Supporting Information

Ultra-Sensitive Room-Temperature Operable Gas Sensors using

p-Type Na:ZnO Nanoflowers for Diabetes Detection

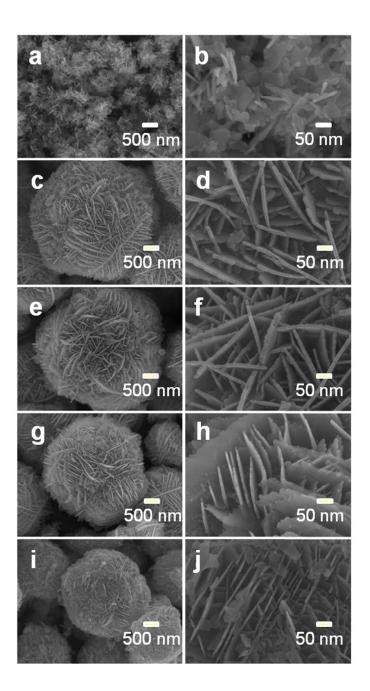
Rawat Jaisutti^{1,2,†}, Minkyung Lee^{3,†}, Jaeyoung Kim³, Seungbeom Choi³, Tae-Jun Ha⁴, Jaekyun Kim⁵, Hyoungsub Kim², Sung Kyu Park^{6,*}, and Yong-Hoon Kim^{2,3,*}

- ¹Department of Physics, Faculty of Science and Technology, Thammasat University, Pathum Thani, Thailand
- ²School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Korea
- ³SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Korea
- ⁴Department of Electronic Materials Engineering, Kwangwoon University, Seoul, Korea
- ⁵Department of Photonics and Nanoelectronics, Hanyang University, Ansan, Korea
- ⁶School of Electrical and Electronic Engineering, Chung-Ang University, Seoul, Korea

*Corresponding authors:

E-mail: yhkim76@skku.edu

E-mail: skpark@cau.ac.kr


Table S1. Hall-effect measurement data of Na:ZnO NFs performed under a magnetic field of

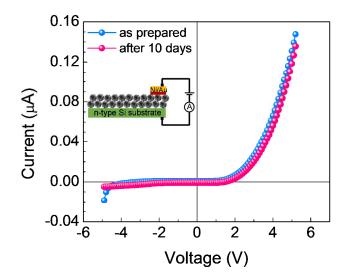
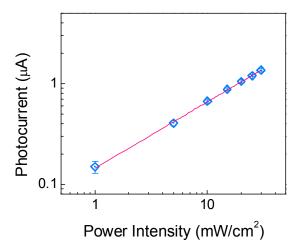
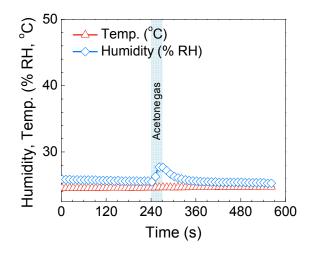
1.5 T at room temperature.

Sample number	Resistivity (×10 ⁴ Ω -cm)	Hole concentration (cm ⁻³)	Mobility ($cm^2 V^{-1}s^{-1}$)
#1	1.52-2.71	2.49×10^{16} - 6.72×10^{17}	0.09-1.87
#2	0.97-1.89	$5.32 \times 10^{16} - 7.51 \times 10^{17}$	0.23-2.35
#3	1.28-2.14	$3.48 \times 10^{16} - 5.95 \times 10^{17}$	0.15-2.08

Table S2. Compositional analysis data for Na:ZnO NFs characterized by XPS.

Elements	C 1s	Na 1s	Zn 2p	O 1s
at.%	12.94	0.67	40.96	45.43

Figure S1. FESEM images of the Na:ZnO NFs synthesized with different $M_{\text{NaCi}}/M_{\text{ZnAc}}$ ratios: (a–b) 0, (c–d) 0.3, (e–f) 1.2, (g–h) 2.4, and (i–j) 4.8.

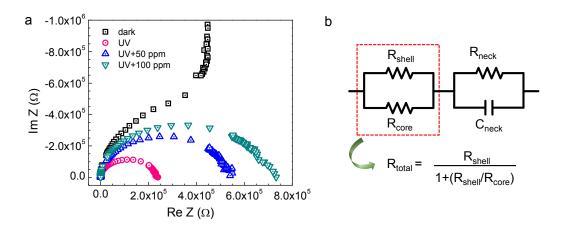

Figure S2. *I-V* characteristics of p-type Na:ZnO NF/n-type Si heterojunction devices.

Figure S3. Power-law relationship of I_{ph} with P_L of a Na:ZnO NF sensor, $I_{ph} \propto P_L^{0.66}$.

Figure S4. The relative humidity (%*RH*) and temperature variation inside the sensing chamber during the operation of a Na:ZnO NF sensor exposed to 100 ppm acetone gas (UV intensity of 5 mW cm⁻²).

Figure S5. (a) AC impedance spectroscopy data, and (b) an RC model for the Na:ZnO NF gas sensor. The R_{shell} , R_{core} and R_{neck} represent the resistance of shell, core and neck of NFs, respectively. Also, the C_{neck} represents the capacitance of neck between the inter-grain NFs.