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Section S1. Moment Analysis  

For a given distribution (e.g., assuming a recorded eluted peak, c = f(t), c = concentration,  

t = time) the following moment equations are valid (n ∈ {0,1,2,3,…}): 
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These moments can be calculated numerically for any distribution. The integral m0 is 

identical with the peak area. The first absolute moment µ1 corresponds to the mean. The 

second central moment µ’2 is the variance σ2. Additional quantities, which can be calculated 

are the skewness S and the kurtosis K. The excess E quantifies the deviation of K from that 

of a Gaussian normal distribution. 
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 3WE −=   (3 is the kurtosis of a normal distribution)  (S1.6) 

 

If S = 0 and E = 0, then there is no deviation from a Gaussian normal distribution.  
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Section S2. TDA: Theoretical Background, Measurement Conditions and Data Evaluation  

In 1953 Taylor [I] has shown that a plug of solute (with assumed infinitely short length), which 

is pumped at constant volume rate through a tube of circular cross-section under laminar 

flow will be broadened so that the final concentration distribution will be symmetrical about 

the mean, provided several boundary conditions are fulfilled [II]. This final concentration 

distribution will be given by a Gaussian function (<c> = ƒ(x), <c> = radially averaged 

concentration, x = distance), as if the dispersion were only effected by axial molecular 

diffusion, although it is due to the coupling of a radial symmetric velocity inhomogeneity with 

radial diffusion. Mass transport by axial diffusion is regarded by him to be negligible. Taylor 

has therefore spoken of a ”virtual coefficient of diffusivity” K, which is given by: 
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where: ac = radius of capillary, <v> = mean linear velocity, Dc = collective diffusion coefficient 

Later Aris [III] has added that it is not required to neglect axial diffusion, because with 

eliminated higher moments the total variance is the sum of the partial variances:  
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For a trace recorded at a distance x, if the conditions for a Taylor-Aris distribution are given 

(cf., Section S3), the collective diffusion coefficient Dc can be calculated from the variance 

of the function <c> = ƒ(t) with <c> = radially averaged concentration, t = time, and σt
2 = 2Kt 

(σt
2 = variance). If D0 (the diffusion coefficient at infinite dilution) can be approximated by Dc, 

then Dc is directly related to the hydrodynamic radius rH via the Stokes-Einstein equation. 

                                                                                                                     
I  Taylor, G. Dispersion of soluble matter in solvent flowing slowly through a tube, 
 Proc. R. Soc. London A, 1953, 219, 186-203. 
II  Taylor, G. Conditions under which dispersion of a solute in a stream of solvent can be 
 used to measure molecular diffusion, Proc. R. Soc. London A, 1954, 225, 473-477. 
III  Aris, R. On the dispersion of a solute in a fluid flowing through a tube, 
 Proc. R. Soc. London A, 1955, 235, 67-77. 
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We determined the mean hydrodynamic radius rH with following procedure: after filling the 

capillary with borate buffer of defined concentration, the sample (diluted with borate buffer 

of identical concentration) was pumped at a constant pressure difference (∆p = 14 mbar) 

through a fused-silica capillary (T = 25 °C). The detection wavelength was set to 200 nm. All 

measurements were made with a capillary of 75 µm I.D. of appropriate length, which 

provides a maximum signal height without (at the selected mean velocity of the liquid) 

exceeding the validity range of the Taylor-Aris equation (cf., Section S3). Absence of 

adsorption of the particles onto the capillary wall was confirmed by comparing the inflection 

point of the concentration profile (elution time) with that of the nonadsorbed monomolecular 

substance thiourea (no time shift) and by fitting the ascending part of the recorded trace to 

a cumulative Gaussian function (no apparent asymmetry). The recorded absorbances were 

within the linearity range of the detector (data not shown). 

All traces (apparent absorbance A = ƒ(t)) were fitted to the cumulative Gaussian function by 

non-linear regression (see Figure S3 and Table S1): 
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where A(t) = apparent absorbance, t = time, tH = inflection point, σt = width of the distribution. 

Hydrodynamic radii rH were calculated from the obtained diffusion coefficients by applying 

the Stokes-Einstein equation. Results obtained via Taylor equation do not deviate 

significantly from those obtained via Taylor-Aris equation (refer to Table S1). 
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Section S3. Validity Range of the Taylor-Aris Equation  

Requirements for the validity of the Taylor-Aris equation were investigated by Belongia and 

Baygents [IV]: 
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where: τ = characteristic diffusion time, Dc = collective diffusion coefficient, tH =  elution time 

(inflection point of recorded curve), ac = radius of capillary. 

