Supporting Information

Unambiguous Identification of Serine and Threonine Pyrophosphorylation Using Neutral-Loss-Triggered Electron-Transfer/Higher-Energy Collision Dissociation (EThcD)

Martin Penkert^{a,b}, Lisa M. Yates^c, Michael Schümann^a, David Perlman^d, Dorothea Fiedler^{a,b}, Eberhard Krause^{*a}

^a Leibniz Institut für Molekulare Pharmakologie (FMP), Robert-Rössle Str. 10, 13125 Berlin, Germany ^b Humboldt Universität zu Berlin, Department of Chemistry, Brook-Taylor-Straße 2, 12489 Berlin, Germany

^c Princeton University, Department of Chemistry, Frick Chemistry Building, Washington Road, Princeton, NJ 08544, USA

^d Princeton University, Department of Molecular Biology, 119 Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA

Table of Content

Supplementary Figures

Representative HCD MS/MS spectra Figure S1. HCD MS/MS spectrum of peptide ISIDppSSDEESELSKK (PP-4) Figure S2. HCD MS/MS spectrum of peptide SKVEDAEYEppSSDDEDEKLDK (PP-6)	3 3 3
Representative CID MS/MS spectra Figure S3. Comparison of CID MS/MS spectrum of peptide RSHHDDEEEpSpSEKK (P_2 -5) and peptide RSHHDDEEEppSSEKK (PP-5) Figure S4. Comparison of CID MS/MS spectrum of peptide ISIDppSSDEESELSKK (PP-4) and peptide ISIDppTSDEESELSKK (PP-8)	4 4 4
Representative EThcD MS/MS spectra of triply charged precursor ions Figure S5. EThcD MS/MS spectrum of peptide ISIDpSpSDEESELSKK (P ₂ -4) Figure S6. EThcD MS/MS spectrum of peptide RSHHDDEEESppSEKK (PP-5) Figure S7. EThcD MS/MS spectrum of peptide SKVEDAEYEppSSDDEDEKLDK (PP-6)	5-6 5 5 6
Representative EThcD MS/MS spectra of doubly charged precursor Figure S8. EThcD MS/MS spectrum of peptide VNEDSPSppSSSK (PP-1) Figure S9. EThcD MS/MS spectrum of peptide SSDSSppSDSESESK (PP-3)	7 7 7
Chromatographic behavior of di-and pyrophosphorylated peptides Figure S10. Extracted ion chromatograms (XIC) of the synthetic peptides P₂.6 , PP-6 , P₂-4 and PP-4	8 8
Figure S11. Spike-in experiment peptide ISIDppTSDEESELSKK (PP-8)	9
Characterization of synthetic pyrophosphopeptides (PP-1-8)	10-17

Supplementary Figures

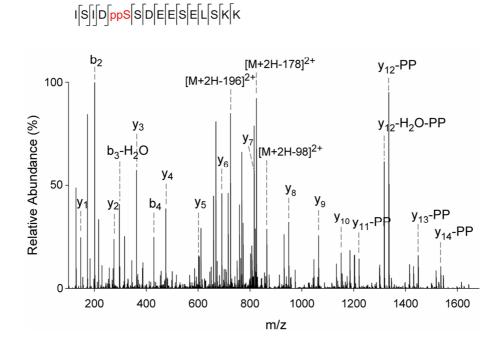


Figure S1. HCD MS/MS spectrum of doubly charged peptide ISIDppSSDEESELSKK (PP-4)

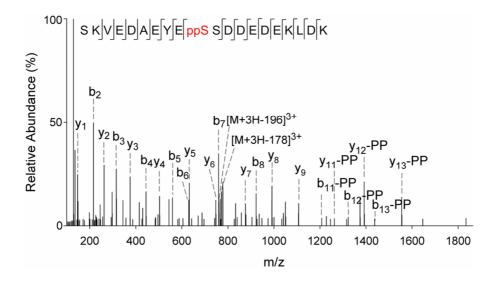


Figure S2. HCD MS/MS spectrum of triply charged peptide SKVEDAEYEppSSDDEDEKLDK (**PP-6**)

