Supporting Information

Enhancement of Ferroelectricity for Orthorhombic $(Tb_{0.861}Mn_{0.121})MnO_{3-\delta}$ by Copper Doping

Jianming Deng,^b Muhammad Asim Farid,^a Meng Zhang,^c Aimei Yang,^b Hongxing Zhang,^a Hao Zhang,^a Gengfang Tian^d, Meimei Wu^d, Laijun Liu,^b Junliang Sun,^a Guobao Li^{*,a}, Fuhui Liao^a, Jianhua Lin^{*,a}

^aBeijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China

^bCollege of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China

^cDepartment of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044, P. R. China

^dNeutron Scattering Laboratory, Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, PR China

Email: <u>liguobao@pku.edu.cn</u>, and <u>jhlin@pku.edu.cn</u>; Tel: (8610)62750342, Fax: (8610)62753541.

Contents

1.	The refinement details of the X-ray diffraction data for C1 to C7	2
2.	The X-ray diffraction data for $Mn_{3-x}Tb_xO_4$ and $Mn_{3-y}Cu_yO_4$	8
3.	The magnetic and dielectric property of Mn _{3-x} Cu _x O ₄ (x=0.02)	9
4.	The refinement details of the neutron diffraction data for C3 at selected temperatures	.10
5.	The refinement details of the neutron diffraction data for C5 at selected temperature	.22

1. The refinement details of the X-ray diffraction data for C1 to C7

The Powder X-ray powder diffraction data collected at room temperature for C1 to C7 and neutron diffraction data collected at 300K for C5 are refined using GSAS software. The refinement details listed in Table S1 and S2. The corresponding Rietveld plots are shown in Figure S1, S2, ..., S7. In all Rietveld plots the symbol + represents the observed value, the red solid line represents the calculated value; the marks below the diffraction patterns are the calculated reflection positions, and the difference curve is shown as blue color line at the bottom of the figure.

It should be mentioned that the refinement for multiphase is very difficult. Usually for the minor phase, only lattice parameters are refined. The atom's coordination is not refined. Of cause the ratio among the different phases should be refined.

	C1	C2	C3	C4
Lattice	a=5.74291(10),	a=5.74592(9),	a=5.74924(12),	a=5.75244(9),
parameter	b=7.42546(11),	b=7.43082(12),	b=7.43126(10),	b=7.4240(10),
(Å)	c=5.29501(8)	c=5.30285(9)	c=5.30653(8)	c=5.30256(8)
Atom	x, y, z	x, y, z	x, y, z	x, y, z
Tb/Mn/Cu1 ^a	0.0737(3), 0.2500,	0.0743(3), 0.2500,	0.0744(4), 0.2500	0.0742(3), 0.2500,
	0.9821(2)	0.9837(3)	0.9843(1)	0.9831(3)
Mn/Cu2 ^b	0.0000, 0.0000,	0.0000, 0.0000,	0.0000, 0.0000,	0.0000, 0.0000,
	0.5000	0.5000	0.5000	0.5000
01	0.4532(3), 0.2500,	0.4551(2), 0.2500,	0.4483(3), 0.2500,	0.4499(2), 0.2500,
	0.1068(3)	0.0992(2)	0.0983(3)	0.1017(8)
02	0.3358(3),	0.3259(3),	0.3329(3),	0.3292(3),
	0.0479(3),	0.0498(2),	0.0520(3),	0.0514(2),
	0.7278(3)	0.7158(3)	0.7126(3)	0.7183(3)
R factor ^c	R _{wp} =0.019,	R _{wp} =0.019,	R _{wp} =0.020,	R _{wp} =0.028,
	$R_p = 0.011$	$R_p = 0.011$	$R_{p} = 0.012$	$R_{p}=0.024$

Table S1 Rietveld refinement details of the X-ray diffraction data for C1, C2, C3 and C4 in Pnma

^aThe occupancy of Tb/Mn/Cu1 is 0.861/0.121/0.000 for C1, 0.861/0.096/0.025 for C2, 0.861/0.081/0.040 for C3, and 0.861/0.081/0.040 for C4.

^bThe occupancy of Mn/Cu2 is 1.000/0.000 for C1, 1.000/0.000 for C2, 0.990/0.010 for C3, and 0.965/0.035 for C4.

	C5 ^{f,g}	C6 ^g	C7 ^g
Phase 1	$\frac{CO}{Tb_{0.861}Mn_{0.121}Mn_{1.2}Cu_{y}O_{3.8}}$	$\frac{1}{100} \frac{1}{100} \frac{1}$	$Tb_{0.861}Mn_{0.121}Mn_{1-x}Cu_{x}O_{3-\delta}$
Space group	Pnma	Pnma	Pnma
Lattice	a = 5.75520(9).	a=5.75805(9).	a=5.75809(9).
parameter	b = 7.41535(11).	b = 7.40974(11)	b = 7.40975(11).
(Å)	c = 5.29917(8)	c = 5.29686(8)	c = 5.29690(8)
Atom	X, Y, Z	X, Y, Z	X, Y, Z
Tb/Mn/Cu1 ^a	0.0758(3), 0.2500,	0.0761(3), 0.2500,	0.0761(3), 0.2500,
	0.9825(3)	0.9816(3)	0.9816(3)
Mn/Cu2 ^b	0.0000, 0.0000, 0.5000	0.0000, 0.0000, 0.5000	0.0000, 0.0000, 0.5000
01	0.4525(3), 0.2500,	0.4340(3), 0.2500,	0.4340(3), 0.2500,
	0.0994(3)	0.0864(3)	0.0864(3)
02	0.3348(3), 0.0564(3),	0.3291(3), 0.0572(3),	0.3291(3), 0.0572(3),
	0.7065(3)	0.7081(3)	0.7081(3)
Phase 2	Mn _{3-x-v} Tb _x Cu _v O ₄	Mn _{3-x-y} Tb _x Cu _y O ₄	Mn _{3-x-y} Tb _x Cu _y O ₄
Space group	I4 ₁ /amd	I4 ₁ /amd	I4 ₁ /amd
Lattice	a=5.76768(8),	a=5.77593(8),	a=5.78760(8),
parameter	c=9.44339(8)	c=9.44483(8)	c=9.46440(8)
(Å)			
Mn/Tb/Cu1 ^c	0.0000, 0.2500, 0.8750(3)	0.0000, 0.2500, 0.8750(3)	0.0000, 0.2500, 0.8750(3)
Mn/Tb/Cu2	0.0000, 0.5000, 0.5000	0.0000, 0.5000, 0.5000	0.0000, 0.5000, 0.5000
0	0.0000, 0.4746(3),	0.0000, 0.4746(3),	0.0000, 0.4746(3),
	0.2637(3)	0.2637(3)	0.2637(3)
Phase 3		$Tb_2CuO_4^{d}$	$Tb_2CuO_4^{d}$
Space group		I4/mmm	I4/mmm
Lattice		<i>a</i> =3.91686(8),	<i>a</i> =3.91686(8),
parameter		<i>b</i> =3.91686(8),	<i>b</i> =3.91686(8),
(Å)		<i>c</i> =11.72331(13)	<i>c</i> =11.72331(13)
Atom		x, y, z	x, y, z
Eu		0.0000, 0.0000, 0.3507(3)	0.0000, 0.0000, 0.3507(3)
Cu		0.0000, 0.0000, 0.0000	0.0000, 0.0000, 0.0000
01		0.0000, 0.5000, 0.0000	0.0000, 0.5000, 0.0000
02		0.0000, 0.0000, 0.1711(3)	0.0000, 0.0000, 0.1711(3)
Phase 4		CuO	CuO
Space group		C2/c	C2/c
Lattice		<i>a</i> =4.69576(9),	<i>a</i> =4.67877(9),
parameter(Å)		b=3.41800(8).	b=3.42702(8),
. ()		c=5.12561(9),	c=5.12876(9),
		$\beta = 99.43(1)^{\circ}$	$\beta = 99.43(1)^{\circ}$
Atom		X, V, Z	X, V, Z
Cu		0.2500, 0.2500, 0.000	0.2500, 0.2500, 0.000
0		0.0000, 0.4181(3), 0.2500	0.0000, 0.4181(3), 0.2500
R factor ^e	$R_{wn}=0.021, R_{n}=0.011$	$R_{wn}=0.026, R_{n}=0.013$	$R_{wp}=0.031.R_{p}=0.015$

Table S2 Rietveld refinement details of the X-ray diffraction data for C5, C6 and C7

^aThe occupancy of Tb/Mn/Cu1 is 0.861/0.081/0.040 for C5, C6, and C7

^bThe occupancy of Mn/Cu2 is 0.940/0.060 for C5, 0.920/0.080 C6and C7.

