Supporting Information

Computationally Aided Absolute Stereochemical Determination of Enantio-enriched Amines

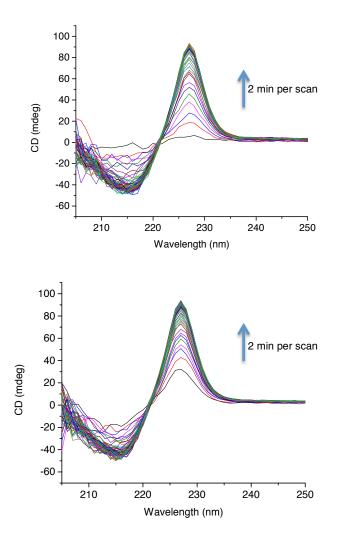
Jun Zhang,[†] Hadi Gholami,[†] Xinliang Ding,[†] Minji Chun,[†] Chrysoula Vasileiou,[†] Tatsuo Nehira,[‡] and Babak Borhan[†]*

[†]Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA; [‡]Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan

Table of Contents:

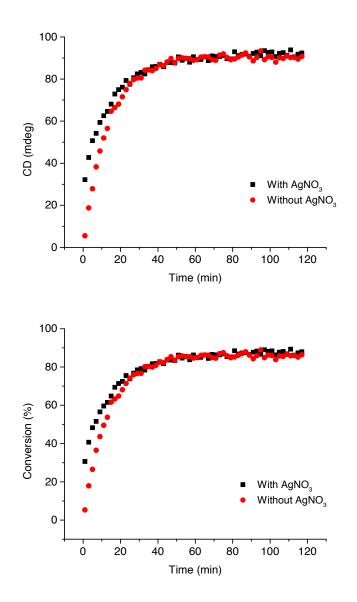
I. Materials and General Instrumentations:	S2
II. ECCD Data for BDN-derivatized Enantiomeric Pairs of Chiral Amines:	S3
III. Reaction of 1-BDN with Chiral Amines:	S4
IV. Analysis of Enantiomeric Excess:	S6
V. General Procedure for Analysis of Absolute Stereochemistry of Amines:	S11
VI. Impurity Study:	S12
VII. General Procedure for CD Measurements:	S15
VIII. ECCD Spectra of 1-BDN Derivatized Chiral Amines:	S16
IX. ECCD Spectra of 1-BDN Derivatized Bn-protected Chiral Amines:	S23
X. ECCD Spectra of 1-BDN Derivatized Chiral Amino Alcohols:	S25
XI. Synthesis of New Compounds:	S27
XII. Quantum Chemical Modeling Studies:	S38
XIII. References:	S42
XIV. NMR Spectra:	S43

I. Materials and General Instrumentations


Spectra grade solvents used for Circular Dichroism measurements were purchased from Sigma Aldrich. Column chromatography was performed using SiliCycle silica gel (230-400 mesh). ¹H-NMR and ¹³C-NMR spectra were obtained on Varian 500 MHz instrument and are reported in parts per million (ppm) relative to the solvent resonances (δ), with coupling constants (J) in Hertz (Hz). CD spectra were recorded on a JASCO J-810 spectropolarimeter, equipped with a temperature controller (Neslab 111) and are reported as λ [nm] ($\Delta \epsilon_{max}$ [mol⁻¹ cm⁻¹]). All chiral primary amines were purchased from commercial sources and were used without further purification. HRMS analysis was performed on a Q-TOF Ultima system using electrospray ionization in positive mode. HPLC analysis was performed on DAICEL CHIRALCEL® OD-H column.

		Predicted ECCD		
Entry	Chiral amine	(P:M)	λ (nm), Δε	А
1	NH ₂	Pos	228 (+356)	. 500
1	35	(80.9/19.1)	215 (-176)	+532
0	NH ₂	Neg	228 (-345)	540
2	Ĵ SR	(17.2/82.8)	215 (+173)	-518
3	NH ₂	Pos	227 (+393)	. 575
3	4S	(70.3/29.7)	216 (-182)	+575
4	NH ₂	Neg	227 (-403)	-593
т	4R	(17.4/82.6)	216 (+190)	-373
F	NH ₂	Pos	228 (+305)	
5	5S	(65.7/34.3)	217 (-139)	+444
6	NH ₂	Neg	228 (-342)	-405
0	5R	(19.3/80.7)	217 (+153)	-495
-	NH ₂	Neg	227 (-56)	
7	75	(37.2/62.8)	217 (+30)	-86
0	NH2	Pos	227 (+61)	.02
8	7R	(55.1/44.9)	217 (-31)	+92
9	NH ₂	Neg	227 (-79)	117
7	85	(42.0/58.0)	216 (+38)	-117
10	NH2	Pos	227 (+77)	+116
10	8R	(61.8/38.2)	216 (-39)	.110
11	NHBn	Pos	228 (+162)	+240
		(95.8/4.2)	216 (-78)	
12	~	Neg	228 (-156)	-231
	NHBn	(13.0/87.0)	216 (+75)	
13	11R	Neg	228 (-79)	-149
	NHBn	(42.3/57.6)	217 (+70)	
14	L 12S NHBn	Pos	227 (+80)	+151
		(77.4/22.6)	217 (-71)	
15		Pos	227 (+264)	+397
	13R OH	(83.6/16.4)	215 (-133)	
16		Neg	227 (-288)	-435
	13S OH	(19.1/80.9)	215 (+147)	
17	ŎН	Neg	226 (-61)	-88
	i 14R NH ₂	(12.2/87.8)	215 (+27)	
18	о́н	Pos	226 (+77)	+107
		(89.7/10.3)	215 (-30)	

II. ECCD Data for BDN-derivatized Enantiomeric Pairs of Chiral Amines.


III. Reaction of 1-BDN with Chiral Amines

Recrystallized 1,1'-(bromomethylene)dinaphthalene (**1-BDN**) was dissolved in anhydrous DCM to obtain a 0.01 M stock solution. (*S*)-(–)- α -Methylbenzylamine **3***S* was dissolved in anhydrous DCM to obtain 0.01 M stock solution. To the spectra grade acetonitrile (1 mL) in a CD cuvette was added 1 μ L **1-BDN** solution, followed by the addition of 10 μ L (*S*)-(–)- α -methylbenzylamine solution (10 equiv). The reaction rate was analyzed by CD at 2 min intervals (100 nm/min scan rate). Addition of AgNO₃ solution (2 equiv) in acetonitrile (0.01 M, 2 μ L) to a duplicate reaction mixture prepared as described above was used for comparison.

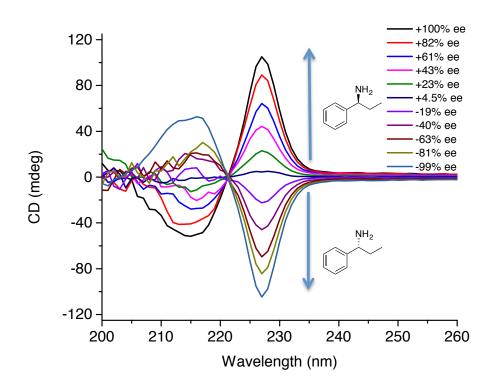
Figure S1. Interval scans study of *S*- α -methyl benzyl amine and **1-BDN**. Top: without additive, Bottom: in presence of 2 equiv of AgNO₃.

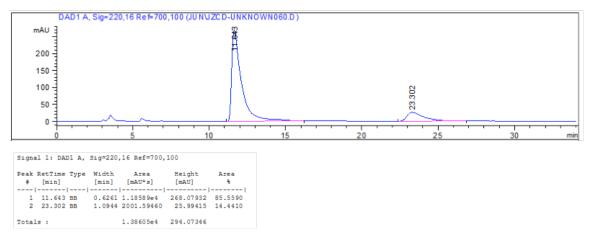
Comparison of rates was performed by plotting the CD signal (mdeg) at 227 nm for each interval scan as a function of time (min). As shown in Figure S2, $AgNO_3$ accelerated the initial reaction rate, but the overall time to completion remained the same (around 1 h). The reaction was complete in 1 h (10⁻⁵ M) with no need for additives.

Figure S2. Rate study of the reaction of **3***S* and **1-BDN** at 10 μ M. Top: rate profile based on CD read out, Bottom: comparison based on conversion.

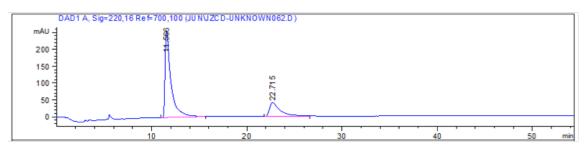
IV. Analysis of Enantiomeric Excess

Two enantiomers of α -ethylbenzylamine were purchased from Alfa Aesar. Stock solutions of various *ee*s (-100, -80, -60, -40, -20, 0, +20, +40, +60, +80, +100% *ee* for *R* enantiomer) were prepared (0.01 M solution in DCM). Actual *ee* value for each standard was measured by HPLC analysis of carbamate derivatized analog for each prepared sample. To acetonitrile (1 mL) was added **1-BDN** (1 µL, 0.01 M stock solution), followed by 10 µL of each standard amine stock solution (0.01 M). After incubating for 1.5 h at room temperature, the mixture was directly analyzed by CD (Figure 3S).

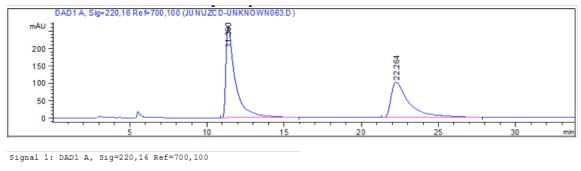



Figure S3. CD spectra of chiral amines at various ees of a-ethylbenzylamine.

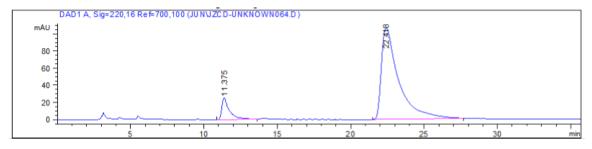
HPLC Data:


All chiral amines were derivatized as their corresponding methyl carbamate for HPLC analysis as shown below for ethyl benzyl amine **4**. HPLC analysis was performed with an analytical DAICEL CHIRALCEL® OD-H column, operating with a flow rate of 0.7 mL/min, with 99:1 hexane: isopropyl alcohol as eluent. The **4***S*-enantiomer elutes at 11 min, while the **4***R*-enantiomer appears at 23 min.

