Supporting Information

One-Step Interface Engineering for All-Inkjet-Printed All-Organic Components in Transparent, Flexible Transistors and Inverters: Polymer Binding

Jewook Ha,^{\sharp, \dagger} Seungjun Chung,^{\S, \dagger} Mingyuan Pei,^{\bot} Kilwon Cho,^{II} Hoichang Yang,^{$\bot, *$} and

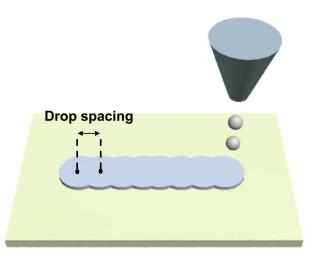
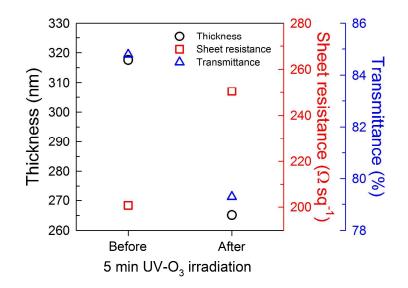
Yongtaek Hong^{‡,*}

[‡]Department of Electrical and Computer Engineering (ECE), Inter-university Semiconductor Research Center (ISRC), Seoul National University, Seoul 08826, Republic of Korea, [§]Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea, [⊥]Department of Applied Organic Materials Engineering, Inha University, Incheon 22212, Republic of Korea, [∥]Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea

Corresponding Author

*(Y.H.) E-mail: yongtaek@snu.ac.kr; Phone: +82-2-880-9567

*(H.Y.) E-mail: hcyang@inha.ac.kr; Phone: +82-32-860-7494

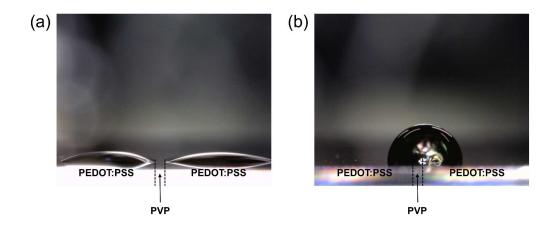

Figure S1. Definition of a drop spacing in the inkjet-printing procedure.

Table S1. The detailed jetting parameters to inkjet-print each layer in this study. Note that a piezoelectric inkjet head contains 16 jetting nozzles, with a diameter of 21 μ m, which jet individual ink drops of 10 pL volume.

Jetting parameter	Layer					
Jetting parameter	PEDOT:PSS	PVP	PS-Si(CH ₃) ₂ Cl	TIPS pentacene		
# of nozzles	4	8	16	16		
drop velocity [m s ⁻¹]	12	8	5	5		
frequency [kHz]	5	5	5	5		
drop spacing [µm]	25	25	5	5		
substrate temperature [°C]	RT	RT	RT	RT		

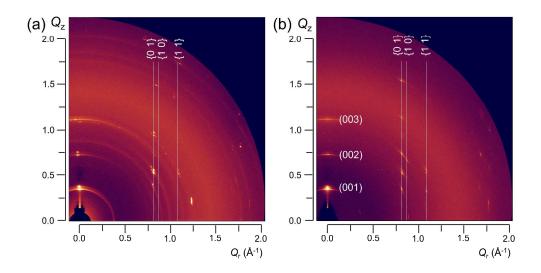
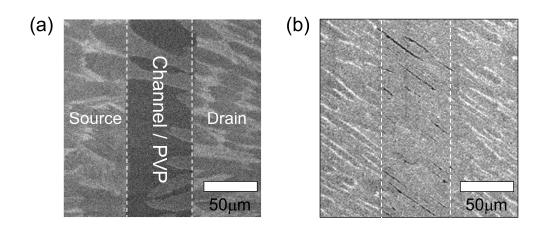

Figure S2. Variations in transmittance and sheet resistance of inkjet-printed PEDOT:PSS layer before and after UV-O₃ irradiation for 5 min.

Figure S3. Discernible wetting behaviors of water droplets located on (a) untreated and (b) treated PEDOT:PSS and PVP surfaces.


As shown in Figure S3a, a water droplet was split and preferentially located to hydrophilic PEDOT:PSS sides. In contrast, a similar volume of water formed a singular water droplet with a

contact angle of approximately 91° on the polymer-treated PEDOT:PSS and PVP surfaces (Figure S3b).

