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Simple-to-Apply Wetting Model to Predict Thermodynamically 
Stable and Metastable Contact Angles on 

Textured/Rough/Patterned Surfaces 

 
1. The droplet Laplace pressure and droplet hydrostatic pressure (i.e., gravity) have 
negligible effect on the area of the liquid-vapor interface within a single cavity 

As shown in Fig. S1, to balance the droplet Laplace pressure, the curvature of the liquid-

vapor interface within the cavity should equal the curvature of the macroscopic droplet, 

1/R. Based on simple geometry analysis, the liquid-vapor interface within a cavity bulges 

into the cavity by: 

ℎ′ = 𝑅 (1 − cos (asin
𝑟

𝑅
)),        (S1) 

where r is the radius of the cavity opening. 

The areas of the flat liquid-vapor interface, 𝐴f, and the area of the curved liquid-vapor 

interface, assuming a spherical cap, is given by: 

𝐴f = 𝜋𝑟2,          (S2) 

𝐴cap = 𝜋(𝑟2 + ℎ′2),         (S3) 

Therefore, the change in area as the liquid-vapor within a single cavity, which is expressed 

in fraction of a flat liquid-vapor area, is given by: 

Δ𝐴 =
𝐴cap−𝐴f

𝐴f
 =

𝜋ℎ′2

𝜋𝑟2  .         (S4) 

Based on Eq. S4, for a droplet of R=1000 μm, which is a typical value for the droplets we 

used in our experiments, 𝛥𝐴 = 2.5 × 10−7 for r=1 μm (smallest cavity in our experiments), 

and 𝛥𝐴 = 2.3 × 10−4 r=30 𝜇m (largest cavity in our experiments). Hence, the effect of 

droplet Laplace pressure on the area of the liquid-vapor interface within a cavity was 

negligible in all our experiments.  

The hydrostatic pressure, i.e., the effect of gravity, is given by ~2𝜌𝑔𝑅, where 𝜌 is the mass 

density of water. The droplet Laplace pressure is given by ~2𝛾LV/𝑅. The ratio of hydrostatic 

to Laplace pressure is 
𝜌𝑔𝑅2

𝛾LV
≅ 0.1; hence, the effect of gravity is smaller than the effect of 
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Laplace pressure. Therefore, both hydrostatic pressure and the droplet Laplace pressure 

were negligible in all our experiments.  

 

Figure S1: Estimating the effect of droplet Laplace pressure and gravity on the area of the liquid-vapor 

interface within a cavity.    
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2. Derivation of (
𝒅𝑨𝑪

𝒅𝑨𝑷
)

𝑽𝟎

= 𝒄𝒐𝒔𝜷  

For this derivation, let us define AC, Af as the curved and the flat areas of the truncated 

droplet and V0 is the droplet volume (see Fig. 2 in the main text). Based on geometry: 

𝐴C = 2𝜋𝑅2(1 − cos 𝜃0), 

𝐴P = 𝜋𝑅2𝑠𝑖𝑛2𝜃0 

𝑉0 =
𝜋𝑅3

3
 (1 − cos 𝜃0)(2 + cos 𝜃0) 

(S5) 

Now,  

𝑑𝐴C

𝑑𝜃0
= 2𝜋 [2𝑅(1 − cos 𝜃0) 

𝑑𝑅

𝑑𝜃0
+ 𝑅2(sin 𝜃0)] 

𝑑𝐴P

𝑑𝜃0
= 𝜋 [2𝑅sin2𝜃0  

𝑑𝑅

𝑑𝜃0
+ 2𝑅2 sin 𝜃0 cos 𝜃0 ] 

(S6) 

For fixed volume: 

𝑑𝑉0

𝑑𝜃0
= 0 ⟹

𝜋

3
 

𝑑

𝑑𝜃0
(𝑅3(1 − cos 𝜃0)2(2 + cos 𝜃0)) = 0 ⟹  

𝑑𝑅

𝑑𝜃0
=

−𝑅 sin 𝜃0 (1 + cos 𝜃0)

(1 − cos 𝜃0)(2 + cos 𝜃0)
 

(S7) 

By inserting Eq. S7 into S6 we get:   

𝑑𝐴C

𝑑𝜃0
=

−2𝜋𝑅2 sin 𝜃0 cos 𝜃0

2 + cos 𝜃0
 

𝑑𝐴P

𝑑𝜃0
= −2𝜋𝑅2 sin 𝜃0 (

1

2 + cos 𝜃0
). 

