathrm{~Hz}), 141.71(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 134.25,131.22$, $131.15,129.31(\mathrm{~d}, J=$ $5.5 \mathrm{~Hz}), 128.05(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 126.60,126.39,124.39,124.25(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 122.78$, 122.07; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-72.48(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{~F}),-174.77--175.55$ (m, 1F); HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{~F}_{7} \mathrm{~N}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 348.0618$, Found: 348.0621.

16

$$
\mathrm{R}_{f}=0.6,1 \% \text { acetone in Hexane }
$$

Compound $\mathbf{1 6}$ was isolated in 66% yield (38 mg) following the general procedure \mathbf{B}. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.64-8.53(\mathrm{~m}, 2 \mathrm{H}), 8.14(\mathrm{dt}, J$ $=7.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.71(\mathrm{~m}, 3 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.19,141.88,134.07,131.43,131.20,129.18,129.11,128.08$, $126.41(\mathrm{t}, J=4.8 \mathrm{~Hz}), 125.04,122.69,122.43,122.19,53.622$; ${ }^{19}$ F NMR (376 MHz , CDCl_{3}) δ-98.55 (s, 2F); HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{NO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 288.0831, Found: 288.0835.

$$
\mathrm{R}_{f}=0.6 \text {, Hexane }
$$

Compound $\mathbf{1 7}$ was isolated in 71% yield (42 mg) following the general procedure \mathbf{B}. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.67(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.17$ $(\mathrm{dd}, J=8.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.55(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.88(\mathrm{~s}, 6 \mathrm{H}), 1.00(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 178.21, 161.34, 143.17, 133.61, 130.47, $129.83,128.59,126.96,126.16,124.41,123.91,122.95,121.88,100.07,61.12,50.05$, 26.70, 14.00; HRMS Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 294.1489, Found: 294.1490.

$\mathrm{R}_{f}=0.7$, Hexane

Compound $\mathbf{1 8}$ was isolated in 94% yield (53 mg) following the general procedure \mathbf{B}. ${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.65(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.22$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.59(\mathrm{~m}$, $3 \mathrm{H}), 4.75(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.05(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 173.83,159.64,143.60,133.33,130.44$, $130.27,128.68,127.48,126.92,125.68,124.72,123.80,122.76,121.94,61.06,45.67$, 16.55, 14.23; HRMS Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 280.1332 , Found: 280.1335.

1 mmol scale reaction of 2-Isocyanobiphenyl 1 with perfluorobutyl iodide 2.

Scheme S19

In a 40 mL borosilicate glass vial, 2-isocyanobiphenyl $\mathbf{1}(179 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv), perfluorobutyl iodide $2\left(1.04 \mathrm{~g}, 3.0 \mathrm{mmol}, 3.0\right.$ equiv) and $N, N, N^{\prime}, N^{\prime}-$ tetraethylenediamine (TEEDA) ($258 \mathrm{mg}, 1.5 \mathrm{mmol}, 1.5$ equiv) were dispersed in 10 mL of THF. The reaction vial was then purged with Ar for 1 min and sealed with PTEF cap. The reaction mixture was vigorously stirred at $30^{\circ} \mathrm{C}$ under irradiation of CFLlamp (25W, laid 10 CM away from the vial) and monitored by TLC analysis. After 36 hour, all the 2-Isocyanobiphenyl 1 was consumed. Then the mixture was concentrated in vacuo, and the residue was purified by silica gel flash chromatography to give compound $\mathbf{3}$ in 89% yield (353 mg).
7. General procedures and substrate scope for addition of perfluorobutyl iodide to
alkenes and alkynes alkenes and alkynes
7.1 General procedure and substrate scope for addition of perfluorobutyl iodide to alkenes

Scheme S20

General procedure \mathbf{C} for the synthesis of compound 19, 20, 21, 22, 23, and 24:

Alkene ($0.2 \mathrm{mmol}, 1.0$ equiv), perfluoroalkyl iodide ($1.0 \mathrm{mmol}, 5.0$ equiv) and $N, N, N^{\prime}, N^{\prime}$-tetraethylenediamine (TEEDA) ($0.6 \mathrm{mmol}, 3.0$ equiv) were dispersed in 2 mL of THF. The reaction vial was then purged with Ar for 1 min and sealed with PTEF cap. The reaction mixture was vigorously stirred at $30^{\circ} \mathrm{C}$ under irradiation of CFLlamp (25W, laid 10 CM away from the vial) for 36 h . Then the mixture was concentrated in vacuo, and the residue was purified by silica gel flash chromatography to give the desired product.

Compound $\mathbf{1 9}$ was isolated in 90% yield (103 mg) following the general procedure \mathbf{C} (89% yield (102 mg) was obtained under the irradiation of UV (254 nm) lamp for 20 hours; 74% yield (84 mg) was obtained after irradiated in sunlight for 4 hours). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.47-$ $4.29(\mathrm{~m}, 3 \mathrm{H}), 3.15-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.12-1.86(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 165.78, 139.67, 131.08, 128.91, 128.65, 63.93, 41.71 ($\mathrm{t}, J=21.1 \mathrm{~Hz}$), 36.91 (d, $J=2.9$ $\mathrm{Hz}), 29.05,19.52 ;{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-80.11--81.80(m, 3F), -109.86 - 112.76 (m, 1F), -113.86--116.17 (m, 1F), -124.42 (s, 2F), -125.83 (q, $J=15.8 \mathrm{~Hz}$, 2F); HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{ClF}_{9} \mathrm{IO}_{2} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 592.9397, Found: 592.9400.

Compound $\mathbf{2 0}$ was isolated in 86% yield (99 mg) following the general procedure \mathbf{C}. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.65(\mathrm{~m}, 2 \mathrm{H}), 4.39-4.18(\mathrm{~m}$,
$1 \mathrm{H}), 3.70(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.04-2.59(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.63(\mathrm{~m}, 5 \mathrm{H}), 1.54-1.36(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.53,134.10,132.23,123.38,41.72(\mathrm{t}, J=20.9 \mathrm{~Hz})$, 39.81, 37.66, 27.60, 27.09, 20.06; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-79.40--82.59(\mathrm{~m}$, 3F), -113.24--116.44 (m, 2F), -123.29--124.90 (m, 2F), -125.30--127.56 (m, 2F); HRMS Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~F}_{9} \mathrm{INO}_{2} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 597.9896, Found: 597.9902.

Compound 21 was isolated in 90% yield (89 mg) following the general procedure C. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.12(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.46-$ $4.38(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.25-3.11(\mathrm{~m}, 2 \mathrm{H}), 3.02-2.72(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz , CDCl_{3}) $\delta 158.95,130.79,130.18,114.12,100.13,55.37,46.37,20.29 ;{ }^{19}$ F NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-81.01 (s, 3F), -110.65--113.14 (m, 1F), -113.19--115.24 (m, 1F), 124.55 (s, 2F), -125.93 (s, 2F); HRMS Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~F} 9 \mathrm{IONa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 516.9681$, Found: 516.9680.

Compound 22 was isolated in 91% yield (109 mg) following the general procedure \mathbf{C}. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.38-$ $4.32(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.07-2.62(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.69(\mathrm{~m}, 5 \mathrm{H}), 1.68-1.56$ ($\mathrm{m}, 1 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.15,132.38,116.40,112.95,67.81,41.69$ $(\mathrm{t}, J=20.9 \mathrm{~Hz}), 40.06,28.23,26.52,20.34$; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-81.19(\mathrm{~s}$, 3F), -110.63--113.25 (m, 1F), -114.02--116.26 (m, 1F), -124.73 (s, 2F), -126.10 (q, $J=14.8 \mathrm{~Hz}, 2 \mathrm{~F})$; HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrF} 9 \mathrm{IONa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 622.9099$, Found: 622.9096.