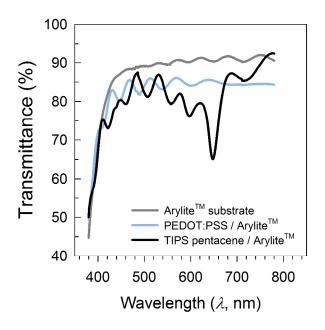


Figure S4. 2D GIXD patterns of TIPS pentacene films inkjet-printed on (a) untreated and (b) PS-Si(CH₃)₂Cl-treated surfaces.

Synchrotron-based 2D GIXD (Pohang Accelerator Laboratory, 9A, Korea) was conducted on TIPS pentacene films inkjet-printed onto the untreated and PS-Si(CH₃)₂Cl-treated surfaces. Typical area of a TIPS pentacene layer inkjet-printed on a single TFT was approximately $1,500 \times 1,500 \mu m^2$, which was hard to be aligned using the GIXD mode with an incident angle of X-ray. Due to this reason, we inkjet-printed $3,000 \times 5,000 \mu m^2$ patterned layers of TIPS pentacene on both the untreated and PS-Si(CH₃)₂Cl-treated surfaces, which had the same geometry with TFTs used in this study. As shown in Figure S4, TIPS pentacene films on the PS-Si(CH₃)₂Cl-treated surface showed highly ordered crystal structure (Figure S4b), in comparison to the untreated system containing less-ordered crystals, as determined by the broad X-ray reflection along the Debye rings (Figure S4a).

Figure S5. SEM images of the TIPS pentacene channel layers near the contact region inkjetprinted on (a) without and (b) with PS-treated surfaces.

Figure S6. Transmittances of bare AryliteTM film, inkjet-printed PEDOT:PSS, and TIPS pentacene films on the AryliteTM substrate.

Calculation of E_r

From the unloading curve in Figure 4d, the elastic stiffness (S) can be defined as the slope of the tangential line at the uppermost portion of the unloading curve:^{R1}

$$S = \frac{dP}{dH}$$
(S1)

where *P* and *H* are the load force and displacement, respectively.

The loading-unloading process is illustrated schematically in Figure S7. Note that the depth at a final unloaded state (H_f) usually shows a non-zero value due to a plastic deformation observed during the previous loading cycle. The unloading curve can be modeled using a power law relation:

$$P = \alpha (H - H_f)^m \tag{S2}$$

where α and *m* are power law fitting parameters.

Sink-in depth (H_s) is expressed as follows:

$$H_s = \varepsilon \frac{P_{\text{max}}}{s} \tag{S3}$$

where ε is a parameter related to the indenter geometry.

The vertical displacement of the contact depth (H_c) can be calculated from H_s and the maximum depth (H_{max}) :

$$H_c = H_{\max} - H_s = H_{\max} - \varepsilon \frac{P_{\max}}{s}$$
(S4)

Finally, E_r can be calculated by the following equation:

$$E_r = \frac{s}{2\beta} \sqrt{\frac{\pi}{A_p(H_c)}}$$
(S5)

where β and $A_p(H_c)$ represent a geometrical constant and the projected area at the H_c during loading, respectively.

The measured and extracted parameters of the inkjet-printed PEDOT:PSS and Ag electrodes are summarized in Table S2.

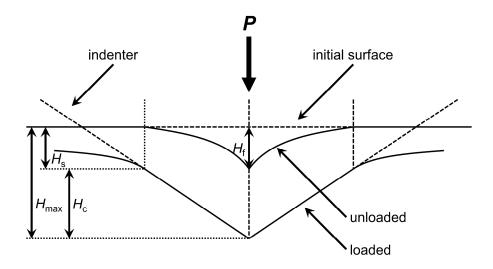
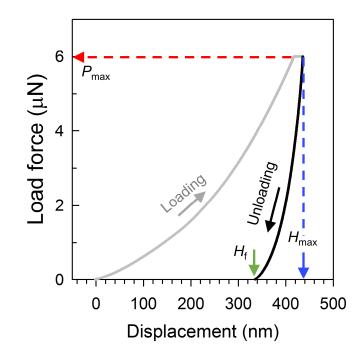
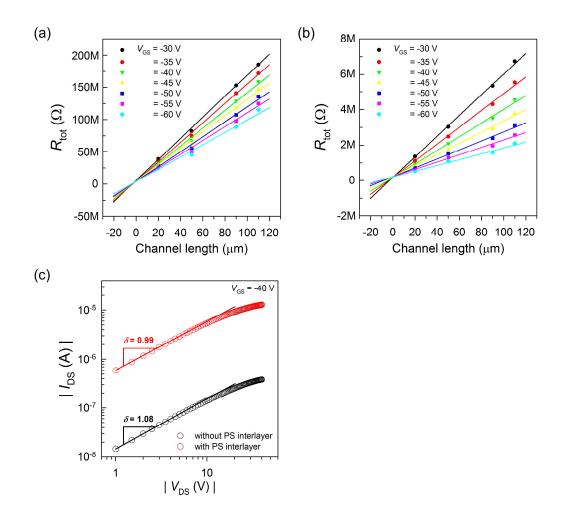



Figure S7. Schematic illustration of the loading-unloading process during a nano-indentation.