(S8) 

Therefore 

𝑑𝐴C

𝑑𝜃0
 
𝑑𝜃0

𝑑𝐴P
=

𝑑𝐴c

𝑑𝐴P
= cos 𝜃0. 

(S9) 
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3. Derivation of the ‘wetting equation’ employing an energy minimization approach 

The same approach that was used to derive the Young equation, Eq. 8, was used to derived 

the ‘wetting equation, that can be used for calculating the contact angles on textured 

(rough) surfaces. The ‘wetting equation’ should be generally applicable to any surface 

topology, as long as the size of the drop is significantly larger than the dimensions of the 

cavities (otherwise the assumption of constant 𝑉0 breaks down as the liquid penetrates into 

the cavities).  

For deriving the ‘wetting equation’, we consider now the case of a droplet of Phase 1 coming 

into contact with a textured (rough) solid surface S in the presence of Phase 2 (see Fig. 2B. 

For the case of non-flat geometry, we consider separately the state of the cavities – either 

fully-filled or partially-filled or empty of Phase 1, or vice versa of Phase 2 – underneath 

versus outside of the spreading droplet (see Fig. 2B Steps II and III), with the contributions 

from the latter denoted by the superscript ‘O’. Proceeding in the same way as with the 

derivation of the Young equation, we write the total interacial energy of the drop at the 

thermodynamic minima as 

𝐸0 = 𝛾12(𝐴C − 𝐴C,0) + 𝛾12(𝐴12 − 𝐴12
O ) + (𝛾1S − 𝛾2S)[(𝐴1S − 𝐴1S

O )],         (S10) 

 

where 𝐴XY is the real area of contact between Phase X and Phase Y (see Fig. 2B) for X and Y 

being either Phase 1, Phase 2, or S; and the superscript ‘O’ refers to the cavities outside of 

the wetting droplet.  

 

Normalizing the areas of contact by the projected area, 𝐴P, we get 

𝐸0 = 𝛾12(𝐴C − 𝐴C,0) + 𝛾12[(𝐴P𝜙12 − 𝐴P𝜙12
O )] + (𝛾1S − 𝛾2S)[(𝐴P𝜙1S − 𝐴P𝜙1S

O )], (S11) 

 

where 𝜙XY is the ratio of 𝐴XY to 𝐴P (see Fig. 2B). 

 

In the subsequent step, if an infinitesimally small perturbation is made from the equilibrium 

configuration, which involves an increase or decrease in Phase 1-Phase 2 and Phase 1-Solid 

interfaces by d𝐴C and d𝐴P, the surface energy changes to 

𝐸0 + d𝐸 = 𝛾12(𝐴C + d𝐴C − 𝐴C,0) + 𝛾12(𝐴P + d𝐴P)[(𝜙12 − 𝜙12
O )]  

𝐸0 + d𝐸 = +(𝛾1S − 𝛾2S)(𝐴P + d𝐴P)[(𝜙1S − 𝜙1S
O )],      (S12) 
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The contact angle changes to 𝜃t + d𝜃, and the difference in surface energies is given by 

d𝐸 = 𝛾12[d𝐴C + d𝐴P(𝜙12 − 𝜙12
O )] + (𝛾1S − 𝛾2S)[(𝜙1S − 𝜙1S

O )]d𝐴P,   (S13) 

 

Since the liquid drop was at thermodynamic equilibrium, the derivative of surface energy 

should be zero: 