While ac is fixed at 38 µm, following values have to be given for the diffusion coefficients at 

25 °C (values taken from results of TDA analysis): Dc(SNP12) = 30 ⋅ 10-12 m2 s-1 and 

Dc(SNP22) = 15 ⋅ 10-12 m2 s-1. The time tH depends on the length of the capillary (as the 

pressure difference was kept constant, refer to Table S1): tH = 18 min. 

With this data set, we obtain the following results: 

τ(SNP12) = 22.4 

τ(SNP22) = 11.2. 

 

This calculation shows that under the conditions of the measurements of the traces shown 

in Figure S3 the requirements for the validity of the Taylor-Aris equation are fulfilled. No 

deviation of the results obtained via Taylor equation from those obtained via Taylor-Aris 

equation (refer to Table S1) confirms the additional validity of the Taylor equation. There is 

no significant influence of axial diffusion (taken into consideration with the first term of the 

Taylor-Aris equation, Equation S1.8) on the obtained result. 

 

  

                                                                                                                     
IV  Belongia, B. M.; Baygents, J. C. Measurements on the Diffusion Coefficient of Colloidal  
 Particles by Taylor-Aris Dispersion, J. Colloid Interface Sci. 1997, 195, 19-31 
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(a) 
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(b) 

 

  



- S8 - 

(c) 

 

 

Figure S1. TEM micrographs for (a) SNP7, (b) SNP12, and (c) SNP22. 
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Figure S2. Fitting of TEM data for (a) SNP 22, (b) SNP 12, and (c) SNP 7 to a Gram-Charlier 

series of type A. 
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Figure S3. Recorded traces (TDA) for (a+b) SNP7, (c+d) SNP12, (e+f+g) SNP22. For 

experimental parameters refer to Table S2. Shown are different traces for the same sample, 

black = smoothed UV trace (FFT 10 points), green = fitted curve. 
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Table S1. Results of Taylor dispersion analysis, experimental conditions: T = 25 °C, total 

length of capillary = 606.5 mm, capillary length to detector = 505.5 mm, inner diameter of 

fused silica capillary = 76 µm, frontal method, pressure difference = 0.2 psi = 13.8 mbar, 

particle suspension diluted with 5 mmol L-1 borax in water against 5 mmol L-1 borax in water, 

mass fraction of nanoparticles in sample: 0.4% (SNP22) and 0.9 % (SNP12 and SNP7), 

absorbance detection at 200 nm. 

Sample Run tH/min SE(tH)/min σt/min SE(σt)/min R2 rH/nm (1) rH/nm (2) 

SNP7 1 18.19 0.00118 0.6774 0.00164 0.99776 6.173 6.171 

 2 18.30 0.000954 0.6774 0.00133 0.99853 6.134 6.132 

 3 18.43 0.000947 0.7029 0.00132 0.99860 6.560 6.559 

 4 18.31 0.000918 0.6834 0.00128 0.99865 6.242 6.240 

 5 18.32 0.00104 0.6912 0.00145 0.99828 6.381 6.380 

 MW 18.31  0.6865   6.298 6.296 

 SD 0.0845  0.0108   0.174 0.174 

 RSD 0.46%  1.57%   2.77% 2.77% 

         

SNP12 1 17.90 0.000930 0.7561 0.00127 0.99890 7.813 7.812 

 2 18.01 0.000648 0.7165 0.000895 0.99940 6.975 6.973 

 3 17.87 0.00102 0.7312 0.00135 0.99858 7.323 7.321 

 4 17.88 0.000714 0.7417 0.000981 0.99931 7.528 7.527 

 5 17.85 0.000784 0.7375 0.00107 0.99918 7.456 7.455 

 MW 17.90  0.7366   7.419 7.418 

 SD 0.0639  0.0144   0.306 0.306 

 RSD 0.36%  1.97%   4.13% 4.13% 

         

SNP22 1 17.65 0.000543 1.0357 0.000736 0.99974 14.87 14.87 

 2 17.90 0.000630 1.05403 0.000851 0.99966 15.18 15.18 

 3 18.34 0.000589 1.10218 0.000793 0.99971 16.21 16.21 

 4 17.62 0.000503 1.07638 0.000683 0.99978 16.09 16.08 

 5 18.10 0.000539 1.0713 0.000731 0.99975 15.51 15.51 

 MW 17.92  1.0679   15.57 15.57 

 SD 0.305  0.0249   0.572 0.572 

 RSD 1.70%  2.34%   3.67% 3.67% 
 
(1) Calculation via Taylor equation (cf., Section S2); (2) calculation via Taylor-Aris equation 
(cf., Section S2); MW = arithmetic mean; SD = standard deviation; RSD = relative standard 
deviation; R = correlation coefficient; SE = standard error resulting from regression 
analysis, rH = hydrodynamic radius 