Table S2. E_r values of the inkjet-printed PEDOT:PSS and Ag electrodes based on the measuredparameters

Parameters	Inkjet-printed PEDOT:PSS	Inkjet-printed Ag
E _r (Gpa)	0.61	47.5
$H_{\rm c} ({\rm nm})$	193.3	298.24
$S (\mu \text{N nm}^{-1})$	0.8	156.15
P_{\max} (mN)	0.1	6.0
H_{\max} (nm)	287.6	405.83
$A_{\rm p}(H_{\rm c})~(\mu{\rm m}^2)$	1.25	5.03


Figure S8. Force – displacement curve of an approximately 400-nm-thick Ag layer on the AryliteTM film during a nano-indenting cycle of loading-unloading.

Calculation of $N_{\rm SS}^{\rm max}$

From an amorphous silicon transistor model, N_{SS}^{max} can be estimated from the following equation:^{R2}

$$N_{SS}^{\max} = \left(\frac{SS\log e}{kT/q}\right) \frac{C_{ins}}{q^2}$$
(S6)

where k, T, q, and C_{ins} represent the Boltzmann constant, the absolute temperature, the electron charge, and the capacitance of the gate dielectric, respectively. From the measured SS and the $N_{\text{SS}}^{\text{max}}$ values of OTFTs on the untreated and treated surfaces were calculated to be 2.03×10^{12} and 5.12×10^{11} cm⁻² eV⁻¹, respectively.

Figure S9. (a, b) TLM results for OTFTs on (a) untreated and (b) treated surfaces. (c) $I_{DS} - V_{DS}$ relationship in log scale of OTFTs.

The R_c values between the PEDOT:PSS *S/D* electrodes and TIPS pentacene semiconductor layer were extracted using TLM. In a linear regime, the total resistance (R_{tot}) is expressed as a summation of the channel resistance (R_{ch}) and the R_c .^{R3}

$$R_{tot} = R_{ch} + R_c = \frac{1}{\mu_{FET} W C_{ins} (V_{GS} - V_{th} - V_{DS} / 2)} L + R_c$$
(S7)

Based on Equation S7, R_c can be extracted from the y-intercept of the $R_{tot} - L$ graph. Figures S9a and S9b show the $R_{tot} - L$ graphs of the OTFTs on untreated and treated surfaces at $V_{DS} = -5$

V, respectively. The resulting R_c values of the OTFTs on the untreated and treated surfaces were extracted to be 208 and 16.2 k Ω cm, respectively. The observed R_c values were comparable to those of bottom-contact and top-contact OTFTs with evaporated Au electrodes, respectively.^{R4}

Additionally, the $I_{\rm DS} - V_{\rm DS}$ relationship (Figure S9c) strongly supports that the PS interlayer enhanced the contact property between the S/D electrodes and the semiconductor layer. Assuming $I_{\rm DS} \propto V_{\rm DS}^{\delta}$, a δ value close to 1 indicates that the output characteristic shows good linearity in the low $V_{\rm DS}$ regime. From the graph, δ values of the OTFTs changed from 1.07 to 0.99 by introducing the PS interlayer.

Substrate	Electrode	Semiconductor	$\mu_{ m FET}$	$I_{\rm on}/I_{\rm off}$	R _c	Reference
			$[cm^2 V^{-1} s^{-1}]$		$[k\Omega \ cm]$	
Arylite TM	PEDOT:PSS	TIPS pentacene	0.27	$> 10^{6}$	16.2	This work
Arylite TM	PEDOT:PSS	Pentacene	0.035	$\sim 10^{6}$	~ 1000	R5
PES	PEDOT:PSS	TIPS pentacene	0.05	$\sim 10^4$	N/A	R6
PET	PEDOT:PSS	TIPS pentacene	0.0078	$\sim 10^4$	N/A	R7
Arylite TM	Graphene	Pentacene	0.12	$\sim 10^4$	8~20	R8
Glass	ITO	P3HT	0.01	$\sim 10^4$	N/A	R9
Glass	ITO	Pentacene	0.226	N/A	260	R10
Glass	Sb ₂ O ₃ /Ag/Sb ₂ O ₃	Pentacene	0.3	$\sim 10^3$	N/A	R11
Glass	WO ₃ /Ag/WO ₃	PSeTPTI	0.038	$\sim 2\times 10^6$	N/A	R12
Glass	WO ₃ /Ag/WO ₃	Pentacene	0.0844	1.2×10^{6}	252000	R13
Glass	Ag network	DNTT	0.12	> 10 ⁷	N/A	R14