(
d𝐸

d𝐴P
)

𝑉0

= 𝛾12 [
d𝐴C

d𝐴P
+ (𝜙12 − 𝜙12

O )] + (𝛾1S − 𝛾2S)[(𝜙1S − 𝜙1S
O )] = 0.    (S14) 

 

Next, we employ the geometric relationship given in Eq. 7 (in the main text) and obtain 

𝛾12[cos(𝜃t + d𝜃) + (𝜙12 − 𝜙12
O )] + (𝛾1S − 𝛾2S)[(𝜙1S − 𝜙1S

O )] = 0,   (S15) 

 

which yields a ‘wetting equation’ for calculating macroscopic contact angles (𝜃t): 

cos 𝜃t = cos 𝜃0 (𝜙1S − 𝜙1S
O ) − (𝜙12 − 𝜙12

O ).       (S16) 
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4. Condensation of liquid in the cavities outside the droplet 

The interfacial energy of an empty cavity outside the droplet, 𝐸empty
O  (the superscript ‘O’ 

stands for outside of the cavity) is given by (see Fig. S4B): 

𝐸empty
O = 𝐴LS(max)𝛾SV,         (S17) 

where 𝐴LS(max) is the entire Solid-Vapor contact area for a repeating unit (in this case it is a 

single cavity). Note that for the sake of consistency, we used the subscript ‘LS(max)’, which 

is the maximum Liquid-Solid contact area in the case where the cavity is ‘fully-filled’ (i.e., 

there is no liquid-vapor interface anywhere within the cavity). 

The interfacial energy of a partially-filled cavity, 𝐸filled
O , is given by (see Figs S4C and S4D)  

𝐸filled
O = 𝐴LS

O 𝛾SL + 𝐴LV
O 𝛾LV + 𝐴SV

O 𝛾SV,       (S18) 

where 𝐴LS
O , 𝐴LV

O  and 𝐴SV
O  are the Solid-Liquid, Liquid-Vapor and Solid-Vapor contact areas 

outside the droplet, respectively.  

Considering that 𝛾LS + 𝛾LV cos 𝜃0 = 𝛾SV (Young equation) and 𝐴LS
O + 𝐴SV

O = 𝐴LS(max) (see 

Figs. S1B, C and D), the change in energy is:   

∆𝐸O = 𝐸filled
O − 𝐸empty

O = 𝐴LV
O 𝛾LV − 𝐴LS

O 𝛾LV cos 𝜃0     (S19) 

Eq. S19 shows that if 𝜃0 > 90° (i.e., cos 𝜃0 < 0) then ∆𝐸O > 0, hence condensation in the 

cavities outside of the droplet is not thermodynamically favorable for any type (shape) of 

cavities. On the other hand, when 𝜃0 < 90° condensation in the cavities that are outside of 

the droplet is thermodynamically favorable (∆𝐸0 < 0) when cos 𝜃0 > 𝐴LV
O /𝐴SL

O .  
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Figure S4: When the vapor around the droplet is saturated, which is often the case in close vicinity to a 

droplet, cavities outside of the droplet can get filled by condensation (Panel A and B). Eq. S19 shows that 

when 𝜽𝟎 > 𝟗𝟎° (Panel C) then cavities of any shape that are outside the droplet are empty at 

thermodynamic equilibrium; whereas these cavities can get filled by condensation when 𝜽𝟎 < 𝟗𝟎° and 

𝐜𝐨𝐬 𝜽𝟎 > 𝑨𝐋𝐕
𝐎 /𝑨𝐋𝐒

𝐎 , as illustrated in panel D. 
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5. Derivation of the total energy of a droplet on textured surface 

Considering the Young equation and the ‘wetting equation’ for the ‘partially-filled | empty’ 

wetting state, Eq. 12, the change in the total interfacial energy of a droplet on a texture 

surface is given by: 

∆𝐸total = 𝛾LV(𝐴C − 𝐴P cos 𝜃t) − 𝛾LV𝐴C,0.      (S20) 