23
$\mathrm{R}_{f}=0.7,1 \%$ acetone in Hexane

Compound $\mathbf{2 3}$ was isolated in 80% yield (112 mg) following the general procedure \mathbf{C}. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=8.5,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.65(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.22(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.03-2.69(\mathrm{~m}, 4 \mathrm{H})$, 2.56-2.36 (m, 2H), $2.25(\mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-1.69(\mathrm{~m}, 10 \mathrm{H}), 1.68-1.36(\mathrm{~m}, 6 \mathrm{H})$, 0.91 (s, 3H); ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 220.99,157.07,137.88,132.20,126.45$, $114.70,112.21,67.50,50.54,48.13,44.11,41.69(\mathrm{t}, J=20.8 \mathrm{~Hz}), 40.13,38.50,35.98$, 31.71, 29.77, 28.36, 26.68, 26.61, 26.05, 21.70, 20.35, 13.96; ${ }^{19}$ F NMR (376 MHz , CDCl_{3}) δ-80.82 (s, 3F), -109.99--112.70 (m, 1F), -113.59--116.17 (m, 1F), -124.36 (s, 2F), -125.71 (m, 2F); HRMS Calcd for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~F}_{9} \mathrm{IO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 699.1376$, Found: 699.1379.

24

$$
\mathrm{R}_{f}=0.7,5 \% \mathrm{CH}_{3} \mathrm{OH} \text { in } \mathrm{CH}_{2} \mathrm{Cl}_{2}
$$

Compound 24 was isolated in 70% yield (94 mg) following the general procedure \mathbf{C}. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.62(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ (d, $J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.32(\mathrm{~m}, 1 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 4.11-4.02(\mathrm{~m}, 1 \mathrm{H}), 4.01-3.90(\mathrm{~m}$, $3 \mathrm{H}), 3.59(\mathrm{~s}, 1 \mathrm{H}), 3.30-3.09(\mathrm{~m}, 2 \mathrm{H}), 3.08-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.59$ $(\mathrm{d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 2 \mathrm{H}), 1.88(\mathrm{~s}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 1 \mathrm{H}), 1.44-1.24(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 158.07,147.54,147.40,144.15,131.55,126.54,121.75$, 118.46, 101.38, 71.33, 61.94, 60.12, 56.00, 44.24, 43.11, 39.05 ($\mathrm{t}, J=20.8 \mathrm{~Hz}$), 27.51, 26.58, 24.16, 20.03; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.96(\mathrm{~s}, 3 \mathrm{~F}),-110.95-116.63$ (m, 2F), -123.23--125.12 (m, 2F), -125.28--126.74 (m, 2F); HRMS Calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~F}_{9} \mathrm{IN}_{2} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 671.0812$, Found: 671.0815.
7.2 General procedure and substrate scope for addition of perfluorobutyl iodide to alkynes

General procedure D for the synthesis of compound 25 and 26:

Alkynes ($0.2 \mathrm{mmol}, 1.0$ equiv), perfluoroalkyl iodide ($2.0 \mathrm{mmol}, 10.0$ equiv) and $N, N, N^{\prime}, N^{\prime}$-tetraethylenediamine (TEEDA) ($1.2 \mathrm{mmol}, 6.0$ equiv) were dispersed in 2 mL of THF. The reaction vial was purged with Ar for 1 min and then sealed with PTEF cap. The reaction mixture was vigorously stirred at $30^{\circ} \mathrm{C}$ under irradiation of CFL lamp (25W, laid 10 CM away from the vial) for 36 h . After that, the mixture was concentrated in vacuo, and the residue was purified by silica gel flash chromatography to give the desired product.

Compound $\mathbf{2 5}^{5}$ was isolated in $\mathbf{7 2 \%}$ yield (83 mg) following the general procedure \mathbf{D}. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.66(\mathrm{~m}, 2 \mathrm{H}), 6.33(\mathrm{t}, J=14.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.71(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.82-1.55(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}$ (376 MHz, CDCl3) $\delta-81.58$ (s, 3F), -106.10 (s, 2F), -124.75 (s, 2F), -126.39 (s, 2F); HRMS Calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~F}_{9} \mathrm{INO}_{2} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 595.9739, Found: 595.9846.

Compound 25', was isolated in 19% yield (17 mg) following the general procedure \mathbf{D}. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.90-7.80 (m, 2H), 7.76-7.67 (m, 2H), 6.41-6.34 (m, 0.7 H), 6.12-6.03 (m, 0.3 H), 5.75-5.37 (m, 1H), 3.80-3.57 (m, 2H), 2.43-2.12 (m, 2H), 1.78-1.61 (m, 2H), 1.54-1.46 (m, 2H); ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.54,144.84$, $142.60(\mathrm{t}, J=8.8 \mathrm{~Hz}), 134.09,132.26,123.38,117.45(\mathrm{t}, J=22.9 \mathrm{~Hz}), 116.69(\mathrm{t}, J=$ $23.4 \mathrm{~Hz}), 37.79,37.61,31.60,28.21,28.08,26.42,25.38 ;{ }^{19} \mathbf{F} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta-80.10--81.73(\mathrm{~m}, 3 \mathrm{~F}),-106.45--107.38(\mathrm{~m}, 0.6),-110.35-112.81(\mathrm{~m}, 1.4),-$
$123.25-125.04(\mathrm{~m}, 2 \mathrm{~F}),-124.99--126.54(\mathrm{~m}, 2 \mathrm{~F})$; HRMS Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~F}_{9} \mathrm{NO}_{2} \mathrm{Na}$ [M+Na $\left.{ }^{+}\right]: 470.0773$, Found: 470.0778.

Compound 26, ${ }^{5}$ was isolated in 61% yield (71 mg) following the general procedure \mathbf{D}.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.37$ $(\mathrm{t}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.87-1.70(\mathrm{~m}$, 4H); ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-77.39--83.32(\mathrm{~m}, 3 \mathrm{~F}),-102.67--107.14(\mathrm{~m}$, $2 \mathrm{~F}),-120.37--124.27(\mathrm{~m}, 2 \mathrm{~F}),-124.03--127.69(\mathrm{~m}, 2 \mathrm{~F})$.

$\mathrm{R}_{f}=0.7$, Hexane
Compound $\mathbf{2 6}{ }^{\prime \prime}{ }^{5}$ was isolated in 11% yield (13 mg) following the general procedure \mathbf{D}. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.29$ ($\mathrm{t}, J=13.0 \mathrm{~Hz}, 2 \mathrm{H}$), $4.34(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{~s}, 2 \mathrm{H}), 1.77(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{19}$ F NMR (376 MHz , CDCl_{3}) $\delta-80.46(\mathrm{~s}, 3 \mathrm{~F}),-108.33(\mathrm{~s}, 2 \mathrm{~F}),-123.34(\mathrm{~s}, 2 \mathrm{~F}),-125.29(\mathrm{~s}, 2 \mathrm{~F})$.

8. General procedure and substrate scope for C-H perfluorobutylation of electronrich arene and heteroarene

Scheme S22

General procedure \mathbf{E} for the synthesis of compound 27-37:
Electron-rich arene or heteroarene ($0.2 \mathrm{mmol}, 1.0$ equiv), perfluoroalkyl iodide (1.0 mmol, 5.0 equiv) and $N, N, N^{\prime}, N^{\prime}$-tetraethylenediamine (TEEDA) ($0.6 \mathrm{mmol}, 3.0$ equiv) were dispersed in 2 mL of THF. The reaction vial was purged with Ar for 1 min then sealed with PTEF cap. The reaction mixture was vigorously stirred at $30^{\circ} \mathrm{C}$ under
irradiation of CFL lamp (25W, laid 10 CM away from the vial) for 36 h . After that, the mixture was concentrated in vacuo, and the residue was purified by silica gel flash chromatography to give the desired product.