Representative CID MS/MS spectra

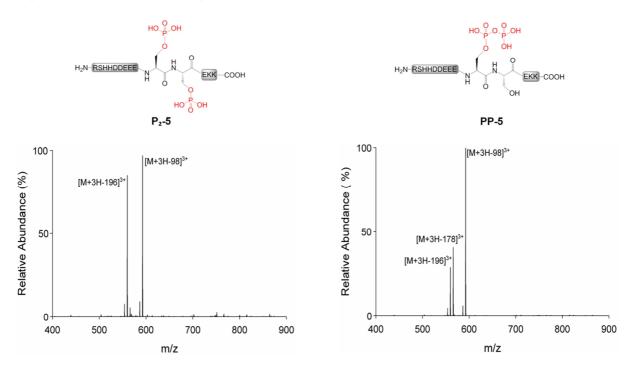


Figure S3. Comparison of CID MS/MS spectrum of triply charged peptide RSHHDDEEEpSpSEKK (**P2-5**) and peptide RSHHDDEEEppSSEKK (**PP-5**)

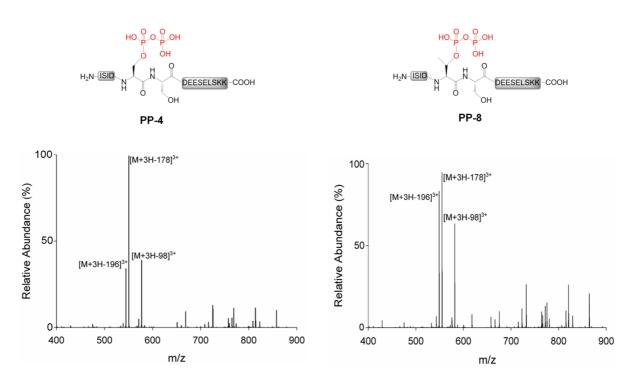


Figure S4. Comparison of CID MS/MS spectrum of triply charged peptide ISIDppSSDEESELSKK (**PP-4**) and peptide ISIDppTSDEESELSKK (**PP-8**)

Representative EThcD MS/MS spectra of triply charged precursor ions

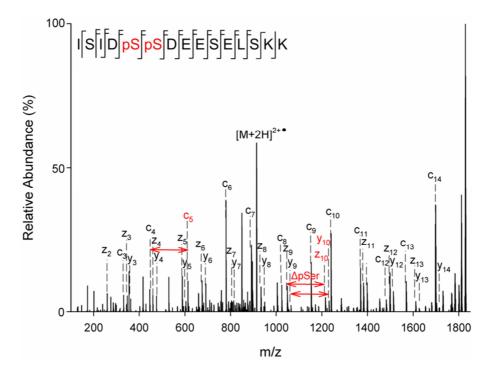


Figure S5. EThcD MS/MS spectrum of triply charged peptide ISIDpSpSDEESELSKK (P₂-4)

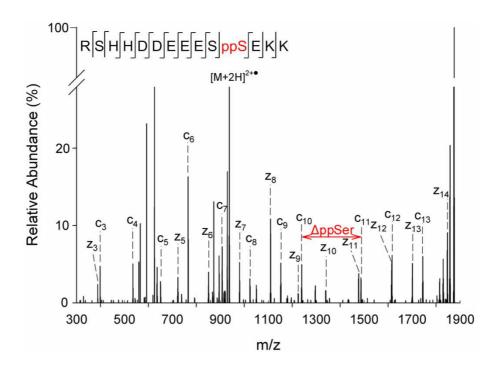


Figure S6. EThcD MS/MS spectrum of triply charged peptide RSHHDDEEESppSEKK (PP-5)

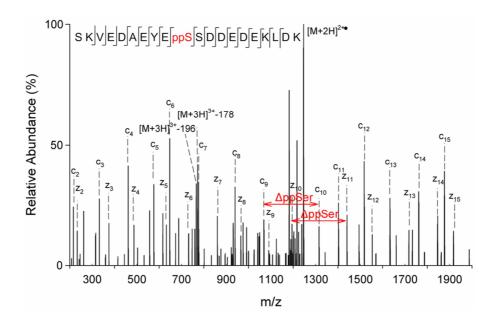


Figure S7. EThcD MS/MS spectrum of triply charged peptide SKVEDAEYEppSSDDEDEKLDK (PP-6)