Table S3. Comparative electrical characteristics of previously reported transparent OTFTs

Noise Margin

The terminology 'noise' in logic circuits means unwanted variations in voltage or current at logic nodes. If the magnitude of noise is larger than a critical value, known as the noise margin (*NM*) of the logic circuit, it will cause logic errors. When the noise value is smaller than *NM*, the noise will be attenuated as it passes from input to output. As a result, *NM* is used as a factor to specify the range over which the logic circuits will function properly.

For a noiseless system, we can write the equation for an inverter as:

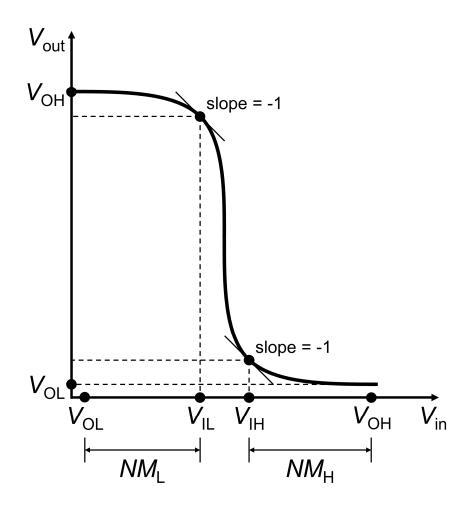
$$V_{out} = f(V_{in}) \tag{S8}$$

With noise v_n added, a noisy output is produced as

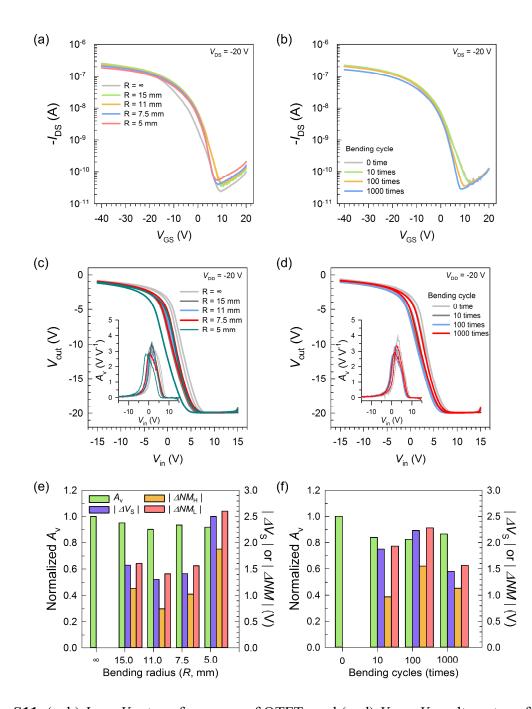
$$V'_{out} = f(V_{in} + v_n) \tag{S9}$$

A Taylor series expansion of the output function allows us to examine the important factors determining V_{out} in the presence of noise:

$$V_{out}' = f(V_{in}) + v_n \frac{\partial V_{out}}{\partial V_{in}} + v_n \frac{\partial^2 V_{out}}{\partial V_{in}^2} + \cdots$$
(S10)


Because the noise is small, higher-order terms could be ignored. Then, the noisy output could be simplified by the noiseless output plus the noise mulitiplied by A_v of the inverter. Therefore, if the inverter is operated in the region where $|A_v| < 1$, the circuit will attenuate the noise and hold the output in the desired range.

There are two unity gain points, where $A_v = -1$ (Figure S10). The two points are defined as voltage input low (V_{IL}) and voltage input high (V_{IH}). These two unity gain points, the voltage output high (V_{OH}), and the voltage output low (V_{OL}) can be used to define the *NM*s as follows:


$$NM_{H} = V_{OH} - V_{IH} \tag{S11}$$

$$NM_L = V_{IL} - V_{OL} \tag{S12}$$

S-11

Figure S10. Definition of *NM* in a voltage – transfer curve.