^cThe occupancy of Mn/Tb/Cu1 and Mn/Tb/Cu2 is set to 0.975/0.005/0.02.

Table S2.

^gThe ratios of Phase 1: Phase 2: Phase 3: Phase 4 are 72.88:1.00:0.00:0.00 for C5, 268.17:1.00:3.75:67.15 for C6, and 78.24: 1.00: 0.17: 38.32 for C7.

^dThe atom coordination for Tb₂CuO₄ is referenced to $Sm_{2-x}Sr_xNiO_{4+\delta}$ with the same structure (H. Lou et al, *J. Mater. Chem.* 1997, 7, 2097.). ^e R_p is sum($|I_0$ - $I_C|$)/sum(I_0), and R_{wp} is weighted R factors for X-ray diffraction data. ^fThe neutron diffraction data for C5 at 300K were also refined well with the parameters listed in the

Figure S1 Rietveld plots of powder X-ray diffraction patterns (λ_1 =1.5405 Å and λ_2 =1.5443 Å) for C1 at room temperature.

Figure S2 Rietveld plots of powder X-ray diffraction patterns (λ_1 =1.5405 Å and λ_2 =1.5443 Å) for C2 at room temperature.

Figure S3 Rietveld plots of powder X-ray diffraction patterns (λ_1 =1.5405 Å and λ_2 =1.5443 Å) for C3 at room temperature.

Figure S4 Rietveld plots of powder X-ray diffraction patterns (λ_1 =1.5405 Å and λ_2 =1.5443 Å) for C4 at room temperature.

Figure S5. Rietveld plot of the X-ray (a) and neutron (b) diffraction data for C5 around room temperature.

Figure S6 Rietveld plots of powder X-ray diffraction patterns (λ_1 =1.5405 Å and λ_2 =1.5443 Å) for C6 at room temperature. The symbol + represents the observed value, the solid line represents the calculated value; the marks below the diffraction patterns are the calculated reflection positions for Tb_{0.861}Mn_{0.121}Mn_{1-x}Cu_xO_{3-δ} (the fourth line (from upper to low)), CuO (the third line), Tb₂CuO₄ (the second line), Mn_{3-x-y}Tb_xCu_yO₄ (the first line), and the difference curve is shown at the bottom of the figure.

Figure S7a Rietveld plots of powder X-ray diffraction patterns (λ_1 =1.5405 Å and λ_2 =1.5443 Å) for C7 at room temperature. The symbol + represents the observed value, the solid line represents the calculated value; the marks below the diffraction patterns are the calculated reflection positions for Tb_{0.861}Mn_{0.121}Mn_{1-x}Cu_xO_{3-δ} (the fourth line (from upper to low)), CuO (the third line), Tb₂CuO₄ (the second line), Mn_{3-x-y}Tb_xCu_yO₄ (the first line), and the difference curve is shown at the bottom of the figure.

Figure S7b Enlarged figure of Figure S7. The symbol + represents the observed value, the solid line represents the calculated value; the marks below the diffraction patterns are the calculated reflection positions for $Tb_{0.861}Mn_{0.121}Mn_{1-x}Cu_xO_{3-\delta}$ (the fourth line (from upper to low)), CuO (the third line), Tb_2CuO_4 (the second line), $Mn_{3-x-y}Tb_xCu_yO_4$ (the first line), and the difference curve is shown at the bottom of the figure.

2. The X-ray diffraction data for $Mn_{3-x}Tb_xO_4$ and $Mn_{3-v}Cu_vO_4$

Because the neutron diffraction data for C3 and C5 show there is $Mn_{3-x-y}Tb_xCu_yO_4$ existed as impurity in the samples (although it is hard to see from the X-ray diffraction data), the samples with the nominal formula $Mn_{3-x}Tb_xO_4$ (x=0.00, 0.01, 0.02, 0.04, 0.06, 0.08, 0.10) and $Mn_{3-y}Cu_yO_4$ (y=0.00, 0.01, 0.02, 0.04, 0.06, 0.08) were synthesized at the same condition used for the preparation of $(Tb_{0.861}Mn_{0.121})Mn_{1-x}Cu_xO_{3-\delta}$ to check if magnetic peak around 80 K is related to $Mn_{3-x-y}Tb_xCu_yO_4$. The X-ray diffraction data are presented in Figure S8a and S8b. The magnetic and dielectric property of one pure sample is shown in Figure S8c and S8d in next section. It is found that for $Mn_{3-x}Tb_xO_4$, only the sample with x=0.00 is one phase (Mn_3O_4 in space group $I4_1/amd$), all others are two phase (Mn_3O_4 and $TbMnO_3$). This result indicates that only very less Tb (less than 0.01) can be doped into Mn_3O_4 .

Figure S8a X-ray diffraction data for the samples with the nominal formula $Mn_{3-x}Tb_xO_4$ (x=0.00, 0.01, 0.02, 0.04, 0.06, 0.08, 0.10).

Figure S8b X-ray diffraction data for the samples with the nominal formula $Mn_{3-y}Cu_yO_4$ (y=0.00, 0.01, 0.02, 0.04, 0.06, 0.08).

However, for $Mn_{3-y}Cu_yO_4$, three samples (x=0.00, 0.01, and 0.02) are one phase (Mn₃O₄ in space group *I4*₁/*amd*), and the others are two phases (CuMn₂O₄ in space group *Fd3m* and Mn₃O₄). This means some Cu can be doped into Mn₃O₄.

3. The magnetic and dielectric property of $Mn_{3-x}Cu_xO_4$ (x=0.02)

As confirmed in the section 2, some Cu can be doped into Mn_3O_4 to form solid solution $Mn_{3-x}Cu_xO_4$. One pure phase sample $Mn_{3-x}Cu_xO_4$ (x=0.02) was used to study the magnetic and dielectric property of $Mn_{3-x}Cu_xO_4$. The corresponding data is shown in Figure S8c and S8d. It is found that two peaks appeared in the temperature dependency of χ_{mol} for $Mn_{2.98}Cu_{0.02}O_4$. One is around 40K and the other is around 80 K. It is believed that the peak around 80K for the samples C3, C4, and C5 can be attributed to the $Mn_{3-x}Cu_xO_4$. The temperature dependent dielectric constant of $Mn_{2.98}Cu_{0.02}O_4$ was also measured. No peak around 40 K was found. Therefore, the dielectric constant peak around 40K for C3 to C5 is for the main phase $(Tb_{0.861}Mn_{0.121})Mn_{1-x}Cu_xO_{3-\delta}$.

Figure S8c Temperature dependency of χ_{mol} for $Mn_{2.98}Cu_{0.02}O_4$.

Figure S8d The dielectric property of Mn_{2.98}Cu_{0.02}O₄

4. The refinement details of the neutron diffraction data for C3 at selected temperatures

Figure S9 Rietveld plots of powder neutron diffraction patterns (λ =2.4270 Å) for C3 at 100 K. The symbol + represents the observed value, the solid line represents the calculated value; the marks below the diffraction patterns are the calculated reflection positions for Tb_{0.861}Mn_{0.121}Mn_{1-x}Cu_xO_{3-δ} (upper one), Mn_{1-x-y}Tb_xCu_yO₄ (lower one), and the difference curve is shown at the bottom of the figure.

Space group	Pnma	
Lattice parameter (Å)	a=5.74416(10), b=7.41455(11), c=5.30688(8)	
Atom	x, y, z	Occupancy
Tb/Mn/Cu1	0.0814(3), 0.2500, 0.9826(2)	0.861/0.081/0.040
Mn/Cu2	0.0000, 0.0000, 0.5000	0.990/0.010
01	0.4665(3), 0.2500, 0.1039(3)	1.000
02	0.3190(3), 0.0503(3), 0.7041(3)	1.000
Phase 2		
Space group	I $4_1/a$ m d	
Lattice parameter (Å)	a=5.76663(11), c=9.44201(12)	
Atom	x, y, z	Occupancy
Mn/Tb/Cu ^b	0.0000, 0.2500, 0.8750	0.975/0.005/0.02
Mn/Tb/Cu	0.0000, 0.5000, 0.5000	0.975/0.005/0.02
0	0.0000, 0.4746(9), 0.2637(8)	1.00
R factor ^a	$R_{wp}=0.038$, $R_{p}=0.026$	

Table S3 Rietveld refinement details of the neutron diffraction data for C3 at 100 K

 ${}^{a}R_{p}$ is sum($|I_{0}-I_{C}|$)/sum(I_{0}), and R_{wp} is weighted R factors for X-ray diffraction data.