Representative EThcD MS/MS spectra of doubly charged precursor ions

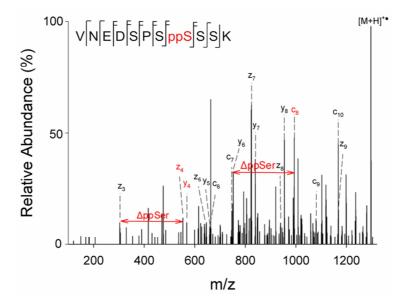


Figure S8. EThcD MS/MS spectrum of doubly charged peptide VNEDSPSppSSSK (PP-1)

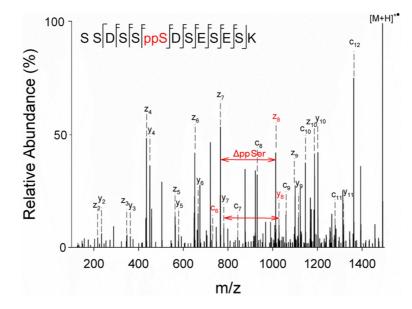


Figure S9. EThcD MS/MS spectrum of doubly charged peptide SSDSSppSDSESESK (PP-3)

Chromatographic behavior of di-and pyrophosphorylated peptides

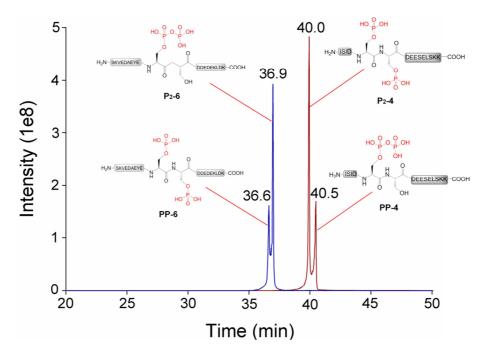
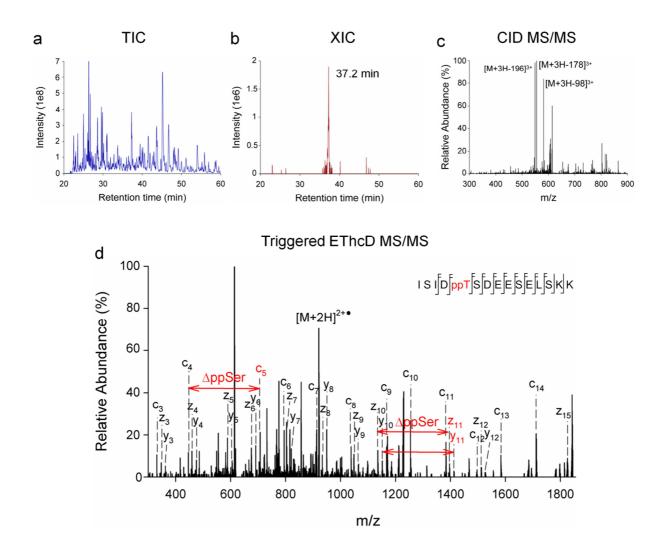
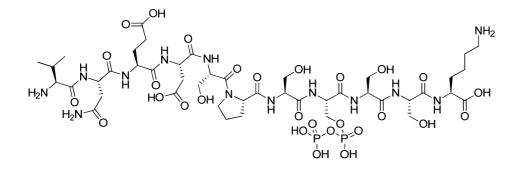
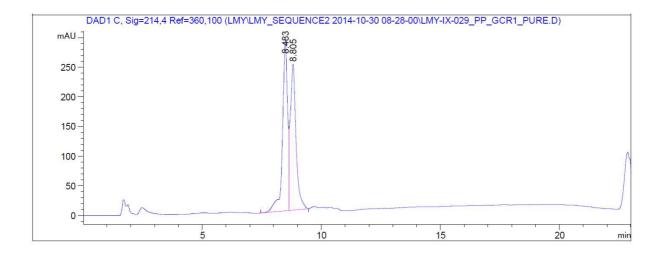