27

$$
\mathrm{R}_{f}=0.4, \text { Hexane }
$$

Compound 27 was isolated in 56% yield (43 mg ; and 32% of starting material $\mathbf{2 7 - 1}$ was recovered) following the general procedure $\mathbf{E} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.14$ (s, $2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.98$, $161.88(\mathrm{t}, J=$ $2.2 \mathrm{~Hz}), 98.60(\mathrm{t}, \mathrm{J}=21.8 \mathrm{~Hz}), 91.79,56.44,55.47$; ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 80.67 (t, $J=11.6 \mathrm{~Hz}, 3 \mathrm{~F}),-101.07-104.45(\mathrm{~m}, 2 \mathrm{~F}),-122.76--123.27(\mathrm{q}, J=9.6 \mathrm{~Hz}$, 2F), -125.36 - -127.17 (m, 2F); HRMS Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~F}_{9} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 387.0637, Found: 387.0640.

$$
\mathrm{R}_{f}=0.8 \text {, Hexane }
$$

Compound 28 was isolated in 52% yield (67 mg ; and 34% of starting material $\mathbf{2 8 - 1}$ was recovered) following the general procedure $\mathbf{E} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $152.53,128.01(\mathrm{t}, J=6.3 \mathrm{~Hz}), 115.43,111.28,40.18 ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ -$80.06-81.37$ (m, 3F), -108.23--110.06 (m, 2F), -118.80--124.76 (m, 14F), -125.57 --127.21 (m, 2F); HRMS Calcd for $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~F}_{21} \mathrm{~N}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 640.0551, Found: 640.0557.

29

$$
\mathrm{R}_{f}=0.7, \text { Hexane }
$$

Compound 29 was isolated in 55% yield (54 mg ; and 40% of starting material $\mathbf{2 9 - 1}$ was recovered) following the general procedure $\mathbf{E} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.48,138.04,129.28,129.04,120.13(\mathrm{t}, J=29.9 \mathrm{~Hz})$,
115.67, 109.27, 94.26; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.73(\mathrm{t}, J=11.2 \mathrm{~Hz}, 3 \mathrm{~F}),-$ 99.87--101.89 (m, 2F), -121.16 (q, $J=9.5 \mathrm{~Hz}, 2 \mathrm{~F}),-124.11--127.25$ (m, 2F); HRMS Calcd for $\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{~F}_{9} \mathrm{IN}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 486.9479$, Found:486.9483.

$\mathrm{R}_{f}=0.4,2 \%$ acetone in Hexane
3-Methyl indole 30-1 ($0.2 \mathrm{mmol}, 1.0$ equiv) and $N, N, N^{\prime}, N^{\prime}$-tetraethylenediamine (TEEDA) ($0.6 \mathrm{mmol}, 3.0$ equiv) were dispersed in 2 mL of THF. The reaction vial was purged with $\mathrm{CF}_{3} \mathrm{I}$ for 5 min and then sealed with PTEF cap. The reaction mixture was stirred at $30^{\circ} \mathrm{C}$ under the irradiation of CFL lamp (25W, laid 10 CM away from the vial) for 36 h . After that, the mixture was concentrated in vacuo, and the residue was purified by silica gel flash chromatography to give compound $\mathbf{3 0}{ }^{10}$ in 66% yield (26 mg). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{19} \mathbf{F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-58.10(\mathrm{~s}, 3 \mathrm{~F})$.

$\mathrm{R}_{f}=0.4,2 \%$ acetone in Hexane
Compound $\mathbf{3 1}$ was isolated in 80% yield (56 mg) following the general procedure \mathbf{E}. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.07,128.46,125.09,120.52,120.22,119.54116 .86(\mathrm{t}, J=3.2 \mathrm{~Hz})$, 111.65, 8.71; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-77.96--83.88(\mathrm{~m}, 3 \mathrm{~F}),-106.64--111.68$ (m, 2F), -120.94--124.85 (m, 2F), -124.85--127.69 (m, 2F); HRMS Calcd for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{~F}_{9} \mathrm{~N}\left[\mathrm{M}-\mathrm{H}^{+}\right]: 348.0440$, Found: 348.0438.

$32 \quad \mathrm{R}_{f}=0.5,2 \%$ acetone in Hexane
Compound $\mathbf{3 2}$ was isolated in 91% yield (118 mg) following the general procedure \mathbf{E} (90% yield (117 mg) was obtained under the irradiation of UV lamp ($254 \mathrm{~nm}, 25 \mathrm{~W}$) for

36 hours; 68% yield (88 mg) was obtained after irradiated in sunlight for 4 hours). ${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.08,128.47,125.08,120.50,120.22,119.67(\mathrm{t}, J=28.4 \mathrm{~Hz}), 116.84$ (t, $J=3.3 \mathrm{H}$), 111.65, 8.65; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.42--81.05(\mathrm{~m}, 3 \mathrm{~F})$, 108.59 (s, 2F), -119.29--121.97 (m, 10F), -122.11 (m, 2F), -122.70 (m, 2F), -126.08 (m, 2F); HRMS Calcd for $\mathrm{C}_{19} \mathrm{H}_{7} \mathrm{~F}_{21} \mathrm{~N}\left[\mathrm{M}-\mathrm{H}^{+}\right]:$648.0248, Found: 648.0238 .

33' $\quad \mathrm{R}_{f}=0.4,2 \%$ acetone in Hexane
Compound 33-1 ($0.2 \mathrm{mmol}, 1.0$ equiv), perfluoroalkyl iodide 2 ($1.0 \mathrm{mmol}, 5.0$ equiv) and $N, N, N^{\prime}, N^{\prime}$-tetraethylenediamine (TEEDA) ($0.6 \mathrm{mmol}, 3.0$ equiv) were dispersed in 2 mL of THF. The reaction vial was purged with Ar for 1 min and then sealded with PTEF cap. The reaction mixture was stirred at $30^{\circ} \mathrm{C}$ under the irradiation of CFL lamp (25W, laid 10 CM away from the vial) for 36 h . After that, the mixture was concentrated in vacuo, and the residue was dissolved in actone (15 mL). $\mathrm{BnBr}(0.3 \mathrm{mmol}, 1.5$ equiv) was added, the resulting mixture was stirred at $30^{\circ} \mathrm{C}$ for another 12 hour. Then the mixture was concentrated in vacuo, and the residue purified by silica gel flash chromatography to give compound $\mathbf{3 3}^{\prime}$ in 67% yield (65 mg). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.48(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.27(\mathrm{~m}, 7 \mathrm{H}), 7.20(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 170.60, 136.07, 135.82, 128.61, 128.33, 128.24, 127.73, 125.37, 121.17, 120.47, 113.09, 111.88, 66.96, 30.16; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.10--80.89(\mathrm{~m}, 3 \mathrm{~F}),-106.79-108.95(\mathrm{~m}, 2 \mathrm{~F})$, -120.92--123.91 (m, 2F), -124.09--127.75 (m, 2F); HRMS Calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~F}_{9} \mathrm{~N}_{2} \mathrm{O}_{2}$ [M+NH4 ${ }^{+}$]: 501.1219, Found: 501.1216.

Compound 34-1 ($0.2 \mathrm{mmol}, 1.0$ equiv), perfluoroalkyl iodide 2 ($1.0 \mathrm{mmol}, 5.0$ equiv)
and $N, N, N^{\prime}, N^{\prime}$-tetraethylenediamine (TEEDA) ($0.6 \mathrm{mmol}, 3.0$ equiv) were dispersed in 2 mL of THF. The reaction vial was purged with Ar for 1 min and then sealded with PTEF cap. The reaction mixture was stirred at $30^{\circ} \mathrm{C}$ under the irradiation of CFL lamp (25W, laid 10 CM away from the vial) for 36 hour. After that, the mixture was concentrated in vacuo, and the residue was dissolved in THF (2 mL). $\mathrm{Boc}_{2} \mathrm{O}(2.0 \mathrm{mmol}$, 10.0 equiv), DIPEA ($0.4 \mathrm{mmol}, 2.0$ equiv) were added, and the resulting mixture was stirred at $30^{\circ} \mathrm{C}$ for another 12 hour. The reaction was quenched with 0.3 M HCl 20 mL and extracted with dichloromethane. Then organic phase was separated, washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by silica gel flash chromatography to give compound $\mathbf{3 4}^{\prime}$ in 65% yield (70 mg). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.68(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.67$ $(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.24(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz , CDCl_{3}) $\delta 172.60,155.12,136.27,129.69,127.66,125.31,121.03,120.47,115.47$, 111.91, 80.03, 54.26, 52.37, 29.35, 28.29, 28.03; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.67$ (t, $J=11.0 \mathrm{~Hz}, 3 \mathrm{~F}),-105.25-109.24(\mathrm{~m}, 2 \mathrm{~F}),-121.92-\mathrm{-} 123.14$ (m, 2F), -125.03-126.30 (m, 2F); HRMS Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~F}_{9} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}$ [M+Na ${ }^{+}$: 559.1250, Found: 559.1252

