Spirocyclopropanes from Intramolecular Cyclopropanation of Pyranopyrazoles and Pyranopyrimidine-diones and Lewis Acid Mediated (3+2) Cycloadditions of Spirocyclopropylpyrazolones

Prasun Mukherjee, Asish R. Das*

Department of Chemistry, University of Calcutta, Kolkata-700009, India
*Corresponding author: Tel.: +913323501014, +919433120265; fax: +913323519754;

E-mail: ardchem@caluniv.ac.in, ardas66@rediffmail.com

	Content	Page Numbers
I.	Optimization of the reaction conditions and stereochemical course of the intramolecular cyclopropanation reaction	S2-S4
II.	X-ray analysis data of compounds 2q, 3g and 4q	S5-S9
III.	${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for the products of Table 1,2 and 3	S10-S46

I. Optimization of the reaction conditions and stereochemical course of the intramolecular cyclopropanation reaction

Table S1. Optimization of the reaction conditions ${ }^{a}$

		$\xrightarrow[\substack{\text { DCM }(3 \mathrm{~mL}) \\ \text { Ht }}]{\substack{\text { Oxidant } \\ \text { Additive }}}$			
entry	oxidant (equiv)		additive (equiv)	time (min)	yield $^{\text {b }}$ (\%)
1	PhIO (1.0)		$\mathrm{Et}_{3} \mathrm{~N}$ (1.0)	30	80
2	PhIO (1.1)		$\mathrm{Et}_{3} \mathrm{~N}$ (1.0)	30	88
3	PhIO (1.2)		$\mathbf{E t}_{3} \mathrm{~N}$ (1.0)	30	92
4	PhIO (1.3)		$\mathrm{Et}_{3} \mathrm{~N}$ (1.0)	30	91
5	PIDA (1.2)		$\mathrm{Et}_{3} \mathrm{~N}$ (1.0)	30	60
6	PIFA (1.2)		$\mathrm{Et}_{3} \mathrm{~N}$ (1.0)	30	58
7	$\mathrm{I}_{2}(1.2)$		$\mathrm{Et}_{3} \mathrm{~N}$ (1.0)	30	30
8	$\operatorname{PIDA}(0.5)+\mathrm{I}_{2}(0.5)$		$\mathrm{Et}_{3} \mathrm{~N}$ (1.0)	30	70
9	$\operatorname{PIDA}(0.5)+\mathrm{I}_{2}(0.5)$		$\mathrm{Et}_{3} \mathrm{~N}$ (1.5)	30	88
10	$\operatorname{PIDA}(0.5)+\mathbf{I}_{2}(0.5)$		$\mathrm{Et}_{3} \mathrm{~N}$ (2.0)	30	94
11	$\operatorname{PIDA}(0.6)+\mathrm{I}_{2}(0.6)$		$\mathrm{Et}_{3} \mathrm{~N}$ (2.0)	30	92
12	$\mathrm{PhIO}(0.5)+\mathrm{I}_{2}(0.5)$		$\mathrm{Et}_{3} \mathrm{~N}$ (2.0)	40	60
13	$\mathrm{PhIO}(1.0)+\mathrm{TBAI}(1.0)$		$\mathrm{Et}_{3} \mathrm{~N}$ (1.0)	45	50^{c}
14	$\mathrm{PhIO}(1.2)$		$\mathrm{Et}_{3} \mathrm{~N}$ (1)	60	10^{c}
15	$\operatorname{PIDA}(0.5)+\mathrm{I}_{2}(0.5)$		$\mathrm{Et}_{3} \mathrm{~N}$ (2.0)	30	70^{c}
16	HTIB (1.2)		$\mathrm{Et}_{3} \mathrm{~N}$ (2.0)	30	40
17	IBA (1.2)		$\mathrm{Et}_{3} \mathrm{~N}(2.0)$	30	55

[^0]Scheme S1. Stereochemical course of this intramolecular cyclopropanation reaction

In Scheme S1, the plausible stereochemical course of this intramolecular cyclopropanation reaction is illustrated. Both the starting materials pyranopyrimidine-dione $\mathbf{1 a}^{\mathbf{\prime}} \mathbf{\mathbf { b } ^ { \prime }}$ and pyranopyrazole 1c'd' exist as racemic mixtures. Consequently, both method A and B transform $\mathbf{1 a}^{\prime}$ and $\mathbf{1 b}$ ' to their corresponding cyclopropane $\mathbf{2 a} \mathbf{a}^{\prime}$ and $\mathbf{2 b} \mathbf{b}^{\prime}$ respectively. Thus, racemic
mixtures of spirocyclopropanes are obtained from pyranopyrimidine-diones since $\mathbf{2 a} \mathbf{a}^{\mathbf{\prime}}$ and $\mathbf{2 b}{ }^{\prime}$ bears an enantiomeric relationship to each other (Table 2, entry $\mathbf{2 a - 2 f}$). On the other hand, $\mathbf{1 c}{ }^{\prime}$ and $\mathbf{1 d}$ ' afford their corresponding spirocyclopropanes as the diastereomeric mixtures due to the formation of an unsymmetrical pyrazolone unit in the resulting cyclopropanes. Now, there are enantiomeric relationships between the major diastereomers $\mathbf{2} \mathbf{c}^{\prime}$ and $\mathbf{2} \mathbf{d}^{\prime}$ and between the minor isomers $\mathbf{2} \mathbf{c}^{\prime \prime}$ and $\mathbf{2 d} \mathbf{d}^{\prime \prime}$ respectively, which explains the formation of the spirocyclopropanes as the diastereomeric mixtures from the 3-methyl-pyranopyrazoles (Table 2, entry $\mathbf{2 g} \mathbf{- l}$ and $\mathbf{2 n} \mathbf{- p}$). The steric effect of the carbethoxy group in 3-carbethoxy-pyranopyrazoles may be the reason for the diastereospecific formation of $\mathbf{2} \mathbf{c}^{\prime \prime}$ and $\mathbf{2 d} \mathbf{d}^{\prime \prime}$ from $\mathbf{1 c}$ ' and $\mathbf{1 d}$ ' respectively (Table 2, entry $\mathbf{2 q - v}$).
II. X-ray Crystallography Data of Compounds $2 q$ (CCDC 1521821), 3g (CCDC 1521822) and $4 q(C C D C ~ 1521823): ~$