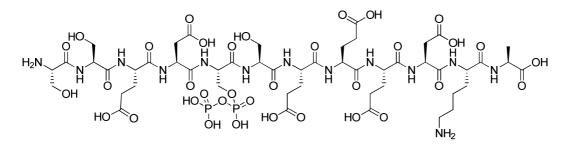
Figure S10. Extracted ion chromatograms (XIC) of the synthetic peptides $P_{2.6}$, PP-6 (m/z 830.982; blue line), P_{2} -4 and PP-4 (*m*/*z* 913.873; red line) showing the similar chromatographic behavior of diand pyrophosphorylated peptides. The doubly phosphorylated peptides exhibit shorter retention times than the pyrophosphorylated counterpart.

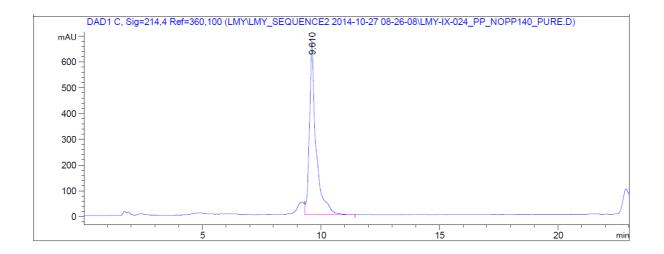
Spike-in experiment peptide ISIDppTSDEESELSKK (PP-8)

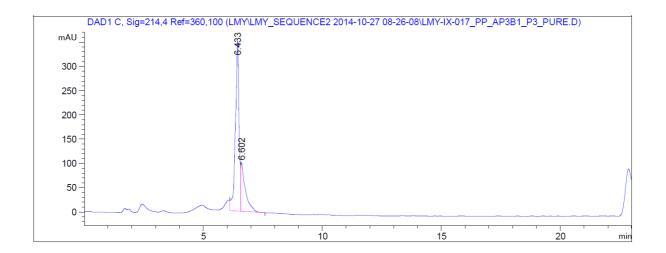

Figure S11. Detection of a synthetic pyrophosphopeptide in a spike-in experiment using the DDNL-EThcD approach. (a) Total ion chromatogram (TIC) of the HeLa protein digest. (b) Extracted ion chromatogram (XIC) m/z 614.255 of the synthetic peptide **PP-8**. (c) CID MS/MS spectrum of peptide **PP-8** acquired at a retention time of 37.23 min indicating dominant neutral losses of 98, 178 and 196 Da. (d) Triggered EThcD MS/MS spectrum of the pyrophosphorylated peptide **ISIDppTSDEESELSKK** showing gapless sequence coverage without loss of the labile modification. Fragment ions pinpointing the site of modification are labled in red.

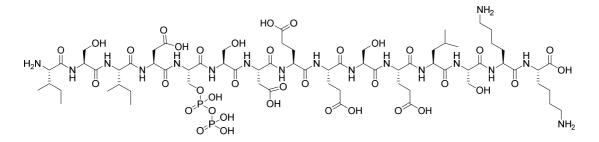
Characterization of synthetic pyrophophopeptides

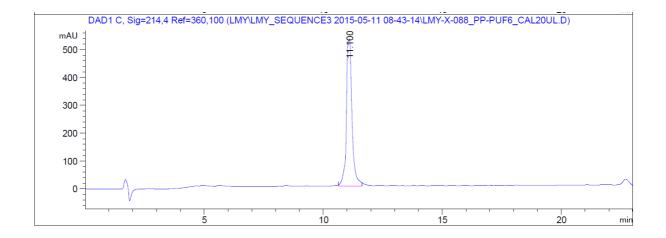

Peptide **PP-1** (VNEDSPSppSSSK)