$\mathrm{R}_{f}=0.3,20 \%$ acetone in Hexane
Compound $\mathbf{3 5}$ was isolated in 68% yield (110 mg ; and 23% of starting material $\mathbf{3 5 - 1}$ was recovered) following the general procedure $\mathbf{E} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.51$ (s, 1H), 7.81 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.08(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{q}, J=12.2,1 \mathrm{H}), 4.50-4.30(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~d}$, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.06-2.83(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.98$,
$170.83,155.28,137.66,136.31,135.39,131.36,127.36,125.54,121.30,120.93$, $120.65,120.36,115.73,111.88,92.75,80.26,55.35,53.17,52.40,37.70,28.29 ;{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-79.81--81.92(\mathrm{~m}, 3 \mathrm{~F}),-105.42--109.99(\mathrm{~m}, 2 \mathrm{~F}),-122.70$ (d, $J=10.3 \mathrm{~Hz}, 2 \mathrm{~F}$), $-124.60-127.32(\mathrm{~m}, 2 \mathrm{~F}) ;$ HRMS Calcd for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{~F}_{9} \mathrm{IN}_{3} \mathrm{O}_{5} \mathrm{Na}$ $\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 832.0900$, Found: 832.0905.

$\mathrm{R}_{f}=0.3,20 \%$ acetone in Hexane
Compound $\mathbf{3 6}$ was isolated in 65% yield (89 mg ; and 20% of starting material $\mathbf{3 6 - 1}$ was recovered) following the general procedure $\mathbf{E} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.40$ (s, $1 \mathrm{H}), 7.79(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-$ $7.14(\mathrm{~m}, 4 \mathrm{H}), 6.98(\mathrm{~s}, 2 \mathrm{H}), 6.20(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{q}, J$ $=13.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.37-3.15(\mathrm{~m}, 2 \mathrm{H}), 3.07-$ $2.94(\mathrm{~m}, 2 \mathrm{H}), 2.81(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.24,170.89,165.95$, $155.22,136.58,135.74,129.33,128.54,127.37,127.15,125.16,120.94,120.45,115.38$, $112.05,80.09,55.45,53.37,52.20,38.66,38.18,28.16 ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.90(\mathrm{~s}, 3 \mathrm{~F}),-104.70-110.11(\mathrm{~m}, 2 \mathrm{~F}),-122.68(\mathrm{~s}, 2 \mathrm{~F}),-125.82(\mathrm{~s}, 2 \mathrm{~F}) ;$ HRMS Calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~F}_{9} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 706.1934, Found: 706.1938.

$$
\mathrm{R}_{f}=0.3,5 \% \mathrm{CH}_{3} \mathrm{OH} \text { in } \mathrm{DCM}
$$

Compound 37-1 (0.1 mmol , 1.0 equiv), $\mathrm{C}_{4} \mathrm{~F}_{9} \mathrm{I}\left(0.5 \mathrm{mmol}, 5.0\right.$ equiv) and $N, N, N^{\prime}, N^{\prime}-$ tetraethylenediamine (TEEDA) ($0.3 \mathrm{mmol}, 3.0$ equiv) were dispersed in 2 mL of THF. The reaction vial was purged with Ar for 1 min and the sealed with PTEF cap. The reaction mixture was stirred at $30^{\circ} \mathrm{C}$ under the irradiation of CFL lamp (25W, laid 10 CM away from the vial). After 12 hour, $\mathrm{C}_{4} \mathrm{~F}_{9} \mathrm{I}\left(0.5 \mathrm{mmol}, 5.0\right.$ equiv) and $N, N, N^{\prime}, N^{\prime}-$
tetraethylenediamine (TEEDA) ($0.3 \mathrm{mmol}, 3.0$ equiv) were added and the resulting mixture was stirred at $30^{\circ} \mathrm{C}$ under the irradiation of CFL lamp (25W, laid 10 CM away from the vial) for another 24 hour under Ar atmosphere. After that, the mixture was concentrated in vacuo, and the residue was purified by silica gel flash chromatography to give the compound 37 in 50% yield (46 mg ; and 35% of the starting material compound $\mathbf{3 7 - 1}$ was recovered). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.66(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.73(\mathrm{~m}, 3 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H})$, 3.42-3.31 (m, 2H), 2.09-1.97 (m, 1H), 1.78-1.48 (m, 5H), 1.40 (s, 9H), 1.18-1.08 (m, $1 \mathrm{H}), 0.97-0.78$ (m, 18H); ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}$) δ 174.56, 173.90, 173.33, $170.89,157.91,138.19,128.65,125.69,121.34,120.93,115.65,113.14,80.51,60.54$, 55.25, 52.87, 52.57, 43.20, 41.67, 38.07, 31.79, 28.70, 28.09, 25.89, 25.67, 23.46, 22.02, 19.71, 18.94, 16.06, 11.36; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ - 78.51 (s, 3F), -101.53 - 108.27 (m, 2F), -119.77 (s, 2F), -123.06 (s, 2F); HRMS Calcd for $\mathrm{C}_{40} \mathrm{H}_{55} \mathrm{~F}_{9} \mathrm{~N}_{6} \mathrm{O}_{8} \mathrm{Na}$ $\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 941.3830, Found: 941.3832.

9. Titration experiment of $\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}$ with TEEDA

${ }^{19} \mathrm{~F}$ NMR spectra of eight samples of mixtures of $\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}$ and TEEDA in CDCl_{3} were recorded at 298 K . The total volume of the mixture was 0.5 mL , the amount of $\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}$ was kept constant at $0.01 \mathrm{mmol}(6.5 \mathrm{mg})$ while that of TEEDA was varied from 0 to 0.1 mmol . The molar ratios of $\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}$:TEEDA were $1: 0,1: 1,1: 2,1: 3,1: 4,1: 5,1: 7$, 1:10. Fluorobenzene ($\delta_{\mathrm{F}-\mathrm{Ph}}=-113.066$) was used as internal standard. The ${ }^{19} \mathrm{~F}$ NMR signal of $-\mathrm{CF}_{2} \mathrm{I}$ shifted upfield when the amount of TEEDA increased, indicating the formation of halogen bond between $\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}$ and TEEDA (Figure S 1).

Figure S1. ${ }^{19} \mathrm{~F}$ NMR shift of $\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}$ with TEEDA

10. Determination of binding stoichiometry of halogen bond complex ${ }^{11}$

The binding stoichiometry between $\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}$ and halogen bond acceptors (XB acceptor: TEEDA, TEA, THF, dioxane) were evaluated using Job's plot analysis ${ }^{10}$: ${ }^{19} \mathrm{~F}$ NMR spectra of eleven samples of mixtures of $\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}$ and XB acceptor in CDCl_{3} were recorded at 298 K . Fluorobenzene $\left(\delta_{\mathrm{F}-\mathrm{Ph}}=-113.066\right)$ was used as internal standard. The total volume of the mixture was 0.5 mL , and the total amount of $\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}$ and halogen bond acceptor was kept constant at $0.25 \mathrm{mmol}(0.5 \mathrm{M})$, while the amount of $\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}$ was varied from 0 to $0.25 \mathrm{mmol}(0-0.5 \mathrm{M})$. The molar ratios of $\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I} /\left(\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}+\mathrm{XB}\right.$ acceptor) were $0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0 .{ }^{19} \mathrm{~F}$ NMR for each sample was recorded and the chemical shifts differences $(\Delta \delta)$ for $-\mathrm{CF}_{2} \mathrm{I}$ were used to draw the plot. The stoichiometry was determined by plotting ratios of $\left[\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}\right] \times \Delta \delta$ against ratios of $\left[\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}\right] /\left[\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}+\mathrm{XB}\right.$ acceptor $]$ to afford a maximum at
ratio $\left[\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}\right] /\left[\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}+\mathrm{XB}\right.$ acceptor $]=0.5$, which meant a 1:1 complex ratio between $\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}$ and XB acceptor.
10.1 Determination of binding stoichiometry of $\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}$ with TEEDA