Assuming the droplet forms a truncated sphere on the textured surface, thus 𝐴C =

2𝜋𝑅2(1 − cos 𝜃t), 𝐴P = 𝜋𝑅2 sin2 𝜃t , and 𝑅 = 41 3⁄ 𝑅0(2 − 3 cos 𝜃t + cos3 𝜃t)−1 3⁄ ,1,  Eq. S20 

can be rewritten: 

𝐸total = 𝐸fin − 𝐸init =
4𝜋𝑅0

3𝛾LV

41 3⁄ (2−3 cos 𝜃t+cos3 𝜃t)−1 3⁄ − 4𝜋𝑅0
2𝛾LV,    (S21) 

which is Eq. 24 in the main text.  
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6. Experimental Demonstration: Preparation and Characterization of the Samples 

6.1 Preparation of the re-entrant cavities 

The fabricated of the re-entrant cavities is depicted in Fig. S2. One-sided silicon wafer with 

1.4 μm top layer of thermally-grown silica layer (University Wafers) was used as a starting 

point. Using standard lithography procedures, arrays of cylinders were vertically etched 

through the silica layer using ICP (Panasonic E626I). Next, the re-entrant cavities were done 

by isotropically etching silicon under the silica layer using XeF2 (Xetch).  Lastly, Deep RIE 

(PlasmaTherm) was employed to vertically etch the silicon cavities. 

A silicon wafer with a top layer of 10 μm thermally grown silica (University Wafers) was 

used as a substrate for the fabrication of the cavities without the re-entrant (Fig. 8B and E). 

Then, using standard lithography procedures, arrays of cylinders were vertically etched 

through the silica layer using ICP (Panasonic E626I). 

 

Figure S6.1: Fabrication process of the re-entrant cavities. The pristine substrate, shown in Panel I, was a 

silicon wafer with a 1.4 μm thick thermally-grown silica. Panel II shows the first step of the process, 

where a layer of photoresist is spin-coated over the substrate, followed by exposing the photoresist to a 

UV light (the common lithography procedure) through a mask in order to create an array of “openings” 

in the photoresist.  Panel III shows the ICP dry etch step, using CHF3, in order to vertically etch the silica. 

Next, in Panel IV, XeF2 was used to isotropically etch the silicon in order to create the re-entrant cavities. 

In the last step, illustrated in Panel V, the ‘Bosch’ process was used to deepen the cavities.  
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6.2 Preparation of the Non Re-entrant Cavities 

One-sided silicon wafers with 10 μm thermally-grown silica layer (University Wafers) were 

used as a starting point. Using standard lithography procedures, arrays of ~8 μm deep 

cylinders were vertically etched through the silica layer using ICP (Panasonic E626I). 

6.3 Contact angle measurements 

Using OCA-15 Pro (Dataphysics), a 1 μl droplet of deionized water (18.2 MΩ cm, Milli-Q) 

was deposited on the samples. Then, the droplet was allowed to equilibrate for 30 s. Using a 

commercially available software (Dataphysics), the droplet on the sample was modeled as a 

truncated sphere. The reported contact angles, 𝜃t, were the angles between the tangent (at 

the liquid-vapor-solid triple line) to the truncated sphere and the base of the sphere (see 

Fig. 7B).  

6.4 Fluorescence imaging 

Two-photon fluorescence microscopy (Olympus Fluoview 1000MPE) images were captured 

using water immersion objective lens. Fluorescein isothiocyanate (FITC) at 0.1 mg/mL was 

used in deionized water. Measurements were made at ~23°C. A 800 nm IR laser was used 

for excitation, and emission was observed at 530 nm.  