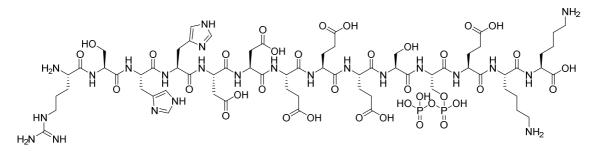

The purity of the isolated peptide was confirmed by analytical HPLC [C18; t = 0 min 0% of solvent B in solvent A, t = 20 min 20% of solvent B in solvent A; 1 mL/min; 214 nm; $T_R = 8.483$ min & $T_R = 8.805$ min]. Both peaks in the analytical HPLC were collected and HRMS confirmed that both fractions contained pyrophosphopeptide **PP-1** as the primary product (HRMS (Bulk Material) [M+H]⁺ calcd for C₄₄H₇₆N₁₃O₂₈P₂⁺ 1296.4393, found 1296.4463; [M+2H]²⁺ calcd for C₄₄H₇₇N₁₃O₂₈P₂²⁺ 648.7233, found 648.7255; [M+2H+Na]³⁺ calcd for C₄₄H₇₇N₁₃NaO₂₈P₂³⁺ 440.8133, found 440.8070) and ³¹P NMR (202 MHz, H₂O, pH = 7.70) δ -6.78 (d, ²J_{P-P} = 27.8 Hz), -10.73 (d, ²J_{P-P} = 19.9 Hz).

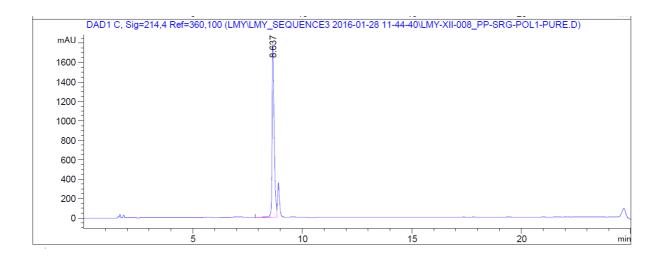

Peptide PP-2 (SSEDppSSEEEDKA)

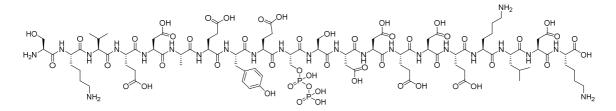

The purity of the isolated peptide was confirmed by analytical HPLC [C18; t = 0 min 0% of solvent B in solvent A, t = 20 min 20% of solvent B in solvent A; 1 mL/min; 214 nm; $T_R = 9.610$ min], and the identity of pyrophosphopeptide **PP-2** was confirmed by mass spectrometry (HRMS [M+H]⁺ calcd for C₄₉H₈₀N₁₃O₃₅P₂⁺ 1472.4350, found 1472.4332; [M+2H]²⁺ calcd for C₄₉H₈₁N₁₃O₃₅P₂⁻²⁺ 736.7211, found 736.72125; [M+2H+Na]³⁺ calcd for C₄₉H₈₁N₁₃NaO₃₅P₂⁻³⁺ 499.4794, found 499.4697) and ³¹P NMR (202 MHz, H₂O, pH = 7.59) δ -6.84 (d, ²J_{P-P} = 20.5 Hz), -10.87 (d, ²J_{P-P} = 21.1 Hz).

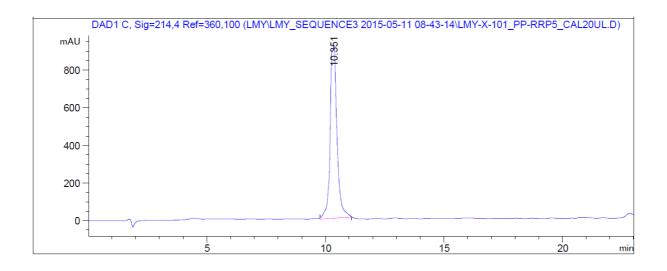

Peptide PP-3 (SSEDppSSEEEDKA)