^bIt is difficult to know the ratio of Mn:Tb:Cu, the value is a guessed one according to the experiments shown below.

Figure S10 Rietveld plots of powder neutron diffraction patterns (λ =2.4270 Å) for C3 at 80 K. The symbol + represents the observed value, the solid line represents the calculated value; the marks below the diffraction patterns are the calculated reflection positions for $Tb_{0.861}Mn_{0.121}Mn_{1-x}Cu_xO_{3-\delta}$ (upper one), $Mn_{1-x-y}Tb_xCu_yO_4$ (lower one), and the difference curve is shown at the bottom of the figure.

Space group	Pnma	
Lattice parameter (Å)	a=5.74114(10), b=7.41451(11), c=5.30893(8)	
Atom	x, y, z	Occupancy
Tb/Mn/Cu1	0.0807(3), 0.2500, 0.9827(2)	0.861/0.081/0.040
Mn/Cu2	0.0000, 0.0000, 0.5000	0.990/0.010
01	0.4673(3), 0.2500, 0.1044(3)	1.000
02	0.3189(3), 0.0504(3), 0.7041(3)	1.000
Phase 2		
Space group	I4 ₁ /amd	
Lattice parameter (Å)	a=5.76223(9), c=9.42598(8)	
Atom	x, y, z	Occupancy
Mn/Tb/Cu ^b	0.0000, 0.2500, 0.8750	0.975/0.005/0.02
Mn/Tb/Cu	0.0000, 0.5000, 0.5000	0.975/0.005/0.02
0	0.0000, 0.4746, 0.2637	1.00
R factor ^a	R _{wp} =0.037, R _p =0.025	

Table S4 Rietveld refinement details of the neutron diffraction data for C3 at 80 K

 ${}^{a}R_{p}$ is sum($|I_{0}-I_{C}|$)/sum(I_{0}), and R_{wp} is weighted R factors for X-ray diffraction data. ${}^{b}It$ is difficult to know the ratio of Mn:Tb:Cu, the value is a guessed one according to the experiments shown below.

Figure S11 Rietveld plots of powder neutron diffraction patterns (λ =2.4270 Å) for C3 at 60 K. The symbol + represents the observed value, the solid line represents the calculated value; the marks below the diffraction patterns are the calculated reflection positions for Tb_{0.861}Mn_{0.121}Mn_{1-x}Cu_xO_{3-δ} (upper one), Mn_{1-x-y}Tb_xCu_yO₄ (lower one), and the difference curve is shown at the bottom of the figure.

Space group	Damo	
Space group	1 IIIIa	
Lattice parameter (A)	a=5.73781(10), b=7.41397(11), c=5.31058(8)	
Atom	x, y, z	Occupancy
Tb/Mn/Cu1	0.0782(3), 0.2500, 0.9831(2)	0.861/0.081/0.040
Mn/Cu2	0.0000, 0.0000, 0.5000	0.990/0.010
01	0.4664(3), 0.2500, 0.1057(3)	1.000
02	0.3199(3), 0.0505(3), 0.7049(3)	1.000
Phase 2		
Space group	I4 ₁ /amd	
Lattice parameter (Å)	a=5.76094(9), c=9.42933(8)	
Atom	x, y, z	Occupancy
Mn/Tb/Cu ^b	0.0000, 0.2500, 0.8750	0.975/0.005/0.02
Mn/Tb/Cu	0.0000, 0.5000, 0.5000	0.975/0.005/0.02
0	0.0000, 0.4746, 0.2637	1.00
R factor ^a	R = 0.039 R = 0.026	

Table S5 Rietveld refinement details of the neutron diffraction data for C3 at 60K

 $\frac{R \text{ factor}^{a}}{R_{p} \text{ is sum}(|I_{0}-I_{C}|)/\text{sum}(I_{0}), \text{ and } R_{wp} \text{ is weighted } R \text{ factors for X-ray diffraction data.}$

^bIt is difficult to know the ratio of Mn:Tb:Cu, the value is a guessed one according to the experiments shown below.

Figure S12 Rietveld plots of powder neutron diffraction patterns (λ =2.4270 Å) for C3 at 40 K. The symbol + represents the observed value, the solid line represents the calculated value; the marks below the diffraction patterns are the calculated reflection positions for Tb_{0.861}Mn_{0.121}Mn_{1-x}Cu_xO_{3-δ} (middle one), nuclear (lower one) and magnetic (upper one) phase of Mn_{1-x-y}Tb_xCu_yO₄, and the difference curve is shown at the bottom of the figure.

Space group	Pnma	
Lattice parameter (Å)	a=5.73509(10), b=7.41357(11), c=5.31189(8)	
Atom	x, y, z	Occupancy
Tb/Mn/Cu1	0.0790(3), 0.2500, 0.9839(2)	0.861/0.081/0.040
Mn/Cu2	0.0000, 0.0000, 0.5000	0.990/0.010
01	0.4675(3), 0.2500, 0.1056(3)	1.000
02	0.3196(3), 0.0504(3), 0.7043(3)	1.000
Phase 2		
Space group	I4 ₁ /amd	
Lattice parameter (Å)	a=5.75859(9), c=9.43074(8)	
Atom	x, y, z	Occupancy
Mn/Tb/Cu ^b	0.0000, 0.2500, 0.8750	0.975/0.005/0.02
Mn/Tb/Cu	0.0000, 0.5000, 0.5000	0.975/0.005/0.02
0	0.0000, 0.4746, 0.2637	1.00
Phase 3 (magnetic	P1	
only)		
Lattice parameter (Å)	a≈b≈c≈6.0115, α≈β≈γ≈60°	
Atom	x, y, z	Mx, My, Mz
Mn1	0.0000, 0.0000, 0.0000	-1.423, 0.0000, 2.561
Mn2	0.5000, 0.0000, 0.0000	-1.423,0.0000, 2.561
Mn3	0.6250, 0.6250, 0.6250	1.423, 0.0000, -2.561
Mn4	0.3750, 0.3750, 0.3750	1.423, 0.0000, -2.561
Mn5	0.0000, 0.5000, 0.0000	-1.423, 0.0000, 2.561
Mn6	0.0000, 0.0000, 0.5000	-1.423, 0.0000, 2.561
R factor ^a	$R_{wp} = 0.037, R_p = 0.027$	

Table S6 Rietveld refinement details of the neutron diffraction data for C3 at 40 K

Figure S13a Rietveld plots of powder neutron diffraction patterns (λ =2.4270 Å) for C3 at 20 K. The symbol + represents the observed value, the solid line represents the calculated value; the marks below the diffraction patterns are the calculated reflection positions for Tb_{0.861}Mn_{0.121}Mn_{1-x}Cu_xO_{3- $\delta}$} (middle one), nuclear (lower one) and magnetic (upper one) phase of Mn_{1-x-y}Tb_xCu_yO₄, and the difference curve is shown at the bottom of the figure. B, magnetic reflection of ICAM (incommensurate canted antiferromagnetic) ordering of Mn with a wave vector q_{Mn}= (~0.283, 0, 0) in the space group *Pna2*₁ setting. C, magnetic reflection of the CAM (canted antiferromagnetic) ordering of both Tb and Mn in the magnetic space group *Pn'a2*₁'. B and C are not refined.