Unknown sample 1

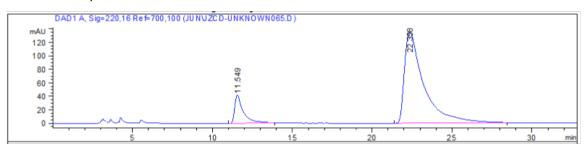


Unknown sample 2


Signal 1: DAD1 A, Sig=220,16 Ref=700,100					
Peak RetTime Type # [min]	[min]	Area [mAU*s]	[mAU]	Area %	
1 11.566 BB 2 22.715 BB	0.6054	1.09350e4	254.43579	77.7263	
Totals :		1.40685e4	295.20938		

Unknown sample 3

	RetTime [min]			Area [mAU*s]	Height [mAU]	Area %
1	11.390	BB	0.5895	1.10237e4	262.71075	57.2081
2	22.264	BB	1.1458	8245.74707	101.71544	42.7919
Total	s :			1.92694e4	364.42619	


Unknown sample 4

Signal 1: DAD1 A, Sig=220,16 Ref=700,100

#	[min]		[min]	Area [mAU*s]	[mAU]	8
1	11.375	BB	0.5007	905.53143	25.35308	9.3949
2	22.418	BB	1.1742	8732.98828	106.55245	90.6051
Tota]	ls :			9638.51971	131.90554	

Unknown sample 5

Signal 1: DAD1 A, Sig=220,16 Ref=700,100

+			[min]	Area [mAU*s]	[mAU]	Area %
1	11.549	мм	0.6176	1560.76135	42.11751 135.40125	12.1399
Total	ls :			1.28564e4	177.51875	

A linear relationship between the CD amplitude at 227 nm and the enantiomeric excess of the analytes was obtained as shown in Figure S4 ($R^2 = 0.999$).

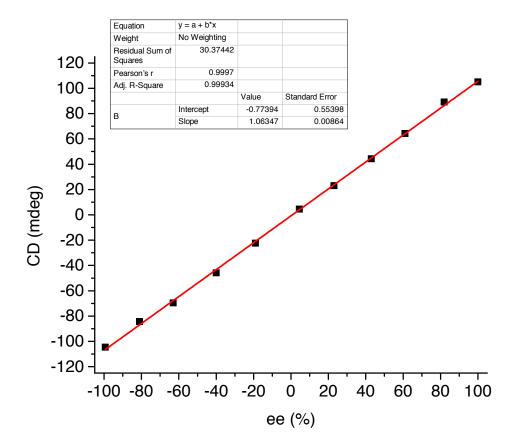
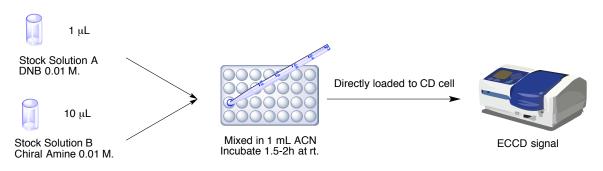
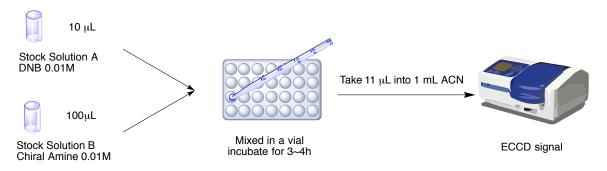


Figure S4. Linear correlation of the CD signal with ee values of chiral amines.


Five unknown samples were prepared by a third party (double blind study) and were subject to the general procedure as described above. The CD amplitude at 227 nm was used to estimate the ee of the unknown solution based on the standard curve shown in Figure S4. Actual *ee*s for each unknown sample were determined through derivatization to their corresponding carbamates and HPLC analysis, as described above for the standard samples. The data for 1 scan measurement is provided in Table S2.

	1 Scan (< 1 min)					
Entry	<i>ee</i> (%) known	<i>ee</i> (%) measured	Error (%)			
А	+71.2	+71.5	0.3			
В	+55.4	+55.7	0.3			
С	+14.4	+14.9	0.5			
D	-81.2	-81.2	0.0			
E	-75.7	-74.4	1.3			

Table S2: Measured	ees of	f unknown	samples.
--------------------	--------	-----------	----------


V. General Procedure for Analysis of Absolute Stereochemistry of Amines

Primary Amines: Amines were dissolved in anhydrous DCM to make obtain a 0.01 M stock solution. Similarly, a 0.01 M stock solution of 1,1'-(bromomethylene)dinaphthalene (**1-BDN**) in anhydrous DCM was prepared. To initiate the derivatization, **1-BDN** (1 μ L) and 10 μ L of the amine stock solution were mixed in acetonitrile (1 mL) and the mixture was incubated at room temperature for 1.5 h (Scheme S1). The solutions were then loaded directly in a CD cuvette and measurements ensued (better signal and faster reaction time can be achieved by increasing the concentration).

Scheme S1: General procedure for preparation of samples for CD analysis.

Secondary Amines: The same procedure as above was followed with the following changes; These reactions required a higher final concentration (10^{-2} M) and a longer reaction time. To initiate the reaction, **1-BDN** (10 µL) and chiral amines (100 µL), each from their respective 0.01 M stock solutions, were incubated for 4 h at room temperature. For CD analysis, 11 µL of the reaction mixture was added to acetonitrile (1 mL).

Scheme S2: General procedure to sense chiral secondary benzyl protected amines.

VI. Impurity study

To test if impure chiral amines would react with **1-BDN**, a control experiment was designed in which (S)-(–)- α -methylbenzylamine and its HCl salt were reacted with **1-BDN** (Figure S5). To acetonitrile (1 mL) was added **1-BDN** solution (1 μ L, 0.005 M), followed by the addition of (S)-(–)- α -methylbenzylmine solution (10 μ L, 10 equiv) and (S)-(–)- α -methylbenzylamine HCl salt solution (10 μ L, 10 equiv) in two vials. After incubating for 1.5 hours at rt, the mixtures were directly analyzed by CD (100 nm/min scan rate). The pure amine yielded a strong ECCD signal, while the amine salt had no signal. This clearly suggests the need for using free base for derivatization with **1-BDN**.

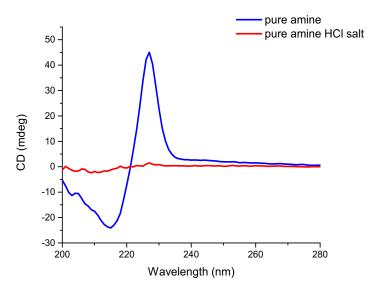
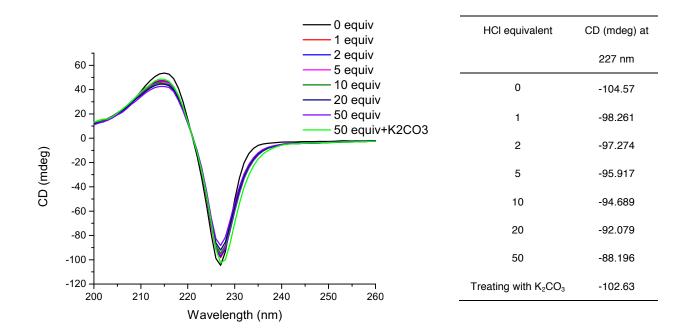
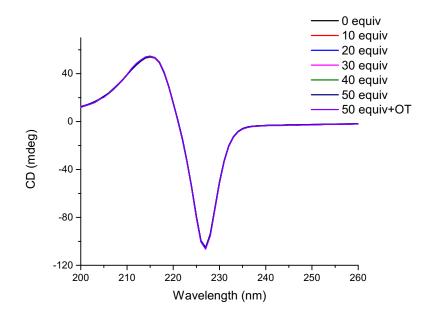




Figure S5. Impure amine study. Blue: pure amine added to **1-BDN**. Red: amine HCI salt added to **1-BDN**.

Tolerance of the **BDN** derivatized chiral amines under acidic or oxidative conditions: To (R)-*N*-(di(naphthalen-1-yl)methyl)-1-phenylethan-1-amine (**3***R*-**BDN**) was added HCl acid and H₂O₂ seperately. Treating pure **3***R*-**BDN** with different equivalents of HCl led to a slight decrease in ECCD (6 % loss with 1 equiv HCl and up to 15 % loss with 50 equiv HCl, Figure S6). The original ECCD signal was fully recovered after addition of solid K₂CO₃ (see table for details). For peroxide study, treating **3***R*-**BDN** with up to 50 equiv of H₂O₂ stock solution resulted in no change in the signal. Alongating the exposore of **3***R*-**BDN** to 50 equiv H₂O₂ for 1.5 h also did not result in deterioration of the ECCD signal (Figure S7).

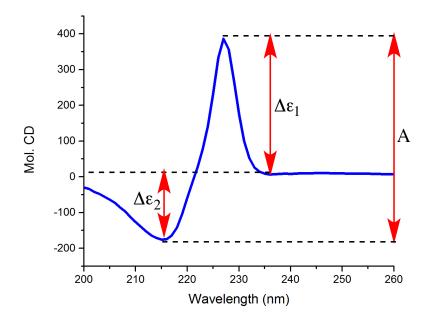
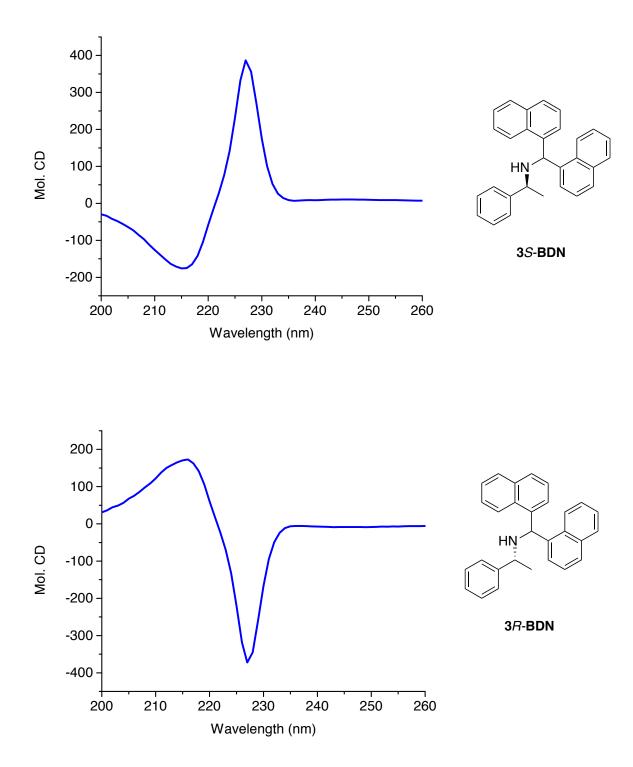
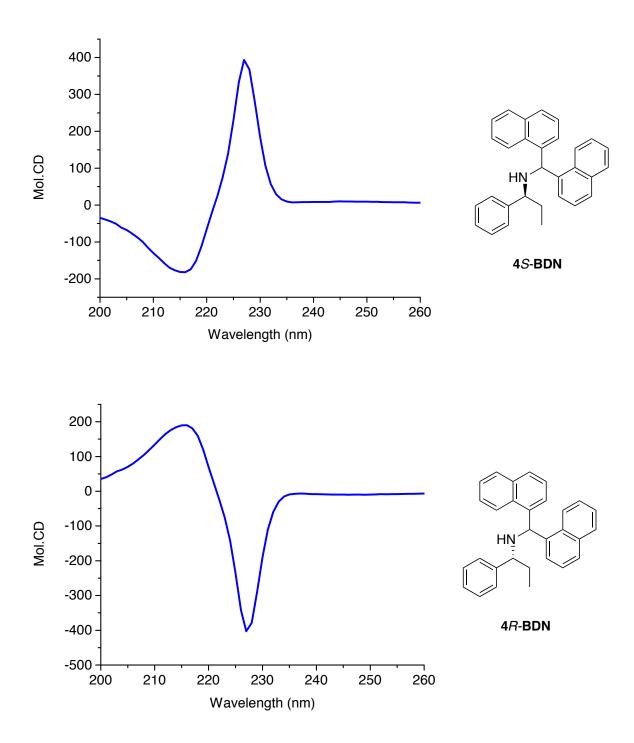