	$\left[\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}\right](\mathrm{M})$	$\Delta \delta(\mathrm{ppm})$	$\left[\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}\right] /\left[\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}+\mathrm{TEEDA}\right]$	$\left[\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}\right] \times \Delta \delta(\mathrm{M} . \mathrm{ppm})$
1	0	0	0	0
2	0.05	4.117	0.1	0.2059
3	0.10	3.663	0.2	0.3663
4	0.15	3.215	0.3	0.4823
5	0.20	2.831	0.4	0.5662
6	0.25	2.144	0.5	0.5360
7	0.30	1.965	0.6	0.5895
8	0.35	1.384	0.7	0.4844
9	0.40	0.987	0.8	0.3948
10	0.45	0.458	0.9	0.2061
11	0.50	0	1.0	0

Figure $\mathbf{S} 2$

$$
\mathrm{y}=-0.0039+2.3239 \mathrm{x}-2.3135 \mathrm{x}^{2}, \mathrm{x}_{\max }=2.3239 /(-2 \times(-2.3135))=0.50
$$

10.2 Determination of binding stoichiometry of $\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}$ with TEA

	$\left[\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}\right](\mathrm{M})$	$\Delta \delta(\mathrm{ppm})$	$\left[\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}\right] /\left[\mathrm{C}_{10} \mathrm{~F}_{21 \mathrm{I}}+\mathrm{TEA}\right]$	$\left[\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}\right] \times \Delta \delta(\mathrm{M} \cdot \mathrm{ppm})$
1	0	0	0	0
2	0.05	4.006	0.1	0.2003
3	0.10	3.493	0.2	0.3493
4	0.15	2.851	0.3	0.4277
5	0.20	2.505	0.4	0.5010
6	0.25	2.261	0.5	0.5653
7	0.30	1.758	0.6	0.5274

8	0.35	1.393	0.7	0.4876
9	0.40	0.975	0.8	0.3900
10	0.45	0.335	0.9	0.1507
11	0.50	0	1.0	0

Figure S3

$$
y=-0.00872+2.22459 x-2.21822 x^{2}, x_{\max }=2.22459 /(-2 \times(-2.21822))=0.50
$$

10.3 Determination of binding stoichiometry of $\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}$ with THF

	$\left[\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}\right](\mathrm{M})$	$\Delta \delta(\mathrm{ppm})$	$\left[\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}\right] /\left[\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}+\mathrm{THF}\right]$	$\left[\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}\right] \times \Delta \delta(\mathrm{M} . \mathrm{ppm})$
1	0	0	0	0
2	0.05	0.430	0.1	0.0215
3	0.10	0.325	0.2	0.0325
4	0.15	0.282	0.3	0.0423
5	0.20	0.254	0.4	0.0508
6	0.25	0.196	0.5	0.0490
7	0.30	0.165	0.6	0.0495
8	0.35	0.132	0.7	0.0462
9	0.40	0.097	0.8	0.0388
10	0.45	0.020	0.9	0.0090
11	0.50	0	1.0	0

Figure $\mathbf{S 4}$

$$
\mathrm{y}=0.00031+0.20895 \mathrm{x}-0.21119 \mathrm{x}^{2}, \mathrm{x}_{\max }=0.20895 /(-2 \times(-0.21119))=0.50
$$

10.4 Determination of binding stoichiometry of $\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}$ with dioxane

	$\left[\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}\right](\mathrm{M})$	$\Delta \delta(\mathrm{ppm})$	$\left[\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}\right] /\left[\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}+\right.$ Dioxane $]$	$\left[\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}\right] \times \Delta \delta(\mathrm{M} . \mathrm{ppm})$
1	0	0	0	0
2	0.05	0.392	0.1	0.0196
3	0.10	0.327	0.2	0.0327
4	0.15	0.302	0.3	0.0453
5	0.20	0.255	0.4	0.0510
6	0.25	0.198	0.5	0.0495
7	0.30	0.173	0.6	0.0519
8	0.35	0.153	0.7	0.0535
9	0.40	0.090	0.8	0.0360
10	0.45	0.047	0.9	0.0211
11	0.50	0	1.0	0

Figure $\mathbf{S 5}$
$\mathrm{y}=0.00087+0.21731 \mathrm{x}-0.21427 \mathrm{x}^{2}, \mathrm{x}_{\max }=0.21731 /(-2 \times(-0.21427))=0.50$

11. Determination of the association constant $\left(K_{a}\right)$

The association constant (K_{a}) was calculated using Hanna and Ashbaugh's ${ }^{12-15}$ Graphical method: For ideal behaviour in an interaction between an halogen bond donor molecule $\mathbf{C}_{10} \mathbf{F}_{\mathbf{2}} \mathbf{I}$ and an lewis base molecule $\mathbf{L B}$ to form a halogen bond complex $\mathbf{X B}$, we may define an association constant \boldsymbol{K}, where

$$
\begin{equation*}
K=[\mathrm{XB}] /[\mathrm{LB}]\left[\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}\right] \tag{1}
\end{equation*}
$$

For 1:1 molecular complexes, when the concentration of lewis base molecule is in large excess we have

$$
\begin{equation*}
\delta_{\text {obs }-} \delta_{0}=\frac{[\mathrm{XB}]}{[\mathrm{XB}]+\left[\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}\right]}\left(\delta_{\mathrm{XB}}-\delta_{0}\right) \tag{2}
\end{equation*}
$$

where $\delta_{\text {obs }}$ is the observed fluorine chemical shift of the $-\mathrm{CF}_{2} \mathrm{I}$ group in the complexing medium, δ_{0} is the fluorine chemical shift of the $-\mathrm{CF}_{2} \mathrm{I}$ group in the uncomplexed state and δ_{XB} is the fluorine chemical shift of the $-\mathrm{CF}_{2} \mathrm{I}$ group in the pure complex. If $\Delta=\delta_{\text {obs }}$ $-\delta_{0}$ and $\Delta_{0}=\delta_{\mathrm{XB}}-\delta_{0}$, then substituting Eq. (1) into Eq. (2), we obtain Eq. (3) as follows:

$$
\begin{equation*}
\Delta=\frac{[\mathrm{LB}] K}{1+[\mathrm{LB}] K} \Delta_{0} \tag{3}
\end{equation*}
$$

This assumes that $\delta_{\text {obs }}$ is the result of molecular complexing between halogen bond donor molecule $\mathbf{C}_{\mathbf{1 0}} \mathbf{F}_{\mathbf{2}} \mathbf{I}$ and lewis base molecule $\mathbf{L B}$, and that there are no significant solvent effects on chemical shifts of the various species.

To obtain K from a series of measurements of Δ for various values of [LB], the Eq. (3) may be rewritten as:

$$
\begin{equation*}
\frac{1}{\Delta}=\frac{1}{K \Delta_{0}} \frac{1}{[\mathrm{LB}]}+\frac{1}{\Delta_{0}} \tag{4}
\end{equation*}
$$

Plots of $1 / \Delta$ against $1 /[\mathrm{LB}]$ should be a straight line, K may be obtained from the gradient using the value of $1 / \Delta_{0}$ from the intercept of the line with the ordinate:

$$
\begin{equation*}
K=\left(\frac{1}{\Delta_{0}}\right) /\left(\frac{1}{K \Delta_{0}}\right)=\text { intercept / gradient } \tag{5}
\end{equation*}
$$

11.1 Determination of the association constant of $\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}$ with TEEDA ($K_{\text {TEEDA }}$)
${ }^{19} \mathrm{~F}$ NMR spectra of ten samples of mixtures of $\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}$ and TEEDA in CDCl_{3} were recorded at 298 K (Fluorobenzene ($\delta_{\text {F-Ph }}=-113.066$) was used as internal standard). The total volume of the mixture was 0.6 mL , the amount of $\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}$ was kept constant at $0.03 \mathrm{mmol}(19.4 \mathrm{mg})$, while that of TEEDA was varied from 0.03 to $1.2 \mathrm{mmol} .{ }^{19} \mathrm{~F}$ NMR for each sample was recorded and the chemical shifts differences ($\Delta \delta$) for - $\mathrm{CF}_{2} \mathrm{I}$ were used to draw the plot.