Figure S11. (a, b) $I_{DS} - V_{GS}$ transfer curves of OTFTs and (c, d) $V_{out} - V_{in}$ voltage-transfer curves of organic inverters on the untreated surfaces (a, c) in a bent state with various *R* values, and (b, d) after different bending cycles at R = 5 mm (the insets in (c) and (d) represent the corresponding $A_v - V_{in}$ curves). (e, f) Subsequent relative changes in the electrical characteristics of the inverters.

REFERENCES

(R1) Oliver, W. C.; Pharr, G. M. Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology. *J. Mater. Res.* **2004**, *19*, 3–20.

(R2) Rolland, A.; Richard, J.; Kleider, J. P.; Mencaraglia, D. Electrical Properties of a-Si Transistors and MIS-Devices: Comparative Study of Top Nitride and Bottom Nitride Configurations. *J. Electrochem. Soc.* **1993**, *140*, 3679–3683.

(R3) Gundlach, D. J.; Zhou, L.; Nichols, J. A.; Jackson, T. N.; Necliudov, P. V.; Shur, M. S. An Experimental Study of Contact Effects in Organic Thin Film Transistors. *J. Appl. Phys.* 2006, *100*, 024509.

(R4) Chung, S.; Jeong, J.; Kim, D.; Park, Y.; Lee, C.; Hong, Y. Contact Resistance of Inkjet-Printed Silver Source–Drain Electrodes in Bottom-Contact OTFTs. *J. Disp. Technol.* **2012**, *8*, 48–53.

(R5) Lim, S.; Kang, B.; Kwak, D.; Lee, W. H.; Lim, J. A.; Cho, K. Inkjet-Printed Reduced Graphene Oxide/Poly(Vinyl Alcohol) Composite Electrodes for Flexible Transparent Organic Field-Effect Transistors. *J. Phys. Chem. C* **2012**, *116*, 7520–7525.

(R6) Han, J. I.; Kim, Y.-H.; Park, S. K. Enhanced Stability of All Solution-Processed Organic Thin-Film Transistors Using Highly Conductive Modified Polymer Electrodes. *Jpn. J. Appl. Phys.* **2012**, *51*, 091602.

(R7) Basiricò, L.; Cosseddu, P.; Fraboni, B.; Bonfiglio, A. Inkjet Printing of Transparent,
 Flexible, Organic Transistors. *Thin Solid Films* 2011, *520*, 1291–1294.

(R8) Lee, W. H.; Park, J.; Sim, S. H.; Jo, S. B.; Kim, K. S.; Hong, B. H.; Cho, K. Transparent Flexible Organic Transistors Based on Monolayer Graphene Electrodes on Plastic. *Adv. Mater.*2011, *23*, 1752–1756.

(R9) Seo, J.; Song, M.; Lee, C.; Nam, S.; Kim, H.; Park, S.-Y.; Kang, I.-K.; Lee, J.-H.; Kim,
Y. Physical Force-Sensitive Touch Responses in Liquid Crystal-Gated-Organic Field-Effect
Transistors with Polymer Dipole Control Layers. *Org. Electron.* 2016, *28*, 184–188.

(R10) Li, Y.-C.; Lin, Y.-J.; Wei, C.-Y.; Lin, Z.-X.; Wen, T.-C.; Chang, M.-Y.; Tsai, C.-L.; Wang, Y.-H. Performance Improvement in Transparent Organic Thin-Film Transistors with Indium Tin Oxide/Fullerene Source/Drain Contact. *Appl. Phys. Lett.* **2009**, *95*, 163303.

(R11) Zhang, N.; Hu, Y.; Lin, J.; Li, Y.; Liu, X. Transparent Ambipolar Organic Thin Film Transistors Based on Multilayer Transparent Source-Drain Electrodes. *Appl. Phys. Lett.* **2016**, *109*, 063301.

(R12) Qi, Z.; Cao, J.; Li, H.; Ding, L.; Wang, J. Solution-Processed Ultrathin Organic Semiconductor Film: Toward All-Transparent Highly Stable Transistors. *Adv. Electron. Mater.*2015, *1*, 1500173.

(R13) Zhang, N.; Hu, Y.; Liu, X. Transparent Organic Thin Film Transistors with WO3/Ag/WO3 Source-Drain Electrodes Fabricated by Thermal Evaporation. *Appl. Phys. Lett.*2013, 103, 033301.

(R14) Pei, K.; Wang, Z.; Ren, X.; Zhang, Z.; Peng, B.; Chan, P. K. L. Fully Transparent Organic Transistors with Junction-Free Metallic Network Electrodes. *Appl. Phys. Lett.* **2015**, *107*, 033302.