Space group	Pna2 ₁	
Lattice parameter (Å)	a=5.73225(10), b=5.31205(11), c=7.41459	9(8)
Atom	x, y, z	Occupancy
Tb/Mn/Cu1	0.0782(3), 0.9889, 0.2571(2)	0.861/0.081/0.040
Mn/Cu2	0.0000, 0.5000, 0.0000	0.990/0.010
01	0.4658(3), 0.1079(2), 0.2591(3)	1.000
02	0.3284(3), 0.6886(3), 0.0821(3)	1.000
03	0.1881(2), 0.2242(3), -0.0093(2)	1.000
Nuclear phase of		
Mn _{1-x-y} Tb _x Cu _y O ₄		
Space group	I4 ₁ /amd	
Lattice parameter (Å)	a=5.75814(9), c=9.43245(8)	
Atom	x, y, z	Occupancy
Mn/Tb/Cu ^b	0.0000, 0.2500, 0.8750	0.95/0.02/0.03
Mn/Tb/Cu	0.0000, 0.5000, 0.5000	0.95/0.02/0.03
0	0.0000, 0.4746, 0.2637	1.00
Magnetic phase of		
$Mn_{1-x-y}Tb_xCu_yO_4$		
Space group	P1	
Lattice parameter (Å)	a≈b≈c≈6.0201, α≈β≈γ≈60°	
Atom	x, y, z	Mx, My, Mz
Mn1	0.0000, 0.0000, 0.0000	2.664, 0.0000, 4.381
Mn2	0.5000, 0.0000, 0.0000	2.664, 0.0000, 4.381
Mn3	0.6250, 0.6250, 0.6250	-2.664, 0.0000, -4.381
Mn4	0.3750, 0.3750, 0.3750	-2.664, 0.0000, -4.381
Mn5	0.0000, 0.5000, 0.0000	2.664, 0.0000, 4.381
Mn6	0.0000, 0.0000, 0.5000	2.664, 0.0000, 4.381
R factor ^a	$R_{wp}=0.041, R_{p}=0.029$	

Table S7a Rietveld refinement details of the neutron diffraction data for C3 at 20 K using GSAS

Figure S13b Rietveld plots of powder neutron diffraction patterns (λ =2.4270 Å) for C3 at 20 K. The symbol + represents the observed value, the solid line represents the calculated value; the marks below the diffraction patterns are the calculated reflection positions for nuclear phase of Tb_{0.861}Mn_{0.121}Mn_{1-x}Cu_xO_{3-δ} (the first line), nuclear (the fourth line) and magnetic (the fifth line) phase of Mn_{1-x-y}Tb_xCu_yO₄, and the difference curve is shown at the bottom of the figure. B, magnetic reflection of ICAM (incommensurate canted antiferromagnetic) ordering of Mn with a wave vector q_{Mn}= (~0.283, 0, 0) in the space group *Pna2*₁ setting. C, magnetic reflection of the CAM (canted antiferromagnetic) ordering of both Tb and Mn in the magnetic space group *Pn'a2*₁'.

Nuclear Phase for C3		
Space group (nuclear phase)	Pna2 ₁	
Lattice parameter (A)	a=5.73225(10), b=5.31205(11), c=7.41459(8)	
Atom	x, y, z	
Tb/Mn/Cu1 ^a	0.0782(3), 0.9889, 0.2571(2)	
Mn/cu2 ^b	0.0000, 0.5000, 0.0000	
01	0.4658(3), 0.1079(2), 0.2591(3)	
O2	0.3284(3), 0.6886(3), 0.0821(3)	
O3	0.1881(2), 0.2242(3), -0.0093(2)	
Magnetic Phase B		
Space group	P1	
Lattice parameter (Å)	a=5.73225(10), b=5.31205(10), c=7.41459(10), α=β=γ=90°
Atom	(x,y,z)/(Mx,My,Mz)	
Mn2a	(0.0000, 0.5000, 0.0000)/(-1.71(3), 0.00, 0.	00)
Mn2b	(0.0000, 0.5000, 0.5000)/(1.71(3), 0.00, 0.00)	00)
Mn2c	(0.5000, 0.0000, 0.0000)/(-1.71(3),0.00, 0.0	0)
Mn2d	(0.5000, 0.0000, 0.5000)/(1.71(3), 0.00, 0.0	00)
q	(0.289(3), 0.000, 0.000)	
Magnetic Phase C		
Space group	P1	
Lattice parameter (Å)	a=5.73225(10), b=5.31205(10), c=7.41459(10). $\alpha = \beta = \gamma = 90^{\circ}$
Atom	$\frac{(x + y)}{(x + y)}$ (Mx My Mz)	
Mn2a	(0.0000, 0.5000, 0.0000)/(0.24(3), -1.33(3), -0.03(3))	
Mn2b	$\frac{1124}{(0.0000, 0.0000)} (0.21(3), 1.05(3), 0.05(3))} (0.2000) (0.21(3), 1.05(3), 0.05(3))$	
Mn2c	$\frac{(0.0000, 0.0000, 0.0000)}{(0.5000, 0.0000)} (0.24(3) -1.33(3) -0.03(3))$	
Mn2d (0.5000, 0.0000, 0.5000)/(-0.24(3), -1.33(3), 0.03(3))		(0.03(3))
Mn/Tb1a (0.0782(3), 0.9889(1), 0.2571(1))/ (0.11(3), 1.49(3), 0.03(3))		$\frac{1}{1}\frac{49(3)}{9}$ 0.03(3))
Mn/Th1h	(0.9218(2), 0.9009(1), 0.2271(1))/(0.11(2), 0.9218(2), 0.0111(3), -0.24291))/(0.11(3), -0.291))/(0.	$\frac{1.19(3), 0.03(3))}{1.49(3), -0.03(3))}$
Mn/Tb1c	(0.4218(1), 0.5111(1), -0.2429(1))/(-0.11(3))	(1,1)(0,1)(0,1)(0,1)(0,1)(0,1)(0,1)(0,1)
Mn/Tb1d	(0.5782(1), 0.4889(1), 0.2571(1))/(-0.11(3))	$\frac{1}{149(3)} - 0.03(3))$
Nuclear phase of		,, (2), 0.02(2))
$Mn_1 \times Tb_2Cu_2O_4$		
Space group	I41/amd	
Lattice parameter (Å)	a=5.75814(9), c=9.43245(8)	
Atom		upaney
Mn/Tb/Cu ^b	0,0000, 0,2500, 0,8750, 0,97	75/0 005/0 02
Mn/Tb/Cu		75/0.005/0.02
0	0,0000,04746,02637)
Magnetic phase of	1.00	,
$Mn_1 = Th_2 Cu_2 O_4$		
Space group	P1	
Lattice parameter (Å)	$a \sim b \sim c \sim 6.0201$ $a \sim B \sim v \sim 60^{\circ}$	
Atom	x y z Mv	My Mz
Mn1	$\frac{x, y, z}{0.000, 0.000, 0.000}$ 2.66	54,0000,4381
Mn2		54 0 0000 / 381
<u></u> Mn3	0.6250 0.6250 0.6250 2.60	64 0 0000 4 3812
Mn/	$\begin{array}{c} 0.0250, 0.0250, 0.0250 \\ \hline 0.0250, 0.0250, 0.0250 \\ \hline 0.0250, 0.0250, 0.0250 \\ \hline 0.0250, 0.0250, 0.0250, 0.0250 \\ \hline 0.0250, 0.0250, 0.0250, 0.0250 \\ \hline 0.0250, $	64 0 0000 / 201
<u></u> Mn5	$\begin{array}{c} 0.5750, 0.5750, 0.5750 \\ 0.0000, 0.5000, 0.0000 \\ 0.0000 \\ 0.5750 \\ 0.0000 \\ 0.5750 \\ $	54, 0.0000, -4.301
Mn6		54 0 0000 4 301
P factor ^b	\mathbf{P}^{1} = 0.053 \mathbf{P}^{1} = 0.024 \mathbf{P}^{MB} = 0.065 \mathbf{P}^{MC}	2-0.034 P $2-0.105$
1 10001	$R_{\rm B} = 0.053, R_{\rm F} = 0.024, R = 0.003, R$ $R_{\rm F}^2 = 0.056; R^{\rm M} = 0.060$	-0.034 , $N_{\rm B} -0.103$,

Table S7b Rietveld refinement details of the neutron diffraction data for C3 collected at 20 K using Fullprof

^aThe occupancy of Tb1/Mn1/Cu1 is 0.861/0.081/0.040. ^bThe occupancy of Mn/Cu2 is 0.940/0.060. ^cR_B¹, R_F¹, R^{MB}, R^{MC}, R_B², R_F² and R^M are the Bragg R-factor and RF-factor of C3, Magnetic R-factor for magnetic phase B and C, the Bragg R-factor and R-factor for Mn_{1-x-y}Tb_xCu_yO₄, and Magnetic P. factor for Mn_{1-x-y}Tb_xCu_yO₄, and Magnetic P. factor for Mn_{1-x-y}Tb_xCu_yO₄. R-factor for $Mn_{1-x-y}Tb_xCu_yO_4$.