	TEEDA (mol/L)	$\begin{aligned} & \frac{1}{[\text { TEEDA }]} \\ & (\mathrm{L} / \mathrm{mol}) \end{aligned}$	$\begin{gathered} \Delta \delta \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} 1 / \Delta \delta \\ \left(\mathrm{ppm}^{-1}\right) \end{gathered}$	TEEDA ($\mathrm{mol} / \mathrm{L}$)	$\begin{aligned} & \frac{1}{[\text { TEEDA] }} \\ & (\mathrm{L} / \mathrm{mol}) \end{aligned}$	$\Delta \delta$ (ppm)	$\begin{gathered} 1 / \Delta \delta \\ \left(\mathrm{ppm}^{-1}\right) \end{gathered}$	TEEDA (mol/L)	$\begin{aligned} & \frac{1}{[\text { TEEDA] }} \\ & (\mathrm{L} / \mathrm{mol}) \end{aligned}$	$\Delta \delta$ (ppm)	$1 / \Delta \delta$ (ppm^{-1})
1	2.00	0.5	8.006	0.1249	2.00	0.5	8.237	0.1214	2.00	0.5	8.264	0.1210
2	1.49	0.67	7.199	0.1389	1.43	0.7	7.278	0.1374	1.49	0.67	7.194	0.1390
3	1.00	1.0	5.865	0.1705	0.83	1.2	6.211	0.1610	1.00	1.0	5.682	0.1760
4	0.50	2.0	3.860	0.2591	0.59	1.7	4.950	0.2020	0.50	2.0	3.717	0.2690
5	0.34	2.9	2.849	0.3510	0.42	2.4	3.745	0.2670	0.34	2.9	2.667	0.3750
6	0.25	4.0	2.148	0.4655	0.21	4.8	2.123	0.4710	0.25	4	2.208	0.4529
7	0.20	5.0	1.888	0.5297	0.14	7.1	1.456	0.6868	0.21	4.8	1.706	0.5862
8	0.15	6.7	1.431	0.6988	0.10	10.0	1.170	0.8547	0.15	6.7	1.292	0.7740
9	0.10	10.0	1.094	0.9141	0.083	12.0	0.931	1.0741	0.10	10	0.866	1.1547
10	0.067	14.9	0.726	1.3774	0.064	15.6	0.769	1.3004	0.05	20	0.542	1.8450
	$\mathrm{K}_{\text {TEEDA }}=0.09324 / 0.08596=1.0847$				$\mathrm{K}_{\text {TEEDA }}=0.07945 / 0.08002=0.9929$				$\mathrm{K}_{\text {TEEDA }}=0.11151 / 0.09088=1.2270$			

Trial 1

Trial 2

Trial 3
Figure S6
The association constant of $\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}$ and TEEDA ($K_{\text {TEEDA }}$) was calculated (average of three experiments) to be $1.1\left(K_{\text {TEEDA }}=1.1 M^{-1}\right)$.

11.2 Determination of the association constant of $\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}$ and TEA ($K_{\text {TEA }}$)

${ }^{19} \mathrm{~F}$ NMR spectra of ten samples of mixtures of $\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}$ and TEA in CDCl_{3} were recorded at 298 K (Fluorobenzene ($\delta_{\text {F-Ph }}=-113.066$) was used as internal standard). The total volume of the mixture was 0.6 mL , the amount of $\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}$ was kept constant at $0.03 \mathrm{mmol}(19.4 \mathrm{mg})$, while that of TEA was varied from 0.036 to $1.2 \mathrm{mmol} .{ }^{19} \mathrm{~F}$ NMR for each sample was recorded and the chemical shifts differences $(\Delta \delta)$ for $-\mathrm{CF}_{2} \mathrm{I}$ were used to draw the plot.

	trial 1				trial 2				trial 3			
	$\begin{gathered} \text { TEA } \\ (\mathrm{mol} / \mathrm{L}) \end{gathered}$	$\begin{aligned} & \frac{1}{[\mathrm{TEA}]} \\ & (\mathrm{L} / \mathrm{mol}) \end{aligned}$	$\begin{gathered} \Delta \delta \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} 1 / \Delta \delta \\ \left(\mathrm{ppm}^{-1}\right) \end{gathered}$	TEA (mol/L)	$\begin{aligned} & \frac{1}{[\mathrm{TEA}]} \\ & (\mathrm{L} / \mathrm{mol}) \end{aligned}$	$\Delta \delta$ (ppm)	$\begin{gathered} 1 / \Delta \delta \\ \left(\mathrm{ppm}^{-1}\right) \end{gathered}$	$\begin{aligned} & \text { TEA } \\ & (\mathrm{mol} / \mathrm{L}) \end{aligned}$	$\begin{aligned} & \frac{1}{[\mathrm{TEA}]} \\ & (\mathrm{L} / \mathrm{mol}) \end{aligned}$	$\begin{gathered} \Delta \delta \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} 1 / \Delta \delta \\ \left(\mathrm{ppm}^{-1}\right) \end{gathered}$
1	2.00	0.5	9.225	0.1084	2.00	0.5	9.115	0.1097	2.00	0.5	9.311	0.1074
2	1.49	0.67	8.104	0.1234	1.00	1.0	6.493	0.1540	1.49	0.67	8.032	0.1245
3	0.83	1.2	6.215	0.1609	0.83	1.2	6.215	0.1609	1.0	1.0	6.510	0.1536
4	0.63	1.6	5.141	0.1945	0.63	1.6	5.141	0.1945	0.53	1.9	4.290	0.2331
5	0.38	2.6	3.439	0.2908	0.38	2.6	3.438	0.2909	0.34	2.9	2.946	0.3394
6	0.22	4.5	2.323	0.4305	0.22	4.5	2.321	0.4308	0.26	3.8	2.381	0.4200

7	0.15	6.7	1.409	0.7097	0.15	6.7	1.409	0.7097	0.21	4.8	2.036	0.4912
8	0.11	9.1	1.142	0.8757	0.11	9.1	1.141	0.8764	0.16	6.3	1.601	0.6246
9	0.095	10.5	0.956	1.0460	0.095	10.5	0.956	1.0460	0.11	9.1	1.156	0.8651
10	0.059	16.9	0.654	1.5291	0.06	16.7	0.657	1.5221	0.06	16.7	0.637	1.5700
	$\mathrm{K}_{\text {TEA }}=0.06397 / 0.08899=0.7188$				$\mathrm{K}_{\text {TEA }}=0.06285 / 0.08946=0.7025$				$\mathrm{K}_{\text {TEA }}=0.06554 / 0.08965=0.7311$			

Trial 1

Trial 2

Trial 3
Figure $\mathbf{S 7}$
The association constant of $\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}$ and TEA ($K_{\text {TEA }}$) was calculated (average of three experiments) to be $0.72\left(K_{T E A}=0.72 \mathrm{M}^{-1}\right)$.