Figure S6. Treatment of **3***R***-BDN** with different equivalents of HCI. Signal decreased upon addition of HCI from 1 equivalent up to 50 equivalents, however, after addition of solid K_2CO_3 , the CD signal was recovered.

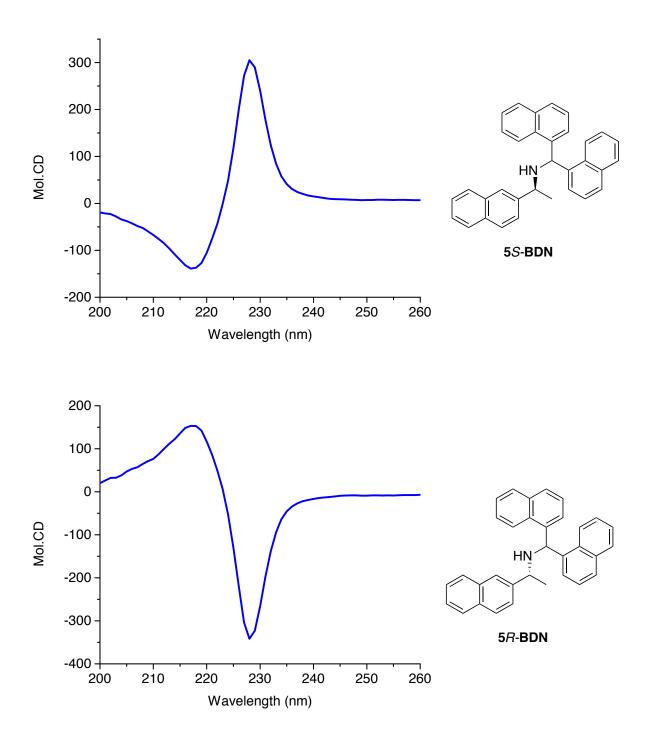
Figure S7. Treatment of **3***R***-BDN** with H_2O_2 stock solution at different equivalents. The ECCD signal remained unchanged.

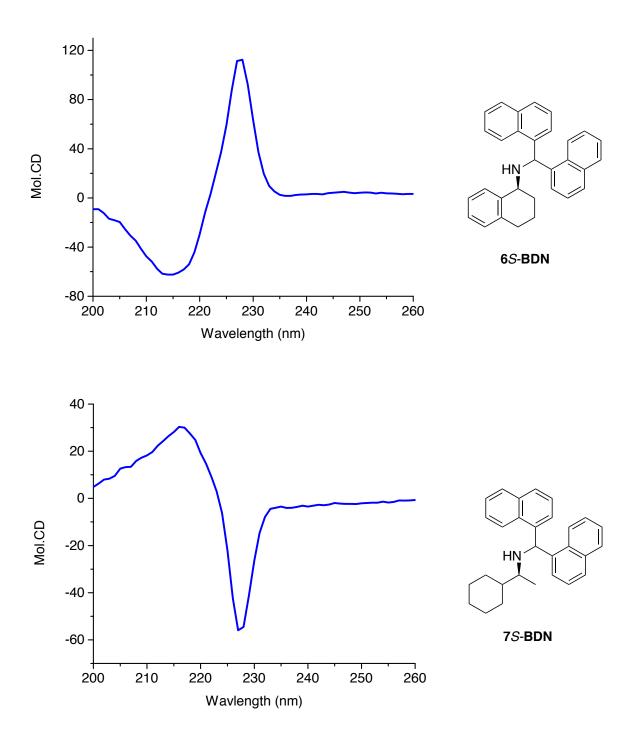
VII. General Procedure for CD Measurement

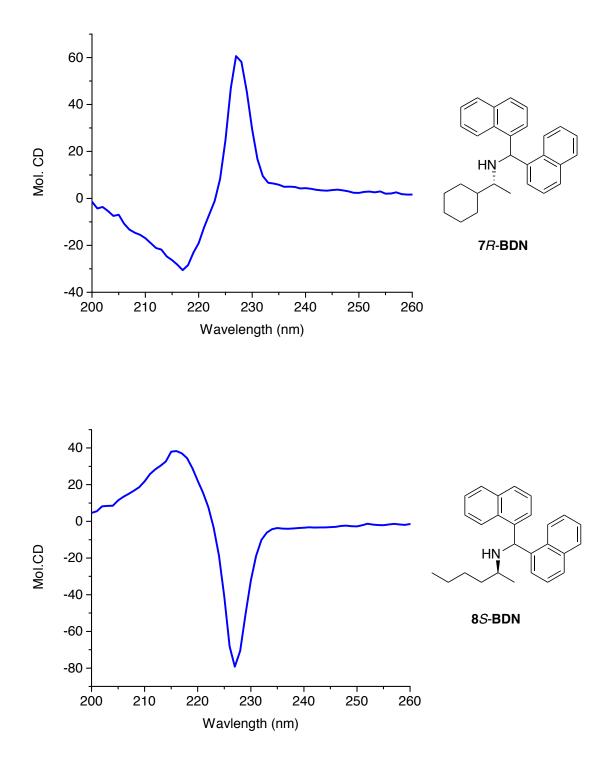
Chiral amines were derivatized as their **BDN** derivatives and analyzed by CD in pure form. The ECCD spectra were recorded in millidegrees and normalized based on the concentration of the derivatized **BDN** samples to obtain the molecular CD (Mol CD).

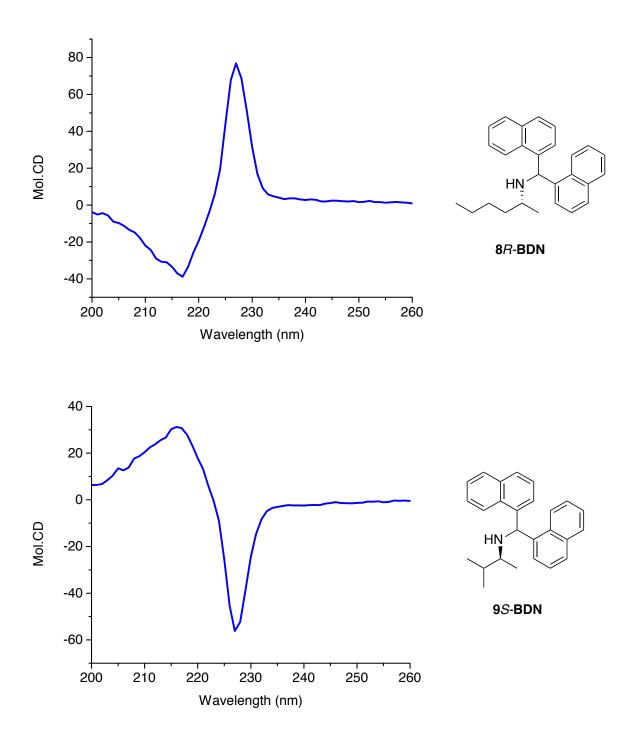


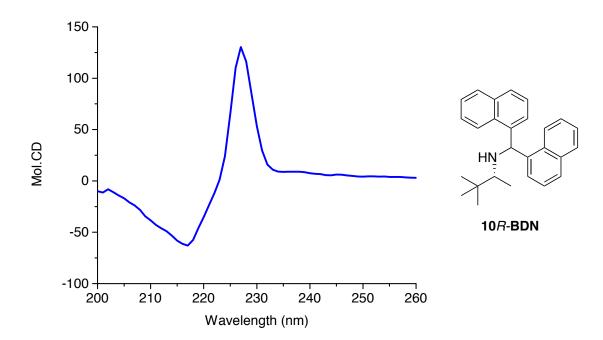

Common symbol:

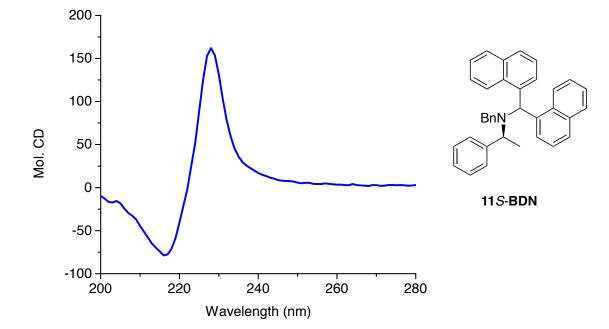

Amplitude: A = $\Delta \varepsilon_1 - \Delta \varepsilon_2$

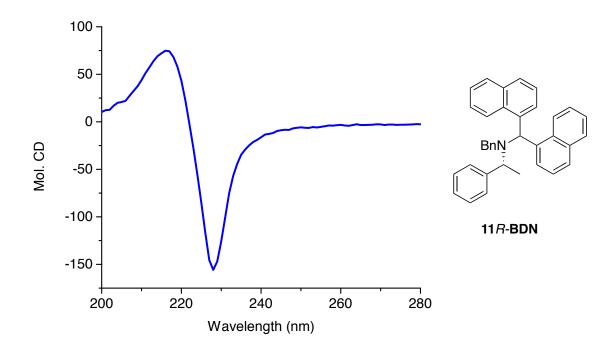

 $\Delta \epsilon_1$ and $\Delta \epsilon_2$ are the maximum intensities of the lower and higher energy bands respectively (higher and lower wavelengths accordingly).