Figure S14a Rietveld plots of powder neutron diffraction patterns (λ =2.4270 Å) for C3 at 1.5 K. The symbol + represents the observed value, the solid line represents the calculated value; the marks below the diffraction patterns are the calculated reflection positions for Tb_{0.861}Mn_{0.121}Mn_{1-x}Cu_xO_{3- δ} (middle one), nuclear (lower one) and magnetic (upper one) phase of Mn_{1-x-y}Tb_xCu_yO₄, and the difference curve is shown at the bottom of the figure. B, magnetic reflection of ICAM (incommensurate canted antiferromagnetic) ordering of Mn with a wave vector q_{Mn}= (~0.283, 0, 0) in the space group *Pna2*₁ setting. C, magnetic reflection of the CAM (canted antiferromagnetic) ordering of both Tb and Mn in the magnetic space group *Pn'a2*₁'. B and C are not refined.

Figure S14b Rietveld plots of powder neutron diffraction patterns (λ =2.4270 Å) for C3 at 1.5 K. The symbol + represents the observed value, the solid line represents the calculated value; the marks below the diffraction patterns are the calculated reflection positions for nuclear phase of Tb_{0.861}Mn_{0.121}Mn_{1-x}Cu_xO_{3-δ} (the first line), nuclear (the fourth line) and magnetic (the fifth line) phase of Mn_{1-x-y}Tb_xCu_yO₄, and the difference curve is shown at the bottom of the figure. B, magnetic reflection of ICAM (incommensurate canted antiferromagnetic) ordering of Mn with a wave vector q_{Mn}= (~0.283, 0, 0) in the space group *Pna2*₁ setting. C, magnetic reflection of the CAM (canted antiferromagnetic) ordering of both Tb and Mn in the magnetic space group *Pn'a2*₁'.

Space group	Pna2 ₁	
Lattice parameter (Å)	a=5.73137(10), b=5.31223(11), c=7.4149	3(8)
Atom	x, y, z	Occupancy
Tb/Mn/Cu1	0.0781(3), 0.9894, 0.2585(2)	0.861/0.081/0.040
Mn/Cu2	0.0000, 0.5000, 0.0000	0.990/0.010
01	0.4654(3), 0.1081(2), 0.2606(3)	1.000
02	0.3333(3), 0.6912(3), 0.0864(3)	1.000
03	0.1912(2), 0.2208(3), -0.0064(2)	1.000
Nuclear phase of		
$Mn_{1-x-y}Tb_xCu_yO_4$		
Space group	I4 ₁ /amd	
Lattice parameter (Å)	a=5.75517(9), c=9.44091(8)	
Atom	x, y, z	Occupancy
Mn/Tb/Cu ^b	0.0000, 0.2500, 0.8750	0.975/0.005/0.02
Mn/Tb/Cu	0.0000, 0.5000, 0.5000	0.975/0.005/0.02
0	0.0000, 0.4746, 0.2637	1.00
Magnetic phase of		
$Mn_{1-x-y}Tb_xCu_yO_4$		
Space group	P1	
Lattice parameter (Å)	a≈b≈c≈6.0203, α≈β≈γ≈60°	
Atom	x, y, z	Mx, My, Mz
Mn1	0.0000, 0.0000, 0.0000	1.241, 0.0000, 4.839
Mn2	0.5000, 0.0000, 0.0000	1.241, 0.0000, 4.839
Mn3	0.6250, 0.6250, 0.6250	-1.241, 0.0000, -4.839
Mn4	0.3750, 0.3750, 0.3750	-1.241, 0.0000,- 4.839
Mn5	0.0000, 0.5000, 0.0000	1.241, 0.0000, 4.839
Mn6	0.0000, 0.0000, 0.5000	1.241, 0.0000, 4.839
R factor ^a	$R_{wp}=0.044, R_p=0.032$	

Table S8a Rietveld refinement details of the neutron diffraction data for C3 at 1.5 K using GSAS

Nuclear Phase for C3			
Space group (nuclear phase)	Pna2 ₁		
Lattice parameter (A)	a=5.73137(10), b=5.31223(11), c=7.41493	(8)	
Atom	x, y, z	Occupancy	
Tb/Mn/Cu1 ^a	0.0781(3), 0.9894, 0.2585(2)	0.861/0.081/0.040	
Mn/cu2 ^b	0.0000, 0.5000, 0.0000	0.990/0.010	
01	0.4654(3), 0.1081(2), 0.2606(3)	1.000	
O2	0.3333(3), 0.6912(3), 0.0864(3)	1.000	
O3	0.1912(2), 0.2208(3), -0.0064(2)	1.000	
Magnetic Phase B			
Space group	P1		
Lattice parameter (Å)	a=5.73137(10), b=5.31223(11), c=7.41493	(8), $\alpha = \beta = \gamma = 90^{\circ}$	
Atom	(x,y,z)/(Mx,My,Mz)		
Mn2a	(0.0000, 0.5000, 0.0000)/ (-1.91(3), 0.00, 0	0.00)	
Mn2b	(0.0000, 0.5000, 0.5000)/(1.91(3), 0.00, 0	.00)	
Mn2c	(0.5000, 0.0000, 0.0000)/(-1.91(3),0.00, 0.	00)	
Mn2d	(0.5000, 0.0000, 0.5000)/(1.91(3), 0.00, 0	.00)	
q	(0.289(3), 0.000, 0.000)	i.	
Magnetic Phase C			
Space group	P1		
Lattice parameter (Å)	a=5.73137(10), b=5.31223(11), c=7.41493	(8), $\alpha = \beta = \gamma = 90^{\circ}$	
Atom	(x,y,z)/(Mx,My,Mz)		
Mn2a	(0.0000, 0.5000, 0.0000)/(1.44(3) -1.43(3) -0.03(3))		
Mn2b	(0.0000, 0.5000, 0.5000)/ (1.44(3), -1.43(3), 0.03(3))		
Mn2c	(0.5000, 0.0000, 0.0000)/(-1.44(3), -1.43(3), -0.03(3))		
Mn2d	(0.5000, 0.0000, 0.5000)/(-1.44(3), -1.43(3), 0.03(3))	
Mn/Tb1a	(0.0781(3), 0.9894(1), 0.2585(1))/(0.11(3))	1.49(3), 0.03(3))	
Mn/Tb1b	(0.9219(2), 0.0106(3), -0.2415(1))/(0.11(3))	(1, 1, 49(3), -0.03(3))	
Mn/Tb1c	(0.4219(1), 0.5106(1), -0.2415(1))/(-0.11(3), 1.49(3), 0.03(3))		
Mn/Tb1d	(0.5781(1), 0.4894(1), 0.2585(1))/(-0.11(3), 1.49(3), -0.03(3))		
Nuclear phase of $Mn_{1-x-y}Tb_xCu_yO_4$			
Space group	I4 ₁ /amd		
Lattice parameter (Å)	a=5.75517(9), c=9.44091(8)		
Atom	X, V, Z	Occupancy	
Mn/Tb/Cu ^b	0.0000, 0.2500, 0.8750	0.975/0.005/0.02	
Mn/Tb/Cu	0.0000, 0.5000, 0.5000	0.975/0.005/0.02	
0	0.0000, 0.4746, 0.2637	1.00	
Magnetic phase of Mn _{1-v-v} Tb _v	Cu _v O ₄		
Space group	P1		
Lattice parameter (Å)	$a \approx b \approx c \approx 6.0203$ $\alpha \approx \beta \approx v \approx 60^{\circ}$		
Atom	x v z	Mx My Mz	
Mn1		1 241 0 0000 4 839	
Mn2	0.5000, 0.0000, 0.0000	1.241, 0.0000, 4.839	
Mn3	0.6250, 0.6250, 0.6250	-1.241. 0.0000 -4 839	
Mn4	0.3750, 0.3750, 0.3750	-1.241, 0.0000 - 4.839	
Mn5	0.0000, 0.5000, 0.0000	1.241, 0.0000 4 839	
Mn6	0.0000, 0.0000, 0.5000	1.241, 0.0000, 4.839	
R factor ^c	$R_{\rm P}^{1}=0.057$, $R_{\rm F}^{1}=0.026$, $R^{\rm MB}=0.053$.	$R^{MC}=0.037$; $R_{p}^{2}=0.111$	
	$R_{\rm F}^{2}$ =0.075; $R^{\rm M}$ =0.053		

Table S8b Rietveld refinement details of the neutron diffraction data for C3 collected at 1.5 K using Fullprof

^aThe occupancy of Tb1/Mn1/Cu1 is 0.861/0.081/0.040. ^bThe occupancy of Mn/Cu2 is 0.940/0.060. ^cR_B¹, R_F¹, R^{MB}, R^{MC}, R_B², R_F² and R^M are the Bragg R-factor and RF-factor of C3, Magnetic R-factor for magnetic phase B and C, the Bragg R-factor and R-factor for Mn_{1-x-y}Tb_xCu_yO₄, and Magnetic D for the factor for Mn_{1-x-y}Tb_xCu_yO₄, and Magnetic D $R\text{-factor for } Mn_{1\text{-}x\text{-}y}Tb_{x}Cu_{y}O_{4}.$

Figure S15 Temperature dependent lattice parameter *a* of C3.