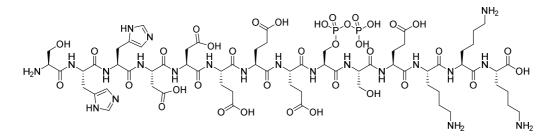

The purity of the isolated peptide was confirmed by analytical HPLC [C18; t = 0 min 0% of solvent B in solvent A, t = 20 min 20% of solvent B in solvent A; 1 mL/min; 214 nm; $T_R = 6.433$ min], and the identity of the pyrophosphopeptide **PP-3** was confirmed by mass spectrometry (HRMS [M+H+Na]²⁺ calcd for C₄₈H₈₁N₁₄O₃₆P₂⁺ 1491.4408, found 1491.4410; [M+2H]²⁺ calcd for C₄₈H₈₂N₁₄O₃₆P₂⁺ 1491.4408, found 1491.4410; [M+2H]²⁺ calcd for C₄₈H₈₂N₁₄O₃₆P₂²⁺ 746.2240, found 746.2255; [M+2H+Na]³⁺ calcd for C₄₈H₈₂N₁₄NaO₃₆P₂³⁺ 505.8147, found 505.8057) and ³¹P NMR (202 MHz, H₂O, pH = 7.67) δ -6.57 (d, ²J_{P-P} 21.8 Hz), -10.81 (d, ²J_{P-P} = 21.1 Hz).

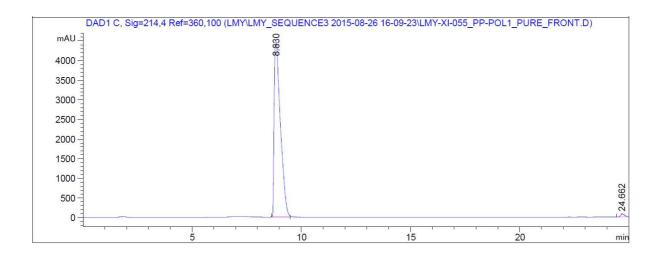

Peptide **PP-4** (ISIDppSSDEESELKK)

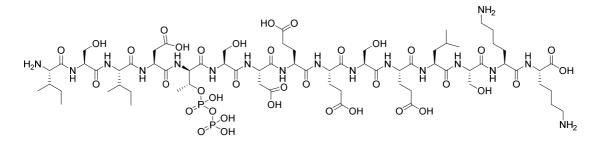

The purity of the isolated peptide was confirmed by analytical HPLC [C18; t = 0 min 0% of solvent B in solvent A; t = 20 min 47% of solvent B in solvent A; 1 mL/min; 214 nm; $T_R = 13.957$ min], and the identity of pyrophosphopeptide **PP-4** was confirmed by mass spectrometry (HRMS [M+2H]²⁺ calcd for C₆₈H₁₁₉N₁₇O₃₇P₂²⁺ 913.8709, found 913.8686; [M+3H]³⁺ calcd for C₆₈H₁₁₉N₁₇O₃₇P₂²⁺ 609.5830, found 609.5823) and ³¹P NMR (202 MHz, H₂O, pH = 8.07) δ -6.77 (d, ²*J*_{*P-P*} = 20.5 Hz), -10.99 (d, ²*J*_{*P-P*} = 21.7 Hz).

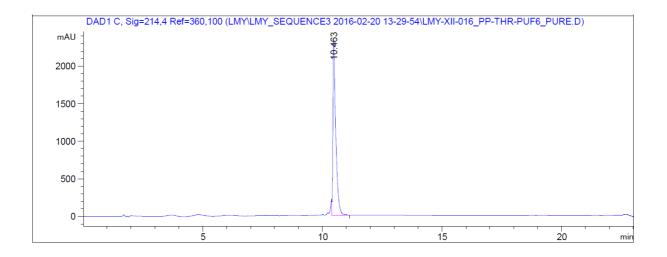

Peptide **PP-5** (RSHHDDEEESppSEKK)