11.3 Determination of the association constant of $\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}$ and THF ($K_{\text {THF }}$)

${ }^{19} \mathrm{~F}$ NMR spectra of ten samples of mixtures of $\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}$ and THF in CDCl_{3} were recorded at 298 K (Fluorobenzene ($\delta_{\text {F-Ph }}=-113.066$) was used as internal standard). The total volume of the mixture was 0.6 mL , the amount of $\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}$ was kept constant
at $0.03 \mathrm{mmol}(19.4 \mathrm{mg})$, while that of THF was varied from 0.04 to $2.0 \mathrm{mmol} .{ }^{19} \mathrm{~F}$ NMR for each sample was recorded and the chemical shifts differences $(\Delta \delta)$ for $-\mathrm{CF}_{2} \mathrm{I}$ were used to draw the plot.

	trial 1				trial 2				trial 3			
	$\begin{aligned} & \text { THF } \\ & (\mathrm{mol} / \mathrm{L}) \end{aligned}$	$\begin{aligned} & \frac{1}{[\mathrm{THF}]} \\ & (\mathrm{L} / \mathrm{mol}) \end{aligned}$	$\begin{gathered} \Delta \delta \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} 1 / \Delta \delta \\ \left(\mathrm{ppm}^{-1}\right) \end{gathered}$	THF (mol/L)	$\begin{aligned} & \frac{1}{[\mathrm{THF}]} \\ & (\mathrm{L} / \mathrm{mol}) \end{aligned}$	$\begin{gathered} \Delta \delta \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} 1 / \Delta \delta \\ \left(\mathrm{ppm}^{-1}\right) \end{gathered}$	THF (mol/L)	$\begin{aligned} & \frac{1}{[\mathrm{THF}]} \\ & (\mathrm{L} / \mathrm{mol}) \end{aligned}$	$\begin{gathered} \Delta \delta \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} 1 / \Delta \delta \\ \left(\mathrm{ppm}^{-1}\right) \end{gathered}$
1	2.00	0.5	1.247	0.8019	3.33	0.3	1.488	0.6720	2.00	0.5	0.906	1.1037
2	1.67	0.6	0.985	1.0152	2.50	0.4	1.305	0.7662	1.43	0.7	0.640	1.5625
3	1.00	1.0	0.671	1.4903	1.67	0.6	1.010	0.9900	1.11	0.9	0.594	1.6835
4	0.59	1.7	0.413	2.4213	0.77	1.3	0.566	1.7668	0.50	2.0	0.317	3.1546
5	0.34	2.9	0.299	3.3444	0.63	1.6	0.452	2.2124	0.36	2.8	0.191	5.2356
6	0.25	4.0	0.206	4.8544	0.48	2.1	0.386	2.5907	0.24	4.2	0.144	6.9444
7	0.20	5.0	0.172	5.8140	0.38	2.6	0.308	3.2468	0.20	5.0	0.135	7.4074
8	0.15	6.7	0.126	7.9365	0.27	3.7	0.223	4.4843	0.16	6.3	0.095	10.5263
9	0.10	10.0	0.087	11.4943	0.19	5.3	0.158	6.3291	0.10	10.0	0.064	15.6250
10	0.067	14.9	0.058	17.2414	0.078	12.8	0.068	14.7059	0.087	11.5	0.057	17.5439
	$\mathrm{K}_{\text {THF }}=0.28977 / 1.13142=0.2561$				$\mathrm{K}_{\text {THF }}=0.32435 / 1.12445=0.2885$				$\mathrm{K}_{\text {THF }}=0.46041 / 1.50758=0.3054$			

Trial 1

Trial 2

Trial 3
Figure S8

The association constant of $\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}$ and TEEDA ($K_{T h F}$) was calculated (average of three experiments) to be $0.28\left(K_{\text {ThF }}=0.28 M^{-1}\right)$.
11.4 Determination of the association constant of $\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}$ and dioxane ($K_{\text {Dioxane }}$)
${ }^{19} \mathrm{~F}$ NMR spectra of ten samples of mixtures of $\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}$ and dioxane in CDCl_{3} were recorded at 298 K (Fluorobenzene ($\delta_{\text {F-Ph }}=-113.066$) was used as internal standard). The total volume of the mixture was 0.6 mL , the amount of $\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}$ was kept constant at $0.03 \mathrm{mmol}(19.4 \mathrm{mg})$, while that of dioxane was varied from 0.03 to $0.05 \mathrm{mmol} .{ }^{19} \mathrm{~F}$ NMR for each sample was recorded and the chemical shifts differences ($\Delta \delta$) for - $\mathrm{CF}_{2} \mathrm{I}$ were used to draw the plot.

	trial 1				trial 2				trial 3			
	Dioxane $(\mathrm{mol} / \mathrm{L})$	$\begin{aligned} & \frac{1}{[\text { Dioxane }]} \\ & (\mathrm{L} / \mathrm{mol}) \end{aligned}$	$\Delta \delta$ (ppm)	$\begin{gathered} 1 / \Delta \delta \\ \left(\mathrm{ppm}^{-1}\right) \end{gathered}$	Dioxane $(\mathrm{mol} / \mathrm{L})$	$\frac{1}{[\text { Dioxane] }}$ $(\mathrm{L} / \mathrm{mol})$	$\begin{gathered} \Delta \delta \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} 1 / \Delta \delta \\ \left(\mathrm{ppm}^{-1}\right) \end{gathered}$	Dioxane $(\mathrm{mol} / \mathrm{L})$	$\begin{aligned} & \frac{1}{[\text { Dioxane }]} \\ & (\mathrm{L} / \mathrm{mol}) \end{aligned}$	$\begin{gathered} \Delta \delta \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} 1 / \Delta \delta \\ \left(\mathrm{ppm}^{-1}\right) \end{gathered}$
1	0.83	1.2	0.480	2.0833	0.83	1.2	0.479	2.0877	0.83	1.2	0.464	2.1552
2	0.56	1.8	0.427	2.3419	0.56	1.8	0.424	2.3585	0.56	1.8	0.420	2.3810
3	0.37	2.7	0.249	4.0161	0.37	2.7	0.250	4.000	0.37	2.7	0.250	4.000
4	0.20	5.0	0.154	6.4935	0.20	5.0	0.158	6.3291	0.20	5.0	0.151	6.6225
5	0.15	6.7	0.111	9.0090	0.15	6.7	0.120	8.3333	0.15	6.7	0.110	9.0909

6	0.10	10.0	0.068	14.7059	0.10	10.0	0.070	14.2857	0.10	10.0	0.065
7	0.083	12.0	0.064	15.6250	0.083	12.0	0.065	15.3846	0.083	12.0	0.060
8	0.077	13.0	0.054	18.5185	0.077	13.0	0.052	19.2308	0.077	13.0	0.055
9	0.067	14.9	0.050	20.0000	0.067	14.9	0.052	19.2308	0.067	14.9	0.050
10	0.052	19.2	0.039	25.6410	0.052	19.2	0.040	25.0000	0.052	19.2	0.037

Trial 1

Trial 2

Trial 3
Figure $\mathbf{S 9}$
The association constant of $\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{I}$ and TEEDA ($K_{\text {Dioxane }}$) was calculated (average of three experiments) to be $0.17\left(K_{\text {Dioxane }}=0.17 M^{-1}\right)$.

12. Evaluation of different light source

2-Isocyanobiphenyl 1 ($35.8 \mathrm{mg}, 0.2 \mathrm{~mol}, 1.0$ equiv), $\mathrm{C}_{4} \mathrm{~F} 9 \mathrm{I}$ ($207.5 \mathrm{mg}, 0.6 \mathrm{~mol}, 3.0$ equiv) and TEEDA ($0.3 \mathrm{~mol}, 1.5$ equiv) were dispersed in 2 mL of THF. The reaction
vial was then purged with Ar for 1 min , sealed with PTEF cap. The reaction mixture was vigorously stirred at $30^{\circ} \mathrm{C}$ under the irradiation of differnet light source (25W, laid 10 CM away from the vial) for 36 h . Then THF was removed under reduced pressure. The resulting residue was dissolved in 1 mL of CDCl_{3} along with $\mathrm{Cl}_{2} \mathrm{CHCHCl}_{2}(20 \mu \mathrm{~L})$ as an external standard for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis. The composition of reaction mixture was based on the Ar-H at $8.73 \mathrm{ppm}(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$ for compound 3 .