Figure S16 Temperature dependent lattice parameter b of C3 (in Pnma setting for temperature is above 40 K) or c of C3 (in Pna21 setting for temperature is below 40 K).

Figure S17 Temperature dependent lattice parameter c of C3 (in *Pnma* setting for temperature is above 40K) or b of C3 (in *Pna2*₁ setting for temperature is below 40K).

5. The refinement details of the neutron diffraction data for C5 at selected temperature

Figure S19 Rietveld plots of powder neutron diffraction patterns (λ =2.4270 Å) for C5 at 100K. The symbol + represents the observed value, the solid line represents the calculated value; the marks below the diffraction patterns are the calculated reflection positions for Tb_{0.861}Mn_{0.121}Mn_{1-x}Cu_xO_{3-δ} (lower one), Mn_{1-x-v}Tb_xCu_vO₄ (upper one), and the difference curve is shown at the bottom of the figure.

Space group	Pnma	
Lattice parameter (Å)	a=5.74180(8), b=7.40354(9), c=5.30484(7)	
Atom	x, y, z	Occupancy
Tb/Mn/Cu1	0.0778(3), 0.2500, 0.9828(2)	0.861/0.081/0.040
Mn/Cu2	0.0000, 0.0000, 0.5000	0.940/0.060
01	0.4583(3), 0.2500, 0.1007(3)	1.000
02	0.3214(3), 0.0531(3), 0.7037(3)	1.000
Phase 2		
Space group	I 4 ₁ /amd	
Lattice parameter (Å)	a=5.76663(8), c=9.38045(9)	
Atom	x, y, z	Occupancy
Mn/Tb/Cu	0.0000, 0.2500, 0.8750	0.975/0.005/0.02
Mn/Tb/Cu	0.0000, 0.5000, 0.5000	0.975/0.005/0.02
0	0.0000, 0.4746, 0.2637	1.000
R factor ^a	$R_{wp}=0.044, R_{p}=0.029$	

Table S9 Rietveld refinement details of the neutron diffraction data for C5 at 100K

Figure S20 Rietveld plots of powder neutron diffraction patterns (λ =2.4270 Å) for C5 at 80K. The The symbol + represents the observed value, the solid line represents the calculated value; the marks below the diffraction patterns are the calculated reflection positions for Tb_{0.861}Mn_{0.121}Mn_{1-x}Cu_xO_{3-δ} (lower one), Mn_{1-x-y}Tb_xCu_yO₄ (upper one), and the difference curve is shown at the bottom of the figure.

Space group	Pnma	
Lattice parameter (Å)	a=5.73904(8), b=7.40226(9), c=5.30583(7)	
Atom	x, y, z	Occupancy
Tb/Mn/Cu1	0.0753(3), 0.2500, 0.9832(2)	0.861/0.081/0.040
Mn/Cu2	0.0000, 0.0000, 0.5000	0.940/0.060
01	0.4582(3), 0.2500, 0.1037(3)	1.000
02	0.3200(3), 0.0545(3), 0.7044(3)	1.000
Phase 2		
Space group	I4 ₁ /amd	
Lattice parameter (Å)	a=5.76358(7), c=9.38221(9)	
Atom	x, y, z	Occupancy
Mn/Tb/Cu	0.0000, 0.2500, 0.8750	0.975/0.005/0.02
Mn/Tb/Cu	0.0000, 0.5000, 0.5000	0.975/0.005/0.02
0	0.0000, 0.4746, 0.2637	1.000
R factor ^a	$R_{yy}=0.040, R_{y}=0.026$	

Table S10 Rietveld refinement details of the neutron diffraction data for C5 at 80K

Figure S21 Rietveld plots of powder neutron diffraction patterns (λ =2.4270 Å) for C5 at 60K. The The symbol + represents the observed value, the solid line represents the calculated value; the marks below the diffraction patterns are the calculated reflection positions for Tb_{0.861}Mn_{0.121}Mn_{1-x}Cu_xO_{3-δ} (lower one), Mn_{1-x-y}Tb_xCu_yO₄ (upper one), and the difference curve is shown at the bottom of the figure. **Table S11** Rietveld refinement details of the neutron diffraction data for C5 at 60K

Space group	Pnma	
Lattice parameter (Å)	a=5.73634(8), b=7.40141(9), c=5.30728(7)	
Atom	x, y, z	Occupancy
Tb/Mn/Cu1	0.0750(3), 0.2500, 0.9835(2)	0.861/0.081/0.040
Mn/Cu2	0.0000, 0.0000, 0.5000	0.940/0.060
01	0.4590(3), 0.2500, 0.1046(3)	1.000
02	0.3198(3), 0.0543(3), 0.7042(3)	1.000
Phase 2		
Space group	I4 ₁ /amd	
Lattice parameter (Å)	a=5.73521(7), c=9.47832(9)	
Atom	x, y, z	Occupancy
Mn/Tb/Cu	0.0000, 0.2500, 0.8750	0.975/0.005/0.02
Mn/Tb/Cu	0.0000, 0.5000, 0.5000	0.975/0.005/0.02
0	0.0000, 0.4746, 0.2637	1.000
R factor ^a	$R_{wn}=0.041, R_{n}=0.027$	

Figure S22 Rietveld plots of powder neutron diffraction patterns (λ =2.4270 Å) for C5 at 40K. The The symbol + represents the observed value, the solid line represents the calculated value; the marks below the diffraction patterns are the calculated reflection positions for Tb_{0.861}Mn_{0.121}Mn_{1-x}Cu_xO_{3- δ} (lower one), Mn_{1-x-y}Tb_xCu_yO₄ (upper one), and the difference curve is shown at the bottom of the figure.

Space group	Pnma	
Lattice parameter (Å)	a=5.73404(8), b=7.40167(9), c=5.30928(7)	
Atom	х, у, z	Occupancy
Tb/Mn/Cu1	0.0749(3), 0.2500, 0.9836(2)	0.861/0.081/0.040
Mn/Cu2	0.0000, 0.0000, 0.5000	0.940/0.060
01	0.4580(3), 0.2500, 0.1039(3)	1.000
O2	0.3202(3), 0.0546(3), 0.7046(3)	1.000
Phase 2		
Space group	I4 ₁ /amd	
Lattice parameter (Å)	a=5.72064(7), c=9.55427(9)	
Atom	x, y, z	Occupancy
Mn/Tb/Cu	0.0000, 0.2500, 0.8750	0.975/0.005/0.02
Mn/Tb/Cu	0.0000, 0.5000, 0.5000	0.975/0.005/0.02
0	0.0000, 0.4746, 0.2637	1.000
R factor ^a	$R_{wp}=0.042, R_{p}=0.028$	

Table S12 Rietveld refinement details of the neutron diffraction data for C5 at 40K

Figure S23a Rietveld plots of powder neutron diffraction patterns (λ =2.4270 Å) for C5 at 20K. The symbol + represents the observed value, the solid line represents the calculated value; the marks below the diffraction patterns are the calculated reflection positions for Tb_{0.861}Mn_{0.121}Mn_{1-x}Cu_xO_{3-δ} (middle one), nuclear (lower one) and magnetic (upper one) phase of Mn_{1-x-y}Tb_xCu_yO₄, and the difference curve is shown at the bottom of the figure. B, magnetic reflection of ICAM (incommensurate canted antiferromagnetic) ordering of Mn with a wave vector q_{Mn}= (~0.283, 0, 0) in the space group *Pna2*₁ setting. C, magnetic reflection of the CAM (canted antiferromagnetic) ordering of both Tb and Mn in the magnetic space group *Pn'a2*₁'. B and C are not refined.