The purity of the isolated peptide was confirmed by analytical HPLC [C18; t = 0 min 3% of solvent B in solvent A; t = 13 min 15% of solvent B in solvent A; 1 mL/min; 214 nm; $T_R = 8.637$ min], and the identity of pyrophosphopeptide **PP-5** was confirmed by mass spectrometry (HRMS [M+2H]²⁺ calcd for C₉₅H₁₅₁N₂₃O₅₁P₂²⁺ 936.8362, found 936.8294; [M+3H]³⁺ calcd for C₉₅H₁₅₂N₂₃O₅₁P₂³⁺ 624.8908, found 624.8833; [M+Na+3H]⁴⁺ calcd for C₉₅H₁₅₂N₂₃NaO₅₁P₂⁴⁺ 468.9181, found 468.9133) and ³¹P NMR (202 MHz, H₂O, pH = 7.91) δ -6.27 (d, ²J_{P-P} = 21.8 Hz), -10.76 (d, ²J_{P-P} = 21.4 Hz).


Peptide **PP-6** (SKVEDAEYEppSSDDEDEKLDK)


The purity of the isolated peptide was confirmed by analytical HPLC [C18; t = 0 min 0% of solvent B in solvent A; t = 20 min 47% of solvent B in solvent A; 1 mL/min; 214 nm; $T_R = 10.351$ min], and the identity of pyrophosphopeptide **PP-6** was confirmed by mass spectrometry (HRMS $[M+2H]^{2+}$ calcd for $C_{95}H_{151}N_{23}O_{51}P_2^{2+}$ 1246.4714, found 1246.4687; $[M+3H]^{3+}$ calcd for $C_{95}H_{152}N_{23}O_{51}P_2^{3+}$ 831.3167, found 831.3180; $[M+Na+3H]^{4+}$ calcd for $C_{95}H_{152}N_{23}NaO_{51}P_2^{4+}$ 629.2348, found 629.7307) and ³¹P NMR (202 MHz, H₂O, pH = 7.94) δ -6.64 (d, ${}^{2}J_{P-P} = 21.7$ Hz), -10.78 (d, ${}^{2}J_{P-P} = 21.5$ Hz).


Peptide **PP-7** (SHHDDEEESppSEKKK)


Using Procedure B, pyrophosphopeptide **xxx** was prepared from phosphopeptide **xxx** (11.5 mg, 6.52 µmol) in 2 steps as previously described⁵ to give the title peptide in 28% yield (3.40 mg, 1.84 µmol) over two steps as a white solid. The purity of the isolated peptide was determined by analytical HPLC [C18; t = 0 min 0% of solvent B in solvent A; t = 20 min 30% of solvent B in solvent A; 1 mL/min; 214 nm; $T_R = 8.830$ min], and the identity of pyrophosphopeptide **PP-7** was confirmed by mass spectrometry (HRMS [M+2H]²⁺ calcd for C₆₇H₁₀₉N₂₁O₃₆P₂²⁺ 922.8404, found 922.8409; [M+3H]³⁺ calcd for C₆₇H₁₁₀N₂₁O₃₆P₂³⁺ 615.5627, found 615.5619; [M+4H]⁴⁺ calcd for C₆₇H₁₁₁N₂₁O₃₆P₂⁴⁺ 461.9238, found 461.9221) and ³¹P NMR (202 MHz, H₂O, pH = 7.75) δ -6.43 (d, ²*J*_{*P*-*P*} = 21.5 Hz), -10.86 (d, ²*J*_{*P*-*P*} = 21.5 Hz).

Peptide PP-8 (ISIDppTSDEESELSKK)

The purity of the isolated peptide was confirmed by analytical HPLC [C18; t = 0 min 0% of solvent B in solvent A; t = 20 min 47% of solvent B in solvent A; 1 mL/min; 214 nm; $T_R = 10.463$ min], and the identity of pyrophosphopeptide **PP-8** was confirmed by mass spectrometry (HRMS [M+2H]²⁺ calcd for C₆₉H₁₂₁N₁₇O₃₇P₂²⁺ 921.8820, found 921.0145; [M+3H]³⁺ calcd for C₆₈H₁₁₉N₁₇O₃₇P₂²⁺ 614.2549, found 614.3337) and ³¹P NMR (202 MHz, H₂O, pH = 7.91) δ -6.97 (d, ²*J*_{*P-P*} = 20.4 Hz), -11.73 (d, ²*J*_{*P-P*} = 20.5 Hz).