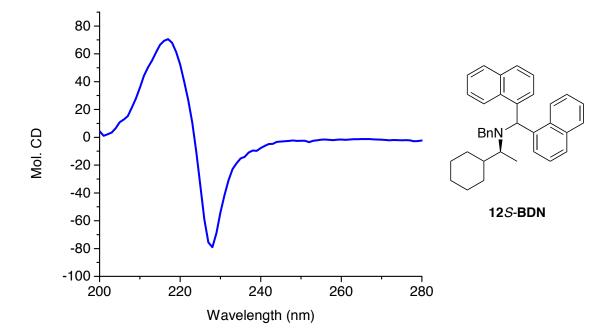


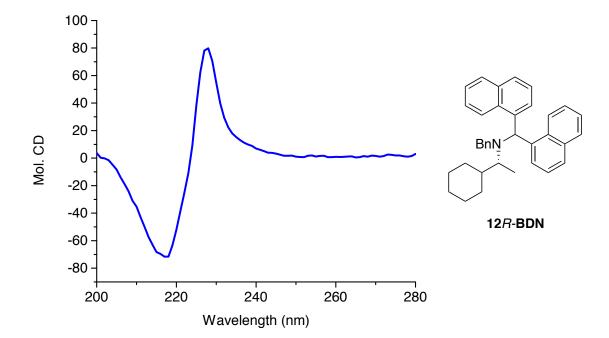


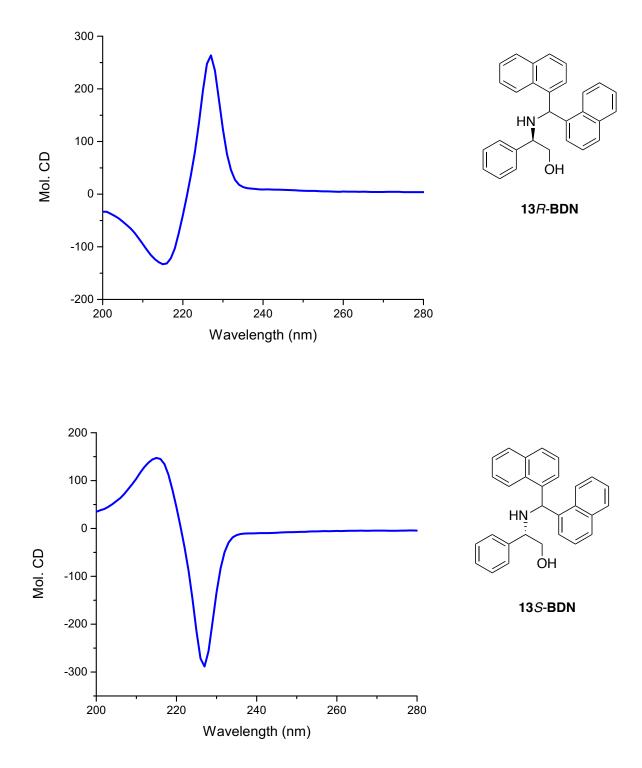


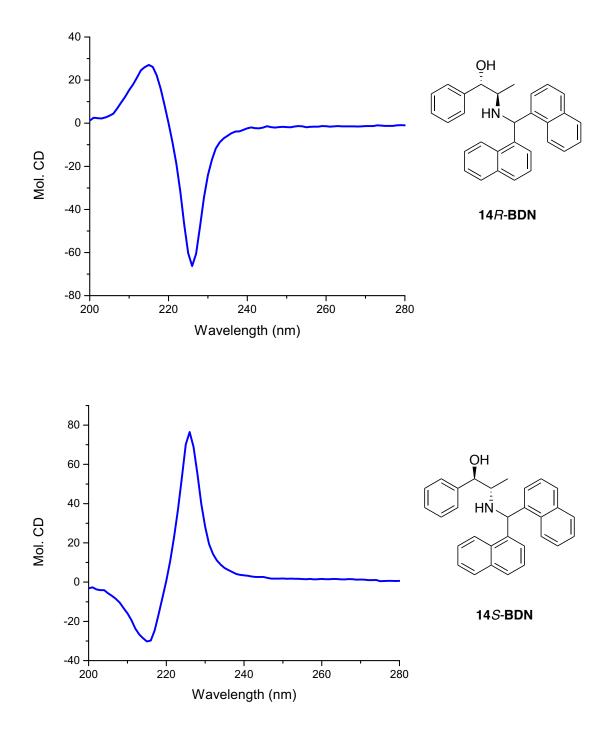


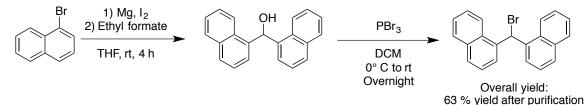






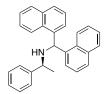






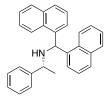
XI. Synthesis of New Compounds

1,1'-(bromomethylene)dinaphthalene (1-BDN)^[1]

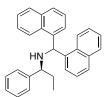

To a dried 250 mL round bottom flask was added magnesium turnings (504 mg, 21 mmol, 1.05 equiv) and lodine (12 mg, 0.05 mmol) in dry THF (100 mL). 1-Bromonapthalene (4.14 g, 20 mmol) was dissolved in dry THF (10 mL) and was added to the mixture slowly over 15 min. After stirring for 2 h at room temperature, ethyl formate (740 mg, 10 mmol) in dry THF (10 mL) was added to the mixture and stirred for 2 h. The reaction was quenched by addition of cold 1N HCl solution (10 mL) and extracted with ethyl acetate (200 mL), washed with brine, dried over sodium sulfate and concentrated in vacuo to afford the crude product. The product was purified by recrystallization from ethyl acetate and hexane to afford an off white solid product [di(naphthalen-1-yl)methanol] (2.57 g, 90%). ¹HNMR (CDCl₃, 500 MHz): 8.06 (d, J = 8.0 Hz, 2H), 7.91 (d, J = 8.0 Hz, 2H), 7.89 (d, J = 8.0 Hz, 2H), 7.50–7.38 (m, 9H), 7.33 (d, J = 4.5 Hz, 1H), 2.40 (d, J = 4.5 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 125 MHz): 138.3, 133.9, 131.0, 128.8, 128.6, 126.5, 125.7, 125.4, 125.0, 123.6, 69.7.

To a dried 200 mL round bottom flask was added di(naphthalen-1-yl)methanol (2.57 g, 9.05 mmol) in DCM (70 mL), cooled to 0 °C, and PBr₃ (6 mL, 6 mmol) was added. The reaction was slowly warm up to room temperature and was stirred overnight. The reaction was quenched with the addition of water (40 mL), extracted by DCM (2 x 100 mL), and the combined organics were washed with brine, dried over sodium sulfate and concentrated on vacuo. The product was purified by recrystallized from DCM to afford an off white solid (2.2 g, 71%). It should be noted that in our hands, exposure to silica gel leads to decomposition.

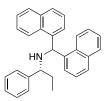
¹HNMR (CDCl₃, 500 MHz): 8.06–8.04 (m, 2H), 7.90–7.88 (m, 2H), 7.82 (d, J = 8.0 Hz, 2H), 7.79 (s, 1H), 7.72-7.70 (d, J = 7.5 Hz, 2H), 7.51-7.48 (m, 4H), 7.42 (t, J = 8.0 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz): 135.9, 133.8, 130.14, 129.2, 129.0, 128.2, 126.8, 126.0, 125.0, 123.2, 50.0; HRMS (ESI⁺) for $C_{21}H_{15}$ [M - Br]⁺ calculated: 267.1174 found: 267.1177.


General Procedures for the Synthesis of 1-BDN Amine Derivatives

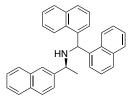
General Procedure A: To a 5 mL round bottom flask was added chiral amine (0.15 mmol, 1.5 equiv) and 1,1'-(bromomethylene)dinaphthalene (0.1 mmol, 35 mg) in a 1:1 mixture of acetonitrile and DCM (2 mL overall). K_2CO_3 (0.2 mmol, 2 equiv, 28 mg) was added to the flask and the mixture was stirred under N₂ for 1.5 h. The reaction mixture was concentrated under vacuo and the mixture was directly loaded onto silica gel for purification.


(S)-N-(di(naphthalen-1-yl)methyl)-1-phenylethan-1-amine (3S-BDN)

Following the general procedure A, a white solid product was obtained (18.1 mg, 46.8%). ¹H NMR (CDCl₃, 500 MHz): 8.03 (d, J = 6.5 Hz, 1H), 7.87-7.81 (m, 3H), 7.67-7.60 (m, 3H), 7.45-7.42 (m, 2H), 7.39-7.36 (m, 4H), 7.30-7.25 (m, 3H), 7.21-7.18 (m, 2H), 7.10 (d, J = 5 Hz, 1 H), 6.21 (s, 1H), 3.92 (q, J = 6.5 Hz, 1H), 1.50 (d, J = 6.5 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): 144.9, 139.3, 137.9, 134.1, 133.9, 131.8, 130.9, 128.8, 128.7, 128.4, 127.8, 127.6, 127.4, 127.3, 126.2, 126.0, 125.9, 125.5, 125.4, 125.3, 124.9, 123.4, 122.9, 56.0, 55.0, 23.2. HRMS (ESI⁺) for $C_{29}H_{26}N$ [M + H]⁺ calculated: 388.2065 found: 388.2064.

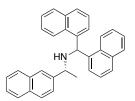

(R)-N-(di(naphthalen-1-yl)methyl)-1-phenylethan-1-amine (3R-BDN)

Following the general procedure A, a white solid product was obtained (12 mg, 31%). ¹H NMR (CDCl₃, 500 MHz): 8.02 (d, J = 7.0 Hz, 1H), 7.86-7.80 (m, 3H), 7.66-7.59 (m, 3H), 7.44-7.42 (m, 2H), 7.38-7.35 (m, 4H), 7.30-7.25 (m, 3H), 7.21-7.19 (m, 2H), 7.09-7.07 (m, 1 H), 6.19 (s, 1H), 3.91 (q, J = 6.5 Hz, 1H), 1.49 (d, J = 6.5 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): 144.9, 139.3, 137.9, 134.1, 133.9, 131.8, 130.9, 128.8, 128.7, 128.4, 127.8, 127.6, 127.4, 127.3, 126.2, 126.0, 125.9, 125.5, 125.4, 125.3, 124.9, 123.4, 122.9, 56.0, 55.0, 23.2. HRMS (ESI⁺) for $C_{29}H_{26}N [M + H]^+$ calculated: 388.2065 found: 388.2067.