Space group	Pna2 ₁	
Lattice parameter (Å)	a=5.73381(8), b=5.31016(7), c=7.40447(9)	
Atom	x, y, z	Occupancy
Tb/Mn/Cu1	0.0642(3), 0.9824, 0.2412(2)	0.861/0.081/0.040
Mn/Cu2	0.0000, 0.5000, 0.0000	0.940/0.060
01	0.4542(3), 0.0998, 0.1982(3)	1.000
O2	0.3021(3), 0.6941(3), 0.0370(3)	1.000
O3	0.1562(3), 0.2210(3), -0.0655(2)	1.000
Nuclear phase of		
$Mn_{1-x-y}Tb_xCu_yO_4$		
Space group	I4 ₁ /amd	
Lattice parameter (Å)	a=5.76123(7), c=9.37174(9)	
Atom	x, y, z	Occupancy
Mn/Tb/Cu	0.0000, 0.2500, 0.8750	0.975/0.005/0.02
Mn/Tb/Cu	0.0000, 0.5000, 0.5000	0.975/0.005/0.02
0	0.0000, 0.4746, 0.2637	1.000
Magnetic phase of		
$Mn_{1-x-y}Tb_xCu_yO_4$		
Space group	P1	
Lattice parameter (Å)	a≈b≈c≈6.0106, α≈β≈γ≈60°	
Atom	x, y, z	Mx, My, Mz
Mn1	0.0000, 0.0000, 0.0000	2.440, -1.000, 2.100
Mn2	0.5000, 0.0000, 0.0000	2.440, -1.000, 2.100
Mn3	0.6250, 0.6250, 0.6250	-2.440, 1.000, -2.100
Mn4	0.3750, 0.3750, 0.3750	-2.440, 1.000, -2.100
Mn5	0.0000, 0.5000, 0.0000	2.440, -1.000, 2.100
Mn6	0.0000, 0.0000, 0.5000	2.440, -1.000, 2.100
R factor ^a	$R_{wp}=0.044, R_{p}=0.029$	

Table S13a Rietveld refinement details of the neutron diffraction data for C5 at 20 K using GSAS

Figure S23b Rietveld plots of powder neutron diffraction patterns (λ =2.4270 Å) for C5 at 20K. The symbol + represents the observed value, the solid line represents the calculated value; the marks below the diffraction patterns are the calculated reflection positions for nuclear phase of Tb_{0.861}Mn_{0.121}Mn_{1-x}Cu_xO_{3-δ} (the first line), nuclear (the fourth line) and magnetic (the fifth line) phase of Mn_{1-x-y}Tb_xCu_yO₄, and the difference curve is shown at the bottom of the figure. B, magnetic reflection of ICAM (incommensurate canted antiferromagnetic) ordering of Mn with a wave vector q_{Mn}= (~0.283, 0, 0) in the space group *Pna2*₁ setting. C, magnetic reflection of the CAM (canted antiferromagnetic) ordering of both Tb and Mn in the magnetic space group *Pn'a2*₁'.

Space group	Pna2 ₁	
Lattice parameter (Å)	a=5.73381(8), b=5.31016(7), c=7.40447(9)	
Atom	x, y, z	Occupancy
Tb/Mn/Cu1	0.0642(3), 0.9824, 0.2412(2)	0.861/0.081/0.040
Mn/Cu2	0.0000, 0.5000, 0.0000	0.940/0.060
01	0.4542(3), 0.0998, 0.1982(3)	1.000
02	0.3021(3), 0.6941(3), 0.0370(3)	1.000
03	0.1562(3), 0.2210(3), -0.0655(2)	1.000
Nuclear phase of Mn ₁ .	$x-yTb_xCu_yO_4$	
Space group	I4 ₁ /amd	
Lattice parameter (Å)	a=5.76123(7), c=9.37174(9)	
Atom	x, y, z	Occupancy
Mn/Tb/Cu	0.0000, 0.2500, 0.8750	0.9750/0.005/0.020
Mn/Tb/Cu	0.0000, 0.5000, 0.5000	0.9750/0.005/0.020
0	0.0000, 0.4746, 0.2637	1.000
Magnetic phase of Mn	$_{1-x-y}Tb_{x}Cu_{y}O_{4}$	
Space group	P1	
Lattice parameter (Å)	a≈b≈c≈6.0106, α≈β≈γ≈60°	
Atom	x, y, z	Mx, My, Mz
Mnl	0.0000, 0.0000, 0.0000	2.440, -1.000, 2.100
Mn2	0.5000, 0.0000, 0.0000	2.440, -1.000, 2.100
Mn3	0.6250, 0.6250, 0.6250	-2.440, 1.000, -2.100
Mn4	0.3750, 0.3750, 0.3750	-2.440, 1.000, -2.100
Mn5	0.0000, 0.5000, 0.0000	2.440, -1.000, 2.100
Mn6	0.0000, 0.0000, 0.5000	2.440, -1.000, 2.100
Magnetic Phase B		
Space group	P1	
Lattice parameter (Å)	a=5.73137(10), b=5.31223(11),	
1 ()	$c=7.41493(8), \alpha=\beta=\gamma=90^{\circ}$	
Atom	(x,y,z)/(Mx,My,Mz)	
Mn2a	(0.0000, 0.5000, 0.0000)/ (-1.51(3), 0.00, 0.00	0)
Mn2b	(0.0000, 0.5000, 0.5000)/ (1.51(3), 0.00, 0.00)	
Mn2c	(0.5000, 0.0000, 0.0000)/(-1.51(3),0.00, 0.00)	
Mn2d	(0.5000, 0.0000, 0.5000)/ (1.51(3), 0.00, 0.00)	
q	(0.289(3), 0.000, 0.000)	/
Magnetic Phase C		
Space group	P1	
Lattice parameter (Å)	a=5.73137(10), b=5.31223(11), c=7.41493(8)), α=β=γ=90°
Atom	(x,y,z)/(Mx,My,Mz)	· • •
Mn2a	(0.0000, 0.5000, 0.0000)/ (0.44(3), -1.03(3), -	0.03(3))
Mn2b	(0.0000, 0.5000, 0.5000)/ (0.44(3), -1.03(3), (0.03(3))
Mn2c	(0.5000, 0.0000, 0.0000)/(-0.44(3), -1.03(3),	-0.03(3))
Mn2d	(0.5000, 0.0000, 0.5000)/(-0.44(3), -1.03(3),	0.03(3))
Mn/Tb1a	(0.0781(3), 0.9894(1), 0.2585(1))/(0.11(3), 0	.89(3), 0.03(3))
Mn/Tb1b	(0.9219(2), 0.0106(3), -0.2415(1))/(0.11(3), 0.0106(3), -0.0106(3), -0.000(3))/(0.0106(3), -0.000(3))/(0.0106(3), -0.000(3))/(0.0106(3), -0.000(3))/(0.0106(3), -0.000(3))/(0.000(3), -0.000(3))/(0.000	0.89(3), -0.03(3))
Mn/Tb1c	(0.4219(1), 0.5106(1), -0.2415(1))/(-0.11(3),	0.89(3), 0.03(3))
Mn/Tb1d	(0.5781(1), 0.4894(1), 0.2585(1))/(-0.11(3), 0.258(1))/(-0.11(3), 0.258(1))/(-0.11(3), 0.258(1))/(-0.11(3), 0.258(1))/(-0.11(3), 0.258(1))/(-0.11(3), 0.258(1))/(-0.11(3), 0.2585	0.89(3), -0.03(3))
R factor ^a	$R_{B}^{1}=0.053, R_{F}^{1}=0.028; R^{MB}=0.053; R^{MB}=0$	$^{MC}=0.039; R_{B}^{2}=0.088,$
	$R_{F}^{2}=0.090; R^{M}=0.159$	

Table S13b Rietveld refinement details of the neutron diffraction data for C5 at 20K using Fullprof

 ${}^{a}R_{B}{}^{1}$, $R_{F}{}^{1}$, R^{MB} , R^{MC} , $R_{B}{}^{2}$, $R_{F}{}^{2}$ and R^{M} are the Bragg R-factor and RF-factor of C3, Magnetic R-factor for magnetic phase B and C, the Bragg R-factor and R-factor for $Mn_{1-x-y}Tb_{x}Cu_{y}O_{4}$, and Magnetic R-factor for $Mn_{1-x-y}Tb_{x}Cu_{y}O_{4}$.

Figure S24a Rietveld plots of powder neutron diffraction patterns (λ =2.4270 Å) for C5 at 1.5K. The symbol + represents the observed value, the solid line represents the calculated value; the marks below the diffraction patterns are the calculated reflection positions for Tb_{0.861}Mn_{0.121}Mn_{1-x}Cu_xO_{3-δ} (middle one), nuclear (lower one) and magnetic (upper one) phase of Mn_{1-x-y}Tb_xCu_yO₄, and the difference curve is shown at the bottom of the figure. B, magnetic reflection of ICAM (incommensurate canted antiferromagnetic) ordering of Mn with a wave vector q_{Mn}= (~0.283, 0, 0) in the space group *Pna2*₁ setting. C, magnetic reflection of the CAM (canted antiferromagnetic) ordering of both Tb and Mn in the magnetic space group *Pn'a2*₁'. B and C are not refined.