Scheme S23

As shown in Scheme S23, the source of light clearly has an impact to the reaction of $\mathbf{1}$ and $\mathbf{2}$ for synthesis of $\mathbf{3}$. Irradiation by LED lamp of red, yellow and green colors (25W) gave little product $\mathbf{3}$; the blue LED lamp with relatively shorter emission wavelength (25W) gave 21% yield, the purple LED lamp with relatively shorter emission wavelength (25 W) gave 57% yield. The irradiation of UV lamp (254 or 360 nm), CFL of the same power intensity or sunlight gave excellent yields. It is known that CFLemit small amount of UV light. These results suggest that the low-intensity irradiation in the UV region is responsible for the XB-promoted photochemical activation of Rf-I.

13. References

1. Rong, J.; Deng, L.; Tan, P.; Ni, C. F.; Gu, Y. C.; Hu, J. B. Angew. Chem., Int. Ed. 2016, 55, 2743.
2. Cao, J. J.; Wang, X.; Wang, S. Y.; Ji, S. J. Chem. Commun. 2014, 50, 12892.
3. He, Z.; Bae, M.; Wu, J.; Jamison, T. F. Angew. Chem., Int. Ed. 2014, 53, 14451.
4. Chighine, A.; Crosignani, S.; Marie-Claire Arnal, M. C.; Bradley, M.; Bruno Linclau, B. J. Org. Chem. 2009, 74, 4753.
5. Xu, T.; Cheung, C. W.; Hu, X. L. Angew. Chem., Int. Ed. 2013, 53, 4910.
6. Collins, B. S. L.; Suero, M. G.; Gaunt, M. J. Angew. Chem., Int. Ed. 2013, 52, 5799.
7. Rozkiewicz, D. I.; Jańczewski, D.; Verboom, W.; Ravoo, B. J.; Reinhoudt, D. N. Angew. Chem., Int. Ed. 2006, 45, 5292.
8. Coste, A.; Toumi, M.; Wright, K.; Razafimahaléo, V.; Couty, F.; Marrot, J.; Evano, G. Org. Lett. 2008, 10, 3841.
9. Naskar, J.; Drew, M. G. B.; Deb, I.; Das, S.; Banerjee, A. Org. Lett. 2008, 10, 2625.
10. Li, L.; Mu, X. Y.; Liu, W. B.; Wang, Y. C.; Mi, Z.; Li, C. -J. J. Am. Chem. Soc. 2016, 138, 5809.
11. Job, P. Justus Liebigs Ann. Chem. 1928, 9, 113.
12. Berkeley; Hanna. J. Physic. Chem. 1963, 67, 846.
13. Hanna; Ashbaugh. J. Physic. Chem. 1964, 68, 811.
14. Foster, R.; Fyfe, C. A. Trans. Faraday Soc. 1965, 61, 1626.
15. Foster, R.; Fyfe, C. A. J. Chem. Soc., Chem. Commun. 1965, 642.

14．Spectra

30	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

${ }^{13} \mathrm{C}$ NMR of compound 3

以ण Vivivinisin

${ }^{19}$ F NMR of compound 5

${ }^{1} \mathrm{H}$ NMR of compound 6

oigivi wixi |Vinini

${ }^{13} \mathrm{C}$ NMR of compound 7

${ }^{19}$ F NMR of compound 7

${ }^{1}$ H NMR of compound $\mathbf{8}$

${ }^{19}$ F NMR of compound $\mathbf{8}$

$\stackrel{8}{\stackrel{8}{\top}} \stackrel{\overline{8}}{\stackrel{\circ}{1}}$

${ }^{1} \mathrm{H}$ NMR of compound 9

30	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
				16						fl (ppm)						40	30	20	10

${ }^{13} \mathrm{C}$ NMR of compound 9

${ }^{19}$ F NMR of compound 9

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 0}$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 1}$
年

${ }^{19} \mathrm{~F}$ NMR of compound 11

$\stackrel{8}{\square} \stackrel{8}{\square}$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 2}$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 3}$

它운

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 3}$

${ }^{1} \mathrm{H}$ NMR of compound 15

${ }^{13} \mathrm{C}$ NMR of compound 15

${ }^{13} \mathrm{C}$ NMR of compound 16

${ }^{1} \mathrm{H}$ NMR of compound 17

30	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
										C									

${ }^{1} \mathrm{H}$ NMR of compound 19

$\underset{\sim}{\text { xix }}$

${ }^{19}$ F NMR of compound 20

${ }^{1} \mathrm{H}$ NMR of compound 21

${ }^{13} \mathrm{C}$ NMR of compound 21

22-1

${ }^{13} \mathrm{C}$ NMR of compound 22-1

${ }^{1}$ H NMR of compound 22

											$\underset{\sim}{\pi}$		$\underset{\substack{\pi}}{T}$		$\frac{1}{\overleftarrow{\%}}$	Chtr	$\xrightarrow{\text { T }}$			
5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	$\begin{gathered} { }^{1} .5 \\ \mathrm{fl}(\mathrm{ppm}) \end{gathered}$	4.0	3. 5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0

${ }^{1} \mathrm{H}$ NMR of compound 23-1

${ }^{13} \mathrm{C}$ NMR of compound 23-1

																	$\stackrel{1}{\underset{\pi}{\pi}}$	$\begin{aligned} & T T^{4} 1 \\ & 88 \\ & \hline-8=1 \end{aligned}$	$\underset{\sim}{\frac{1}{\infty}}$	$\frac{1}{\pi}$	$\stackrel{\text { T }}{\sim}$				
. 0	10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5. 5	$\begin{gathered} 1 \\ \mathrm{fl}(\mathrm{ppma}) \end{gathered}$	4.5			3.5	3.0	2.5	2.0	${ }_{1} 1.5$	1.0	0.5	0.0	-0.5	-1

${ }^{1} \mathrm{H}$ NMR of compound 23

${ }^{13}$ C NMR of compound 23

78%
800 =

${ }^{1} \mathrm{H}$ NMR of compound 25

								$\stackrel{\underset{\sim}{\underset{\sim}{0}}}{\substack{1}}$			Γ									
)	-10	-20	-30	-40	-50	${ }_{-60}$	${ }_{-70}$	-80	-90	$\begin{gathered} -100 \\ \mathrm{fl}(\mathrm{ppm}) \end{gathered}$	-110	-120	-130	-140	-150	-160	-170	-180	-190	-2

${ }^{19} \mathrm{~F}$ NMR of compound 25

25'

														$\underset{\sim}{\underset{\sim}{\top}}$		$\stackrel{1}{\underset{\sim}{x}}$							
. 0	10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5. 5	$\begin{gathered} 5.0 \\ \mathrm{fl}(\mathrm{ppm}) \end{gathered}$	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5

${ }^{1}$ H NMR of compound 25 ,

${ }^{13}$ C NMR of compound 25 ,

${ }^{19}$ F NMR of compound $\mathbf{2 5}$,

V

$\stackrel{\pi}{i}$
5

${ }^{1} \mathrm{H}$ NMR of compound 27

28

${ }^{1}$ H NMR of compound 28

${ }^{13} \mathrm{C}$ NMR of compound 28

${ }^{13} \mathrm{C}$ NMR of compound 29

${ }^{19} \mathrm{~F}$ NMR of compound 29

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 0}$

${ }^{19} \mathrm{~F}$ NMR of compound $\mathbf{3 0}$

${ }^{1} \mathrm{H}$ NMR of compound 31

${ }^{13} \mathrm{C}$ NMR of compound 31

${ }^{19}$ F NMR of compound 31

(V)
$\underset{1}{\text { IT }}$

${ }^{1}$ H NMR of compound $\mathbf{3 2}$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 3}{ }^{\prime}$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3 5 - 1}$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 5}$

gニュに上
8 8.8
访

${ }^{19} \mathrm{~F}$ NMR of compound 35

운

xhaxingex
䧳

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3 7 - 3}$

37-1

S106

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 7}$

${ }^{13} \mathrm{C}$ NMR of compound 37