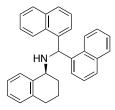

(S)-N-(di(naphthalen-1-yl)methyl)-1-phenylpropan-1-amine (4S-BDN)

Following the general procedure A, a white solid product was obtained (35 mg, 88%). ¹H NMR (CDCl₃, 500 MHz): 8.13 (d, J = 7.0 Hz, 1H), 7.86-7.81 (m, 3H), 7.66-7.63 (m, 2H), 7.58 (d, J = 9 Hz, 1H), 7.44-7.35 (m, 6H), 7.30-7.27 (m, 1H), 7.22-7.16 (m, 4H), 7.08-7.07 (d, J = 7.0 Hz, 1 H), 6.20 (s, 1H), 3.62 (t, J = 7.0 Hz, 1H), 1.98-1.96 (m, 1 H), 1.78-1.75 (m, 1H), 0.87 (t, J = 7.5 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): 143.6, 139.5, 138.0, 134.1, 133.9, 131.9, 130.9, 128.8, 128.7, 128.4, 128.1, 127.7, 127.5, 127.3, 126.2, 126.1, 125.9, 125.5, 125.4, 125.3, 125.0, 123.4, 123.0, 62.7, 54.7, 30.0, 11.4. HRMS (ESI⁺) for $C_{30}H_{28}N$ [M + H]⁺ calculated: 402.2222 found: 402.2223.

(S)-N-(di(naphthalen-1-yl)methyl)-1-phenylpropan-1-amine (4R-BDN)

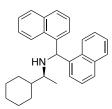

Following the general procedure A, a white solid product was obtained (34 mg, 86%). ¹H NMR (CDCl₃, 500 MHz): 8.12 (d, J = 7.0 Hz, 1H), 7.86-7.80 (m, 3H), 7.67-7.63 (m, 2H), 7.58 (d, J = 8.5 Hz, 1H), 7.45-7.35 (m, 6H), 7.30-7.27 (m, 1H), 7.22-7.16 (m, 4H), 7.08-7.07 (d, J = 6.5 Hz, 1 H), 6.20 (s, 1H), 3.63 (t, J = 8.0 Hz, 1H), 1.98-1.96 (m, 1 H), 1.78-1.75 (m, 1H), 0.87 (t, J = 7.5 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): 143.5, 139.5, 137.9, 134.1, 133.9, 131.9, 130.9, 128.8, 128.7, 128.4, 128.1, 127.7, 127.5, 127.3, 126.2, 126.1, 125.9, 125.5, 125.4, 125.3, 125.0, 123.3, 123.0, 62.7, 54.7, 30.0, 11.4. HRMS (ESI⁺) for $C_{30}H_{28}N$ [M + H]⁺ calculated: 402.2222 found: 402.2231.

(S)-N-(di(naphthalen-1-yl)methyl)-1-(naphthalen-2-yl)ethan-1-amine (5S-BDN)

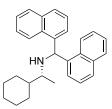

Following the general procedure A, a white solid product was obtained (41 mg, 93%). ¹H NMR

 $(CDCI_3, 500 \text{ MHz})$: 7.97 (d, J = 7.5 Hz, 1H), 7.88-7.81 (m, 5H), 7.77 (d, J = 8.0 Hz, 1H), 7.72-7.68 (m, 2H), 7.62-7.58 (m, 2H), 7.53-7.50 (m, 2H), 7.42-7.26 (m, 5H), 7.22-7.19 (m, 1H), 7.14-7.09 (m, 2H), 6.29 (s, 1H), 4.86 (q, J = 7.0 Hz, 1H), 1.62 (d, J = 7.0 Hz, 3H); ¹³C NMR (CDCI₃, 125 MHz): 141.6, 139.3, 138.7, 134.0, 133.9, 133.8, 131.8, 131.7, 131.0, 128.8, 128.7, 128.6, 127.8, 127.7, 127.5, 126.1, 125.9, 125.8, 125.7, 125.5, 125.5, 125.4, 125.4, 125.3, 124.9, 123.8, 123.4, 123.2, 123.1, 55.6, 51.2, 23.7. HRMS (ESI⁺) for C₃₃H₂₈N [M + H]⁺ calculated: 438.2222 found: 438.2230.

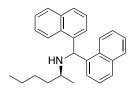
(R)-N-(di(naphthalen-1-yl)methyl)-1-(naphthalen-2-yl)ethan-1-amine (5R-BDN)


Following the general procedure A, a white solid product was obtained (42 mg, 97%). ¹H NMR (CDCl₃, 500 MHz): 7.99 (m, 1H), 7.89-7.82 (m, 5H), 7.78 (m, 1H), 7.73-7.69 (m, 2H), 7.63-7.60 (m, 2H), 7.55-7.51 (m, 2H), 7.43-7.27 (m, 5H), 7.23-7.20 (m, 1H), 7.15-7.10 (m, 2H), 6.30 (s, 1H), 4.88 (q, J = 7.0 Hz, 1H), 1.64 (d, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): 141.6, 139.3, 138.7, 134.0, 133.9, 133.8, 131.8, 131.7, 131.0, 128.8, 128.7, 128.6, 127.8, 127.7, 127.5, 126.1, 125.9, 125.8, 125.7, 125.5, 125.5, 125.4, 125.4, 125.3, 124.9, 123.8, 123.4, 123.2, 123.1, 55.6, 51.2, 23.7. HRMS (ESI⁺) for C₃₃H₂₈N [M + H]⁺ calculated: 438.2222 found: 438.2224.

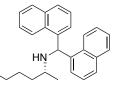
(S)-N-(di(naphthalen-1-yl)methyl)-1,2,3,4-tetrahydronaphthalen-1-amine (6S-BDN)


Following the general procedure A, a white solid product was obtained (36 mg, 87%). ¹H NMR (CDCl₃, 500 MHz): 8.13 (d, J = 8.5 Hz, 1 H), 7.92-7.87 (m, 2H), 7.82-7.76 (m, 3H), 7.69 (d, J = 8.5 Hz, 1 H), 7.62 (d, J = 7.5 Hz, 1 H), 7.50-7.37 (m, 6H), 7.33-7.30 (m, 1H), 7.24-7.21 (m, 1H), 7.17-7.15 (m, 2H), 6.67 (s, 1H), 4.02 (m, 1H), 2.88-2.77 (m, 2H), 2.13-2.03 (m, 2H), 1.79-1.76 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz): 138.7, 138.5, 137.3, 134.1, 134.1, 131.5, 131.4, 129.3, 129.0, 129.0, 128.9, 127.8, 127.7, 126.9, 126.2, 126.1, 126.0, 125.6, 125.5, 125.4, 125.4, 123.0, 122.9,

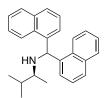
54.7, 53.3, 28.9, 28.5, 18.6. **HRMS** (ESI⁺) for $C_{31}H_{28}N [M + H]^+$ calculated: 414.2222 found: 414.2227.


(S)-1-cyclohexyl-N-(di(naphthalen-1-yl)methyl)ethan-1-amine (7S-BDN)

Following the general procedure A, a white solid product was obtained (18 mg, 47%). ¹H NMR (CDCl₃, 500 MHz): 8.20-8.18 (m, 1H), 8.09 (d, J = 8.0 Hz, 1H), 7.87-7.85 (m, 2H), 7.76-7.73 (m, 2H), 7.59 (d, J = .07 Hz, 1H), 7.50-7.35 (m, 7H), 6.51 (s, 1H), 2.80 (m, 1H), 1.76-1.54 (m, 6H), 1.26-1.21 (m, 2H), 1.11 (d, J = 7.0 Hz, 3H), 1.07-1.03 (m, 2H). ¹³C NMR (CDCl₃, 125 MHz): 139.6, 138.9, 134.0, 134.0, 131.5, 131.4, 128.9, 128.9, 127.6, 127.5, 126.2, 126.0, 125.9, 125.8, 125.5, 125.5, 125.3, 123.2, 123.1, 56.0, 55.2, 43.2, 30.1, 27.7, 26.8, 26.7, 26.5, 16.5. HRMS (ESI⁺) for $C_{29}H_{32}N$ [M + H]⁺ calculated: 394.2535 found: 394.2538.

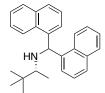

(R)-1-cyclohexyl-N-(di(naphthalen-1-yl)methyl)ethan-1-amine (7R-BDN)

Following the general procedure A, a white solid product was obtained (29 mg, 73%). ¹H NMR (CDCl₃, 500 MHz): 8.21-8.19 (m, 1H), 8.11 (d, J = 8.5 Hz, 1H), 7.88-7.86 (m, 2H), 7.77-7.73 (m, 2H), 7.60 (d, J = 7.0 Hz, 1H), 7.51-7.36 (m, 7H), 6.57 (s, 1H), 2.81-2.79 (m, 1H), 1.77-1.55 (m, 6H), 1.26-1.21 (m, 2H), 1.12 (d, J = 7.0 Hz, 3H), 1.08-1.03 (m, 2H). ¹³C NMR (CDCl₃, 125 MHz): 139.6, 138.9, 134.1, 134.0, 131.6, 131.4, 128.9, 128.9, 127.6, 127.5, 126.2, 126.1, 125.9, 125.8, 125.5, 125.5, 125.3, 123.2, 123.1, 56.0, 55.2, 43.2, 30.1, 27.7, 26.8, 26.7, 26.6, 16.5. HRMS (ESI⁺) for $C_{29}H_{32}N$ [M + H]⁺ calculated: 394.2535 found: 394.2541.