6.5 Contact angle measurements using canola oil on textures with and without re-
entrant cavities 

This section is an experimental demonstration of the ‘wetting model’ using canola (𝛾LV~35 

mN/m)2, which represents a liquid with low surface tension (the interfacial energy of 

canola oil/air) . More details can be found in Section “Experimental Demonstration of the 

‘wetting model’” in the manuscript.   
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Figure S6.2: Experimental demonstration of the ‘wetting model’. Two types of silica (intrinsic contact 

angle of canola oil is 𝜽𝟎~𝟐𝟓°) textures were prepared: (1) re-entrant cavities, where 𝜶𝐦𝐚𝐱 ~𝟏𝟖𝟎°, as 

shown in Panel, and (2) non-re-entrant cavities, where 𝜶𝐦𝐚𝐱 ~𝟖𝟎°, as shown in Panel B. The ‘wetting 

model’ predicts that when 𝜶𝐦𝐚𝐱 + 𝜽𝟎 > 𝟏𝟖𝟎° and 𝜽𝟎 < 𝟗𝟎°, such as the case of canola oil on the re-entrant 

cavities, the ‘partially-filled | empty’ (Cassie-Baxter) wetting state is metastable. On the other hand, 

when  𝜶𝐦𝐚𝐱 + 𝜽𝟎 < 𝟏𝟖𝟎°, such as in the case of canola oil on the non-re-entrant cavities, canola oil 

spontaneously (no energy barrier) fills the cavities and the ‘fully-filled | empty’ (Wenzel state) wetting 

state is formed. Panels C and D show the measured contact angles, 𝜽𝐭, and the calculated contact angles 

for cavities with (Panel C, Eq. 22) and without (Panel D, Eq. 21) re-entrants. 
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7. Experimental Section: Evaluating the State of the Cavities Outside the Droplet 

For the re-entrant cavities, the cavities outside the droplet are partially-filled if  

cos 𝜃0 > 𝐴LV
0 /𝐴LS

0 ,         (S22) 

Where 𝐴LV
0  and 𝐴LS

0  are the liquid-vapor and liquid-solid interfaces outside of the droplet. 

Hence, for the re-entrant cavities, equality S22 can be written as 

cos 𝜃0 >
𝜋𝑟2

2𝜋(𝑟+𝑙)(ℎ−𝑡)+𝜋(𝑟+𝑙)2+𝜋(𝑟+𝑙)2−𝜋𝑟2.      (S23) 

Based on Figs. 8A and D (in main text), the height of the cavity, h, is ~8 μm, the thickness of 

the overhanging layer, t, is ~1 μm, and the size of the re-entrant, l, is ~0.3 μm. Therefore, 

based on equality S23, and assuming that 𝑙 ≪ 𝑟, one can conclude that when 𝑟 < 34 μm, 

which was the case of all the samples we prepared for this experimental study, equality S22 

is satisfied and the ‘fully-filled | partially-filled’ wetting (Eq. 9) state is thermodynamically 

favorable wetting state.  

For the cavities without re-entrants, equality S22 is satisfied when 

cos 𝜃0 >
𝜋𝑟2

2𝜋𝑟ℎ+𝜋𝑟2.         (S24) 

Thus, for cavities without re-entrants, when 𝑟 < 38 μm, which was the case of the all the 

samples we prepared for this experimental study, the ‘fully-filled | partially-filled’ (Eq. 9) 

wetting state is the thermodynamically stable wetting state.  
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8. Summary  

Fig. S8 summarizes the conditions that would yield the three different wetting states, 

namely: ‘partially-filled | empty’, ‘fully-filled | empty’ and ‘fully-filled | partially-filled’. The 

figure also defines the conditions in which each wetting state is transient, metastable or 

thermodynamically stable (see more details in the main text). 

 

Figure S8: Schematic illustration that summarizes the different conditions that yield the three wetting 

states: (1) the ‘partially-filled | empty’ (Cassie-Baxter), (2) the ‘fully-filled | empty’ (Wenzel) and (3) the 

‘fully-filled | partially-filled’ wetting state. Note that the ‘partially-filled | partially-filled’ is presented in 

this figure since it cannot be thermodynamically stable.  
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