Figure S1. The X-ray structure of $\mathbf{2 q}$. The ellipsoid contour percent probability level is 50%.

Figure S2. The X-ray structure of $\mathbf{3 g}$. The ellipsoid contour percent probability level is 50%.

Figure S3. The X-ray structure of $\mathbf{4 q}$. The ellipsoid contour percent probability level is 50%.
Single crystal X-ray data for compounds $2 q$ (CCDC 1521821), 3 g (CCDC 1521822) and $4 q$ (CCDC 1521823) :

Single crystals suitable for X-ray diffraction of $\mathbf{2 q}, \mathbf{3 g}$ and $\mathbf{4 q}$ were grown from ethyl acetate. The crystals were carefully chosen using a stereo zoom microscope supported by a rotatable polarizing stage. In all the cases the data were collected at 296(2) K on a CCD diffractometer with graphite monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation $(0.71073 \AA)$. The data were processed using the package SAINT. ${ }^{1}$ Structures were solved by direct and Fourier methods and refined by fullmatrix least squares based on F2 using SHELXTL ${ }^{2}$ and SHELXL- 97^{3} packages.

Table S2. Crystallographic data for the compound $\mathbf{2 q}, \mathbf{3 g}$ and $\mathbf{4 q}$

Compounds	$\mathbf{2 q}$	$\mathbf{3 g}$	$\mathbf{4 q}$

empirical formula	$\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}$	$\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{OS}$	$\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{3}$
fw	384.39	461.53	487.51
crystal color	light-yellow	colourless	Colourless
crystal system	Triclinic	Monoclinic	Monoclinic
space group	$P-1$	P 21/c	P 21/c
$a(\AA)$	9.9417(4)	13.565(11)	12.843(12)
$b(\AA)$	10.1104(4)	11.634(9)	11.009(10)
$c(\AA)$	10.6132(5)	14.456(11)	18.175(17)
$\alpha\left({ }^{\circ}\right)$	87.141(2)	90.00	90.00
$\beta\left({ }^{\circ}\right)$	69.537(2)	93.247(12)	103.298(12)
$\gamma\left({ }^{\circ}\right)$	75.045(2)	90.00	90.00
$V\left(\AA^{3}\right)$	964.65(7)	2278(3)	2501(4)
Z	2	4	4
$T, \mathrm{~K}$	296(2)	296(2)	296(2)
Wavelength (A)	0.71073	0.71073	0.71073
$2 \theta\left({ }^{\circ}\right)$	4.10-54.00	3.00-51.46	3.26-50.98
$\mu\left(\mathrm{mm}^{-1}\right)$	0.091	0.173	0.087
$\rho_{\text {calcd }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.323	1.352	1.300
$F(000)$	400	960	1024
absorption correction	multi-Scan	multi-Scan	multi-Scan
index ranges	$-12 \leq h \leq 11$	$-16 \leq h \leq 16$	$-15 \leq h \leq 14$
	$-12 \leq k \leq 12$	$-14 \leq k \leq 13$	$-13 \leq k \leq 13$
	$-13 \leq l \leq 13$	$-17 \leq l \leq 15$	$-18 \leq l \leq 21$
reflections collected	10938	16269	16252

independent reflections $\left(R_{\text {int }}\right)$	$4216(0.0201)$	$4282(0.0648)$	$4577(0.0560)$
Goodness-of-fit on F^{2}	0.787	1.026	1.005
$R_{1}{ }^{a} / \mathrm{w} R_{2}{ }^{b}$ $(I>2 \sigma(I))$	$0.0419 / 0.1408$	$0.0461 / 0.0998$	$0.0611 / 0.1786$
$R_{1}{ }^{a} / \mathrm{w} R_{2}{ }^{b}$ (for all data)	$0.0515 / 0.1613$	$0.1012 / 0.1200$	$0.1038 / 0.2123$
Largest diff. peak/hole $/$ $\mathrm{e} \AA^{-3}$	$0.213 /-0.186$	$0.194 /-0.226$	$0.863 /-0.216$

References:

1. APEX-II, SAINT-Plus, and TWINABS; Bruker-Nonius AXS Inc.: Madison, WI, 2004.

2 SHELXTL, version 6.10; Bruker AXS Inc.: Madison, WI, 2002.
3. Sheldrick, G. M. SHELXL-97, Crystal Structure Refinement Program; University of Göttingen: Göttingen, Germany, 1997.

III. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for the products of Table 1,2 and 3

For compounds 2a-v, the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of samples, obtained through Method B, are provided.

(

(

[^0]: ${ }^{a} 1.0 \mathrm{mmol}$ of $\mathbf{1 a}$ was taken along with 3 mL of solvent in all the cases. ${ }^{b}$ yield. ${ }^{c} \mathrm{MeOH}$ was used in place of DCM