(S)-N-(di(naphthalen-1-yl)methyl)hexan-2-amine (8S-BDN)

Following the general procedure A, a white solid product was obtained (30 mg, 80%). ¹H NMR (CDCl₃, 500 MHz): 8.25 (d, J = 9.0 Hz, 1H), 8.09 (d, J = 8.5 Hz, 1H), 7.88-7.86 (m, 2H), 7.77-7.73 (m, 2H), 7.60 (d, J = 7.5 Hz, 1H), 7.49-7.34 (m, 7H), 6.58 (s, 1H), 2.95-2.91 (m, 1H), 1.64-1.58 (m, 1H), 1.44-1.25 (m, 5H), 1.19 (d, J = 6.5 Hz, 3H), 0.89 (t, J = 7.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): 139.4, 138.8, 134.1, 134.1, 131.6, 131.4, 129.0, 128.9, 127.6, 127.6, 126.3, 126.1, 125.8, 125.6, 125.5, 125.4, 125.4, 125.4, 123.1, 123.1, 55.3, 51.6, 37.3, 28.1, 23.0, 20.6, 14.1. HRMS (ESI⁺) for $C_{27}H_{30}N$ [M + H]⁺ calculated: 368.2378 found: 368.2374.

(R)-N-(di(naphthalen-1-yl)methyl)hexan-2-amine (8R-BDN)


Following the general procedure A, a white solid product was obtained (28 mg, 76%). ¹H NMR (CDCl₃, 500 MHz): 8.25 (d, J = 9.0 Hz, 1H), 8.09 (d, J = 8.5 Hz, 1H), 7.88-7.86 (m, 2H), 7.77-7.73 (m, 2H), 7.60 (d, J = 7.5 Hz, 1H), 7.48-7.34 (m, 7H), 6.58 (s, 1H), 2.95-2.91 (m, 1H), 1.64-1.60 (m, 1H), 1.41-1.26 (m, 5H), 1.19 (d, J = 6.5 Hz, 3H), 0.89 (t, J = 7.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): 139.4, 138.8, 134.1, 134.1, 131.6, 131.4, 129.0, 128.9, 127.6, 127.6, 126.3, 126.1, 125.8, 125.6, 125.5, 125.4, 125.4, 125.4, 123.1, 123.1, 55.3, 51.6, 37.3, 28.1, 23.0, 20.6, 14.1. HRMS (ESI +) for $C_{27}H_{30}N$ [M + H]⁺ calculated: 368.2378 found: 368.2369.

(S)-N-(di(naphthalen-1-yl)methyl)-3-methylbutan-2-amine (9S-BDN)

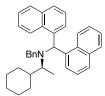
Following the general procedure A, a white solid product was obtained (30 mg, 86%). ¹H NMR (CDCl₃, 500 MHz): 8.22-8.20 (m, 1H), 8.10 (d, J = 8.0 Hz, 1H), 7.87-7.85 (m, 2H), 7.76-7.73 (m, 2H), 7.61 (d, J = 7.0 Hz, 1H), 7.49-7.35 (m, 7H), 6.55 (s, 1H), 2.83-2.81 (m, 1H), 1.92-1.88 (m, 1H), 1.08 (d, J = 6.5 Hz, 3H), 0.91 (d, J = 6.5 Hz, 3H), 0.89 (d, J = 6.5 Hz, 3H). ¹³C NMR (CDCl₃, 125

MHz): 139.6, 139.0, 134.0, 134.0, 131.5, 131.4, 128.9, 128.9, 127.6, 127.5, 126.2, 126.1, 125.9, 125.8, 125.5, 125.4, 125.3, 123.1, 56.6, 55.4, 32.5, 19.6, 16.9, 15.5. **HRMS** (ESI⁺) for $C_{26}H_{28}N$ [M + H]⁺ calculated: 354.2222 found: 354.2234.

(R)-N-(di(naphthalen-1-yl)methyl)-3,3-dimethylbutan-2-amine (10R-BDN)

Following the general procedure A, a white solid product was obtained (33 mg, 90%). ¹H NMR (CDCl₃, 500 MHz): 8.37 (d, J = 8.0 Hz, 1H), 8.04 (d, J = 8.5 Hz, 1H), 7.88-7.85 (m, 2H), 7.78-7.76 (m, 2H), 7.72 (d, J = 7.5 Hz, 1H), 7.53-7.30 (m, 7H), 6.54 (s, 1H), 2.68 (q, J = 6.5 Hz, 1H), 1.12 (d, J = 6.5 Hz, 1H), 0.91 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): 140.4, 138.5, 134.0, 134.0, 131.8, 131.3, 128.9, 128.9, 127.6, 127.4, 126.4, 126.2, 126.0, 125.5, 125.3, 125.3, 125.3, 123.3, 123.2, 60.1, 55.3, 34.6, 26.7, 14.4. HRMS (ESI⁺) for $C_{27}H_{30}N$ [M + H]⁺ calculated: 368.2378 found: 368.2378.

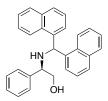
General Procedure B: To a 5 mL round bottom flask was added chiral Bn protected amine (0.12 mmol, 1.2 equiv) and 1,1'-(bromomethylene)dinaphthalene (0.1 mmol, 35 mg) in a 1:1 mixture of acetonitrile and DCM (2 mL). K_2CO_3 (0.2 mmol, 2 equiv, 28 mg) was added to the flask and the mixture was stirred under N₂ for 4 h. The reaction mixture was concentrated under vacuo and the mixture was directly loaded onto silica gel for purification.


(S)-N-benzyl-N-(di(naphthalen-1-yl)methyl)-1-phenylethan-1-amine (11S-BDN)

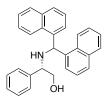
Following the general procedure B, a white solid product was obtained (27 mg, 57%). ¹H NMR (CDCl₃, 500 MHz): 8.00 (d, J = 7.0 Hz, 1H), 7.82-7.74 (m, 3H), 7.62 (d, J = 9.0 Hz, 1H), 7.57 (d, J = 8.5 Hz, 2H), 7.48-7.40 (m, 2H), 7.38-7.25 (m, 6H), 7.21-7.17 (m, 2H), 7.03-6.96 (m, 4H), 6.73-6.70 (m, 3H), 4.31 (q, J = 7.0 Hz, 1H), 4.21 (d, J = 16.0 Hz, 1H), 3.77 (d, J = 16.0 Hz, 1H), 1.48 (d, J = 7.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): 143.5, 142.3, 138.6, 137.7, 134.1, 133.8, 132.3, 132.0, 128.8, 128.7, 128.6, 128.1, 127.6, 127.5, 127.2, 127.2, 126.5, 126.0, 125.9, 125.5, 125.2, 125.1, 124.9, 123.5, 123.5, 60.3, 59.5, 50.4, 19.5. HRMS (ESI⁺) for $C_{36}H_{32}N$ [M + H]⁺ calculated: 478.2529 found: 478.2534.

(R)-N-benzyl-N-(di(naphthalen-1-yl)methyl)-1-phenylethan-1-amine (11R-BDN)

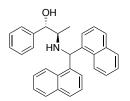
Following the general procedure B, a white solid product was obtained (25 mg, 52%). ¹H NMR (CDCl₃, 500 MHz): 7.97 (d, J = 7.5 Hz, 1H), 7.81-7.76 (m, 3H), 7.60 (d, J = 8.5 Hz, 1H), 7.56-7.53 (m, 2H), 7.46-7.39 (m, 2H), 7.36-7.22 (m, 6H), 7.19-7.14 (m, 2H), 7.01-6.94 (m, 4H), 6.70-6.67 (m, 3H), 4.29 (q, J = 7.5 Hz, 1H), 4.18 (d, J = 15.0 Hz, 1H), 3.74 (d, J = 15.0 Hz, 1H), 1.46 (d, J = 7.5 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): 143.5, 142.3, 138.6, 137.7, 134.0, 133.7, 132.3, 132.0, 128.8, 128.8, 128.7, 128.6, 128.1, 127.6, 127.5, 127.2, 127.2, 126.5, 126.0, 125.9, 125.5, 125.2, 125.1, 124.9, 123.5, 123.5, 60.3, 59.5, 50.4, 19.5. HRMS (ESI⁺) for $C_{36}H_{32}N$ [M + H]⁺ calculated:


(S)-N-benzyl-1-cyclohexyl-N-(di(naphthalen-1-yl)methyl)ethan-1-amine (12S-BDN)

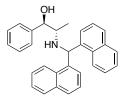
Following the general procedure B, a white solid product was obtained (30 mg, 61%). ¹H NMR (CDCl₃, 500 MHz): 8.47 (d, J = 8.5 Hz, 1H), 8.08 (d, J = 7.5 Hz, 1H), 7.94 (d, J = 9 Hz, 1H), 7.81 (d, J = 8.0 Hz, 2H), 7.73 (d, J = 8 Hz, 1H), 7.58-7.46 (m, 4H), 7.37-7.32 (m, 2H), 7.29-7.26 (m, 1H), 7.01-6.95 (m, 4H), 6.80-6.77 (m, 3H), 4.03 (d, J = 16.0 Hz, 1H), 3.78 (d, J = 16.0 Hz, 1H), 2.90-2.88 (m, 1H), 2.06-2.04 (m, 1H), 1.70-1.52 (m, 4H), 1.36-1.34 (m, 1H), 1.21 (d, J = 6.5 Hz, 3H), 1.03-0.88 (m, 4H), 0.79-0.76 (m, 1H). ¹³C NMR (CDCl₃, 125 MHz): 143.1, 139.1, 137.8, 134.0, 133.8, 132.4, 131.9, 129.0, 129.0, 128.8, 127.5, 127.5, 127.4, 127.3, 126.8, 126.0, 125.9, 125.4, 125.1, 125.1, 125.0, 124.9, 123.4, 123.4, 61.4, 59.8, 51.8, 42.6, 32.0, 29.4, 26.7, 26.6, 26.5, 12.7. HRMS (ESI⁺) for C₃₆H₃₈N [M + H]⁺ calculated: 484.2999 found: 484.3006.


(R)-N-benzyl-1-cyclohexyl-N-(di(naphthalen-1-yl)methyl)ethan-1-amine (12R-BDN)

Following the general procedure B, a white solid product was obtained (28 mg, 58%).¹**H NMR** (CDCl₃, 500 MHz): 8.47 (d, J = 9.0 Hz, 1H), 8.09 (d, J = 6.5 Hz, 1H), 7.95 (d, J = 8.5 Hz, 1H), 7.81 (d, J = 7.5 Hz, 2H), 7.74 (d, J = 8.5 Hz, 1H), 7.58-7.46 (m, 4H), 7.38-7.33 (m, 2H), 7.30-7.27 (m, 1H), 7.01-6.95 (m, 4H), 6.80-6.77 (m, 3H), 4.04 (d, J = 16.0 Hz, 1H), 3.78 (d, J = 16.0 Hz, 1H), 2.90-2.88 (m, 1H), 2.07-2.04 (m, 1H), 1.71-1.50 (m, 4H), 1.36-1.35 (m, 1H), 1.21 (d, J = 6.5 Hz, 3H), 1.04-0.86 (m, 4H), 0.79-0.76 (m, 1H). ¹³**C NMR** (CDCl₃, 125 MHz): 143.1, 139.1, 137.9, 134.0, 133.8, 132.5, 131.9, 129.0, 129.0, 128.8, 127.5, 127.5, 127.4, 127.3, 126.8, 126.0, 125.9, 125.5, 125.1, 125.1, 125.0, 124.9, 123.4, 123.4, 61.4, 59.8, 51.8, 42.6, 32.0, 29.4, 26.7, 26.6, 26.5, 12.8. **HRMS** (ESI⁺) for C₃₆H₃₈N [M + H]⁺ calculated: 484.2999 found: 484.3003.