Space group	Pna2 ₁	
Lattice parameter (Å)	a=5.73349(8), b=5.31052(7), c=7.40571(9)	
Atom	x, y, z	Occupancy
Tb/Mn/Cu1	0.0784(3), 0.9849(3), 0.2564(2)	0.861/0.081/0.040
Mn/Cu2	0.0000, 0.5000, 0.0000	0.940/0.060
01	0.4612(3), 0.1058, 0.2892(3)	1.000
02	0.3088(3), 0.7136(3), 0.0573(3)	1.000
03	0.1644(3), 0.2027(3), -0.0492(2)	1.000
Phase 2		
Space group	I4 ₁ /amd	
Lattice parameter (Å)	a=5.75597(7), c=9.38882(9)	
Atom	x, y, z	Occupancy
Mn/Tb/Cu	0.0000, 0.2500, 0.8750	0.940/0.020/0.040
Mn/Tb/Cu	0.0000, 0.5000, 0.5000	0.940/0.020/0.040
0	0.0000, 0.4746, 0.2637	1.000
Magnetic phase of Mn	$u_{1-x-y}Tb_xCu_yO_4$	
Space group	P1	
Lattice parameter (Å)	a≈b≈c≈6.0103, α≈β≈γ≈60°	
Atom	x, y, z	Mx, My, Mz
Mn1	0.0000, 0.0000, 0.0000	3.020, 0.900, 2.100
Mn2	0.5000, 0.0000, 0.0000	3.020, 0.900, 2.100
Mn3	0.6250, 0.6250, 0.6250	-3.020, -0.900, -2.100
Mn4	0.3750, 0.3750, 0.3750	-3.020, -0.900, -2.100
Mn5	0.0000, 0.5000, 0.0000	3.020, 0.900, 2.100
Mn6	0.0000, 0.0000, 0.5000	3.020, 0.900, 2.1000
R factor ^a	$R_{wp}=0.048, R_{p}=0.033$	

Table S14a Rietveld refinement details of the neutron diffraction data for C5 at 1.5 K using GSAS

Figure S24b Rietveld plots of powder neutron diffraction patterns (λ =2.4270 Å) for C5 at 1.5 K. The symbol + represents the observed value, the solid line represents the calculated value; the marks below the diffraction patterns are the calculated reflection positions for nuclear phase of Tb_{0.861}Mn_{0.121}Mn_{1-x}Cu_xO_{3-δ} (the first line), nuclear (the fourth line) and magnetic (the fifth line) phase of Mn_{1-x-y}Tb_xCu_yO₄, and the difference curve is shown at the bottom of the figure. B, magnetic reflection of ICAM (incommensurate canted antiferromagnetic) ordering of Mn with a wave vector q_{Mn}= (~0.283, 0, 0) in the space group *Pna2*₁ setting. C, magnetic reflection of the CAM (canted antiferromagnetic) ordering of both Tb and Mn in the magnetic space group *Pn'a2*₁'.

Space group	Pna2 ₁	
Lattice parameter (Å)	a=5.73349(8), b=5.31052(7), c=7.40571	(9)
Atom	X, Y, Z	Occupancy
Tb/Mn/Cu1	0.0784(3), 0.9849(3), 0.2564(2)	0.861/0.081/0.040
Mn/Cu2	0.0000, 0.5000, 0.0000	0.940/0.060
01	0.4612(3), 0.1058, 0.2892(3)	1.000
02	0.3088(3), 0.7136(3), 0.0573(3)	1.000
03	0.1644(3), 0.2027(3), -0.0492(2)	1.000
Phase 2		
Space group	I4 ₁ /amd	
Lattice parameter (Å)	a=5.75597(7), c=9.38882(9)	
Atom	x, y, z	Occupancy
Mn/Tb/Cu	0.0000, 0.2500, 0.8750	0.940/0.020/0.040
Mn/Tb/Cu	0.0000, 0.5000, 0.5000	0.940/0.020/0.040
0	0.0000, 0.4746, 0.2637	1.000
Magnetic phase of Mr	$h_{1-x-y}Tb_xCu_yO_4$	
Space group	P1	
Lattice parameter (Å)	$a \approx b \approx c \approx 6.0103$, $\alpha \approx \beta \approx \gamma \approx 60^{\circ}$	
Atom	X. V. Z	Mx. My. Mz
Mn1	0.0000, 0.0000, 0.0000	3.020, 0.900, 2.100
Mn2	0.5000, 0.0000, 0.0000	3,020, 0,900, 2,100
Mn3	0.6250, 0.6250, 0.6250	-3.020, -0.900, -2.100
Mn4	0.3750, 0.3750, 0.3750	-3.020, -0.900, -2.100
Mn5	0.0000, 0.5000, 0.0000	3,020, 0,900, 2,100
Mn6	0.0000, 0.0000, 0.5000	3.020, 0.900, 2.1000
Magnetic Phase B		
Space group	P1	
Lattice parameter (Å)	a=5.73137(10), b=5.31223(11), c=7.4149	$P3(8), \alpha = \beta = \gamma = 90^{\circ}$
Atom	(x,y,z)/(Mx,My,Mz)	
Mn2a	(0.0000, 0.5000, 0.0000)/(-1.51(3), 0.00,	0.00)
Mn2b	(0.0000, 0.5000, 0.5000)/(1.51(3), 0.00, 0.00)	
Mn2c	(0.5000, 0.0000, 0.0000)/(-1.51(3), 0.00, 0.00)	
Mn2d	(0.5000, 0.0000, 0.5000)/(1.51(3), 0.00, 0.00)	
q	(0.289(3), 0.000, 0.000)	
Magnetic Phase C		
Space group	P1	
Lattice parameter (Å)	a=5.73137(10), b=5.31223(11), c=7.4149	$P3(8), \alpha = \beta = \gamma = 90^{\circ}$
Atom	(x vz)/(Mx Mv Mz)	
Mn2a	(0.0000, 0.5000, 0.0000)/(0.44(3), -1.03(3), -0.03(3))	
Mn2b	(0.0000, 0.5000, 0.5000)/(0.44(3), -1.03(3), -0.05(3))	
Mn2c	(0.5000, 0.0000, 0.5000)/(-0.44(3) -1.03(3), 0.03(3))	
Mn2d	(0.5000, 0.0000, 0.5000)/(-0.44(3), -1.03(3), 0.03(3))	
Mn/Tb1a	(0.0784(3), 0.9849(1), 0.2564(1))/(0.11(3), 0.89(3), 0.03(3))	
Mn/Tb1b	(0.9216(2), 0.0151(3), -0.2436(1))/(0.11(3), 0.89(3), -0.03(3))	
Mn/Tb1c	(0.4216(1), 0.5151(1), -0.2436(1))/(-0.11(3), 0.89(3), 0.03(3))	
Mn/Tb1d	(0.5784(1), 0.4849(1), 0.2564(1))/(-0.11(3), 0.89(3), -0.03(3))	
R factor ^a	$R_{\rm B}^{1}$ =0.058, $R_{\rm F}^{1}$ =0.029; $R^{\rm MB}$ =0.067.	$R^{MC} = 0.038; R_{P}^2 = 0.108$
	$R_{\rm E}^2 = 0.106$; $R^{\rm M} = 0.089$, m _D

 Table S14b Rietveld refinement details of the neutron diffraction data for C5 at 1.5 K using Fullprof.

 $^{-a}R_{B}^{-1}$, R_{F}^{-1} , R_{F}^{MB} , R_{F}^{MC} , R_{B}^{-2} , R_{F}^{-2} and R^{M} are the Bragg R-factor and RF-factor of C3, Magnetic R-factor for magnetic phase B and C, the Bragg R-factor and R-factor for $Mn_{1-x-y}Tb_{x}Cu_{y}O_{4}$, and Magnetic R-factor for $Mn_{1-x-y}Tb_{x}Cu_{y}O_{4}$.

Figure S25 Temperature dependent lattice parameter *c* of C5.

Figure S26 Temperature dependent lattice parameter b of C5 (in *Pnma* setting for temperature is above 40K) or c of C3 (in *Pna2*₁ setting for temperature is below 40K).

Figure S27 Temperature dependent lattice parameter c of C5 (in *Pnma* setting for temperature is above 40K) or b of C3 (in *Pna2*₁ setting for temperature is below 40K).

Figure S28 Temperature dependent unit cell volume V of C5.