## Supporting Information

## High-density lipoprotein-like magnetic nanostructures (HDL-MNS): Theranostic agents for cardiovascular disease

Vikas Nandwana,<sup>†,‡</sup> Soo-Ryoon Ryoo,<sup>†,‡</sup> Shanthi Kanthala,<sup>†,‡</sup> Kaylin M. McMahon,<sup>‡,§</sup> Jonathan S. Rink,<sup>‡,§</sup> Yue Li,<sup>#</sup> Subbu S. Venkatraman,<sup>¶</sup> C. Shad Thaxton,<sup>‡,§</sup> Vinayak P. Dravid<sup>†,‡</sup>\*<sup>#</sup>

<sup>†</sup> Department of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, USA

<sup>‡</sup> International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, USA

<sup>§</sup> Feinberg School of Medicine, Department of Urology, Northwestern University, Chicago, Illinois 60611, USA

# Applied Physics Program, Northwestern University, Evanston, IL 60208, USA

I School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798



**Figure S1.** Circular dichroism of lipid-free apoA1and apoA1 in HDL-MNS particles. This 85% helicity and comparison with free apoA1 is about HDL-MNS B. The helicity of HDL-MNS A and HDL-MNS-B was found to be 66.2% and 85% and comparable to free apoA1 (85%).



**Figure S2.** Cholesterol binding isotherm curve by HDL-MNS A and B. The dissociation constant ( $K_d$ ) for NBD-cholesterol binding to HDL-MNS A and B was found to be 331.3 and 69.9 nM.