(R)-2-((di(naphthalen-1-yl)methyl)amino)-2-phenylethan-1-ol (13R-BDN)

Following the general procedure A, a white solid product was obtained (26.9 mg, 66%).¹H NMR (CDCl₃, 500 MHz): 8.12 (d, J = 7.0 Hz, 1H), 7.88-7.84 (m, 3H), 7.71 (d, J = 7.5 Hz, 1H), 7.66-7.61(m, 2H), 7.54 (d, J = 8.5 Hz, 1H), 7.48-7.45 (m, 1H), 7.42-7.37 (m, 4H), 7.34-7.31 (m, 1H), 7.26-7.20 (m, 5H), 6.34 (s, 1H), 4.00 (t, J = 7 Hz, 1H), 3.78(d, J = 7 Hz, 2H), 2.45 (s, 1H). ¹³C NMR (CDCl₃, 125 MHz): 140.1, 138.7, 136.9, 134.1, 133.9, 131.7, 130.7, 129.0, 128.8, 128.7, 128.2, 128.2, 128.1, 127.9, 126.4, 126.2, 126.1, 125.6, 125.5, 125.4, 125.2, 123.1, 122.6. 66.2, 62.3, 54.4. **HRMS** (ESI⁺) for $C_{29}H_{26}NO$ [M + H]⁺ calculated: 404.2014. found: 404.2003.


(S)-2-((di(naphthalen-1-yl)methyl)amino)-2-phenylethan-1-ol (13S-BDN)

Following the general procedure A, a white solid product was obtained (22.7 mg, 56%).¹**H NMR** (CDCl₃, 500 MHz): 8.11 (d, J = 7.0 Hz, 1H), 7.89-7.85 (m, 3H), 7.71 (d, J = 8.0 Hz, 1H), 7.67-7.63(m, 2H), 7.56 (d, J = 8.5 Hz, 1H), 7.49-7.46 (m, 1H), 7.43-7.38 (m, 4H), 7.35-7.31 (m, 1H), 7.27-7.21 (m, 5H), 6.34 (s, 1H), 4.01 (t, J = 7 Hz, 1H), 3.79 (d, J = 7 Hz, 2H), 2.45 (s, 1H). ¹³**C NMR** (CDCl₃, 125 MHz): 140.2, 138.8, 137.0, 134.1, 133.9, 131.8, 130.8, 129.0, 128.8, 128.7, 128.1, 128.0, 127.8, 126.4, 126.1, 126.1, 125.5, 125.5, 125.4, 125.2, 123.1, 122.7, 66.3, 62.2, 54.4. **HRMS** (ESI⁺) for C₂₉H₂₆NO [M + H]⁺ calculated: 404.2014 found: 404.2021.

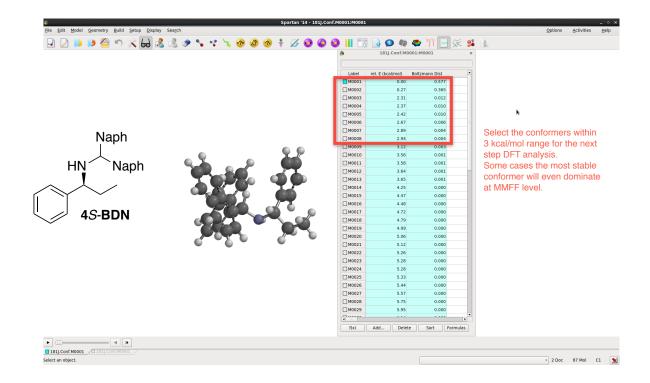
(1*S*,2*R*)-2-((di(naphthalen-1-yl)methyl)amino)-1-phenylpropan-1-ol (14*R*-BDN)

Following the general procedure A, a white solid product was obtained (24.5 mg, 58%).¹**H NMR** (CDCl₃, 500 MHz): 8.33 (d, J = 8.0 Hz, 1H), 8.08 (d, J = 8.5 Hz, 1H), 7.93 (d, J = 9.0 Hz, 2H), 7.84-7.79 (m, 2H), 7.59-7.44 (m, 6H), 7.39-7.38 (m, 2H), 7.30-7.21 (m, 5H), 6.76 (s, 1H), 5.04 (d, J = 3.5 Hz, 1H), 3.28 (dt, J = 6.5, 3.5 Hz, 1H), 0.97(d, J = 6.5 Hz, 3H). ¹³**C NMR** (CDCl₃, 125 MHz): 141.0, 134.2, 134.1, 131.5, 131.4, 129.1, 129.0, 128.1, 128.1, 128.0, 127.0, 126.7, 126.6, 125.9, 125.7, 125.7, 125.4, 125.4, 125.3, 124.8, 123.0, 122.7, 73.4, 57.4, 55.4, 13.9. **HRMS** (ESI⁺) for $C_{30}H_{28}NO [M + H]^+$ calculated: 418.2171. found:418.2177.

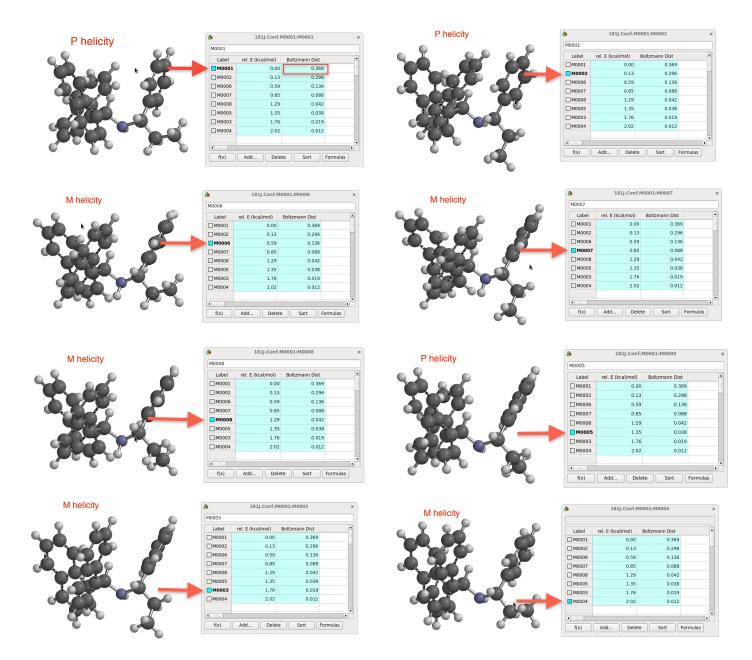
(1*R*,2*S*)-2-((di(naphthalen-1-yl)methyl)amino)-1-phenylpropan-1-ol (14*S*-BDN)

Following the general procedure A, a white solid product was obtained (21.9 mg, 52%).¹H NMR (CDCl₃, 500 MHz): 8.32 (d, J = 9.0 Hz, 1H), 8.07 (d, J = 8.5 Hz, 1H), 7.92 (d, J = 8.0 Hz, 2H), 7.83-7.78 (m, 2H), 7.58-7.43 (m, 6H), 7.38-7.37 (m, 2H), 7.29-7.21 (m, 5H), 6.75 (s, 1H), 5.03 (d, J = 3.0 Hz, 1H), 3.26 (dt, J = 7.0, 3.0 Hz, 1H), 0.96(d, J = 7.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): 141.0, 134.1, 131.5, 131.3, 129.1, 129.0, 128.8, 128.1, 128.1, 128.0, 127.0, 126.7, 126.5, 125.9, 125.7, 125.7, 125.4, 125.3, 124.8, 123.0, 122.7, 73.4, 57.3, 55.4, 13.9. HRMS (ESI⁺) for $C_{30}H_{28}NO [M + H]^+$ calculated: 418.2171. found: 418.2175.

XII. Quantum Chemical Modeling Studies

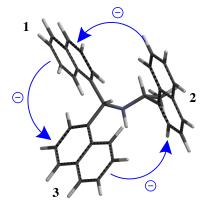

All calculations were performed with SPARTAN 14 software using a commercial PC with 15 core Intel Xeon X5647 @2.93 GHz with 48 G memory on a Kernel Linux platform.

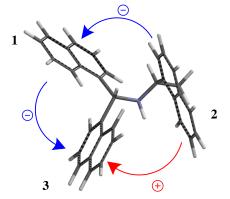
Conformer analysis:

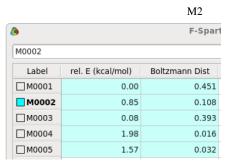

Conformer distribution calculations were performed at the MMFF level of theory utilizing Monte Carlo search parameters, starting from 10,000 K. All stable conformers (within 3 kcal for aromatic compounds and within 2 kcal for aliphatic compounds) were subject to further optimization by density functional theory at B3LYP/6-31G^{*} level in vacuum. The resulting geometries for each conformer were analyzed and scored to yield either the *P* or *M* helicity by considering the calculated Boltzmann distribution values.

The following is the step by step procedure for computational studies performed to obtain the anticipated ECCD signs for the derivatized chiral amines:

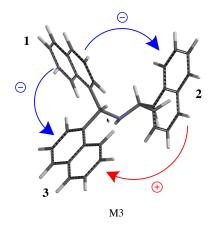
Step 1: Perform a conformer distribution calculation with the MMFF force field. From the list of generated conformer structures, select all within 3 kcal/mol for DFT geometry optimization.

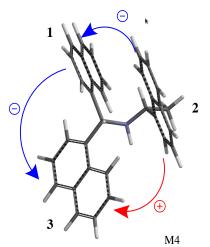

Step 2: Upon geometry optimization (DFT, B3LYP/6-31G*), the helicity of the two naphthyl rings is assigned.


Step 3: Sum up the Boltzmann values for all structures that lead to P and M helicities. In this example, the P:M ratio is 70.3:29.7, thus predicting that the P helicity will dominate in the CD spectra and leads to a positive ECCD signal. This prediction is in agreement with experimental result.

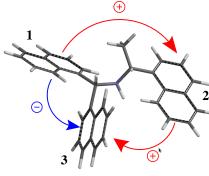

Naphthyl containing substrates:

Substrates with a naphthyl group can contribute to the overall ECCD in addition to the naphthyl groups from **BDN**. The following is a step by step demonstration of how to calculate the predicted ECCD for **5***R***-BDN**. As before, the energy minimized conformations are considered. The prediction is based on assigning the helicities of each interacting naphthyl group. For example, in the first conformer the ECCD for all three interactions; i.e, $1 \rightarrow 2$, $2 \rightarrow 3$, and $1 \rightarrow 3$, predict a negative ECCD. Thus, all 45% population of that conformer is assigned as *M*-helicity. In contrast, for the second structure, the $1 \rightarrow 2$ and $1 \rightarrow 3$ interactions are negative, while the $2 \rightarrow 3$ interaction yield a positive helicity. As such, the 10.8% population assigned to this conformer is 66.6% *M*-helicity and 33.3% *P*-helicity. The aggregate of all these calculations leads to the overall predicted helicity for the system.


		M1
۵		F-Spar
M0001		
Label	rel. E (kcal/mol)	Boltzmann Dist
M0001	0.00	0.451
M0002	0.85	0.108
M0003	0.08	0.393
M0004	1.98	0.016
M0005	1.57	0.032


 $M = 45.1 \times 100\% = 45.1$ $P = 0 \times 100\% = 0$

 $M = 10.8 \times 66.6\% = 7.2 \qquad P = 10.8 \times 33.3\% = 3.6$


٨		F-Spar		
M0003				
Label	rel. E (kcal/mol)	Boltzmann Dist		
M0001	0.00	0.451		
M0002	0.85	0.108		
M0003	0.08	0.393		
M0004	1.98	0.016		
M0005	1.57	0.032		

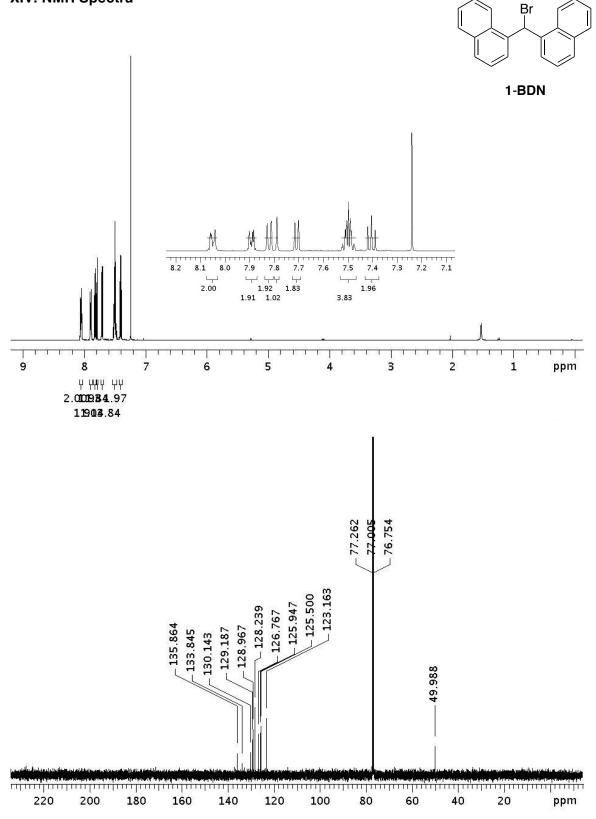
 $\mathsf{M} = 39.3 \times 66.6\% = 26.2 \qquad P = 39.3 \times 33.3\% = 13.1$

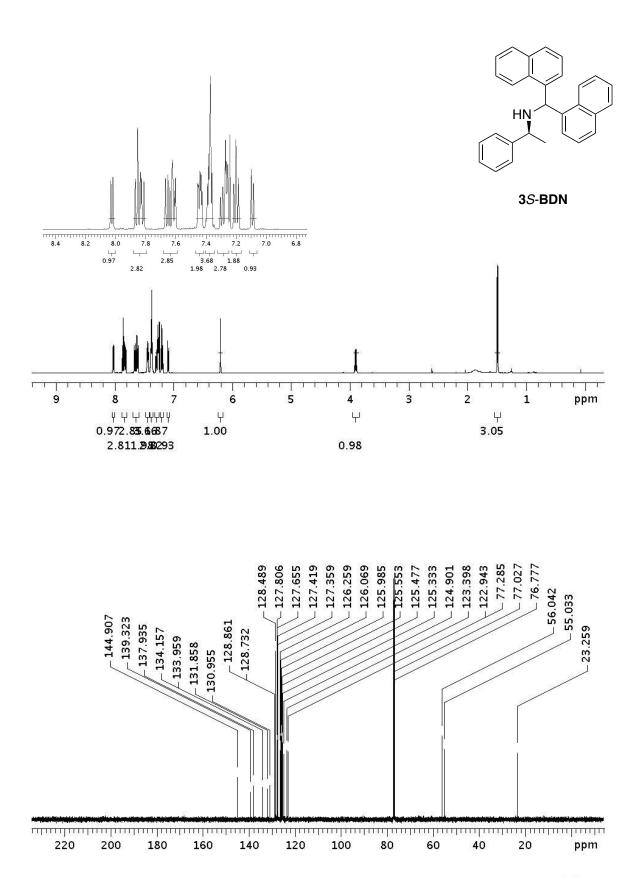
۵		F-Spar		
M0004				
Label	rel. E (kcal/mol)	Boltzmann Dist		
M0001	0.00	0.451		
M0002	0.85	0.108		
M0003	0.08	0.393		
M0004	1.98	0.016		
M0005	1.57	0.032		

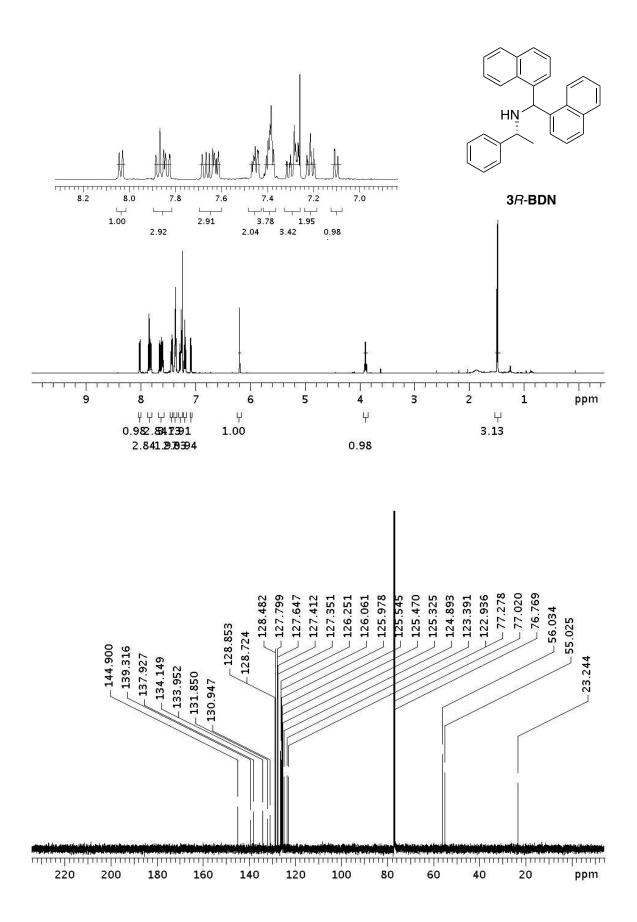
M = 1.98 x 66.6% = 1.1 *P* = 1.98 33 3%

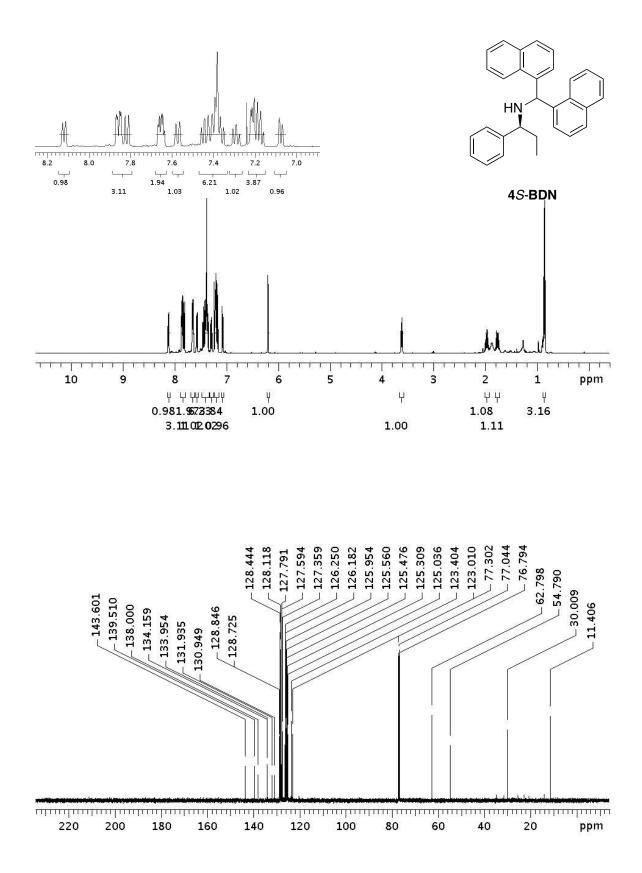
M5

3		F-Spar		
M0005				
Label	rel. E (kcal/mol)	Boltzmann Dist		
M0001	0.00	0.451		
M0002	0.85	0.108		
M0003	0.08	0.393		
M0004	1.98	0.016		
M0005	1.57	0.032		


M = 3.2 x 33.3% = 1.1 *P* = 3.2 x 66.6 % = 2.1


Р Conformer М helicity Entry helicity 45.1 0 M1 M2 7.2 3.6 М3 26.2 13.1 M4 1.1 0.5 M5 1.1 2.1 Overall 80.7 19.3


 \oplus


XIII. References:


a) O. Bassas, J. Huuskonen, K. Rissanen, A. M. P. Koskinen, *Eur J Org Chem* 2009, 1340-1351; b) M. Holtz-Mulholland, S. K. Collins, *Synthesis-Stuttgart* 2014, *46*, 375-380.

