Supporting Information

Iron-Catalyzed, Markovnikov Selective Hydroboration of Styrenes

Xu Chen, Zhaoyang Cheng, Zhan Lu*
Department of Chemistry, Zhejiang University, Hangzhou 310058, China

I. General Information S1
II. Procedures for Preparation of Ligands S1
III. Procedures for Preparation of Alkenes S2
IV. Iron-catalyzed, Markovnikov-Selective Hydroboration of Alkenes S3
V. References. S18
VI. NMR Spectra S19

I. General Information

Ether, tetrahydrofuran, 1,4-dioxane and toluene were distilled from sodium benzophenoneketyl prior to use and dichloromethane was distilled from CaH_{2}. Pinacolborane (HBpin) (97\%) was purchased from TCI and used as received. NaHBEt_{3} (1.0 M in THF) were purchased from Aldrich and used as received. $\mathrm{FeCl}_{2}(99 \%)$ were purchased from Alfa and used as received. The other commercial available chemicals were used as received. Alkenes were prepared according to Wittig Reaction or the previously reported procedures. ${ }^{1}$ NMR spectra were recorded on a Bruker-400 instrument. ${ }^{1} \mathrm{H}$ NMR chemical shifts were referenced to tetramethylsilane signal $(0 \mathrm{ppm}),{ }^{13} \mathrm{C}$ NMR chemical shifts were referenced to the solvent resonance ($77.00 \mathrm{ppm}, \mathrm{CDCl}_{3}$). The following abbreviations (or combinations thereof) were used to explain multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quadruplet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. IR spectra were recorded on a Perkin-Elmer Spectrum One FTIR spectrometer with diamond ATR accessory. High-resolution mass spectra (HRMS) were recorded on EI-TOF (electrospray ionization-time of flight).

II. Procedures for Preparation of Ligands.

La-Lc were prepared according to the previously reported procedures by our group. ${ }^{2}$

2-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)aniline (Sa). Prepared according to the literature. ${ }^{3} 79 \%$ yield, white solid. M.p. $105.6-106.6{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 1 \mathrm{H}), 6.72-6.60(\mathrm{~m}, 2 \mathrm{H})$, $6.07(\mathrm{~s}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.9$, $148.4,131.8,129.4,115.9,115.5,109.2,77.2,67.7,28.7 .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data agree with the previously reported data. ${ }^{4}$

N-(2-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)phenyl)picolinamide (Ld)
Prepared according to the literature. ${ }^{5} 96 \%$ yield, white solid. M.p. $112.9-113.8{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.87(\mathrm{~s}, 1 \mathrm{H}), 9.01(\mathrm{dd}, J$ $=8.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{ddd}, J=4.8,1.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{dt}, J=8.0$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.9-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{ddd}, J=7.6,4.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{td}, J$ $=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.0,161.2,151.2$, $148.1,139.4,137.1,132.1,129.0,126.0,122.7,122.6,120.1,115.0,77.9,68.1,28.6 .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data agree with the previously reported data. ${ }^{5}$

III. Procedures for Preparation of Alkenes ($\mathbf{1 y}$ and $\mathbf{1 z) .}$

1-((((lS,2R,5S)-2-isopropyl-5-methylcyclohexyl)oxy)methyl)-4-vinylbe nzene (1y). Prepared according to the literature. ${ }^{6} 48 \%$ yield, white solid. M.p. $45.0-46.4^{\circ} \mathrm{C}$; IR (neat): 2954, 2922, 2867, 1630, 1455, $1368 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.71(\mathrm{dd}, J=17.6,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.64(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{td}, J=10.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.25(\mathrm{~m}$, $1 \mathrm{H}), 2.22-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.21(\mathrm{~m}, 2 \mathrm{H}), 1.03-0.84(\mathrm{~m}, 9 \mathrm{H}), 0.71(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.8,136.8,136.7,128.0,126.1,113.5,78.7,70.1,48.3$, 40.3, 34.6, 31.6, 25.5, 23.3, 22.4, 21.0, 16.1; HRMS (EI) calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}\right]^{+}$requires m / z 272.2140, found $m / z 272.2138$.

(R)-2,5,7,8-tetramethyl-2-((4S,8S)-4,8,12-trimethyltridecyl)-6-((4-vinylbenzyl)oxy)chroman (1z). Prepared according to the literature. ${ }^{6} 63 \%$ yield, colorless oil. IR (neat): 2926, 2865, 1460, 1373, $1256 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.35(\mathrm{~m}, 4 \mathrm{H}), 6.74(\mathrm{dd}, J=17.6,10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.76(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H}), 2.59(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{~s}$, $3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.87-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.01(\mathrm{~m}, 24 \mathrm{H}), 0.89-0.83(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 148.1,147.9,137.7,137.1,136.6,127.91,127.86,126.3,125.9,122.9$, $117.6,113.8,74.8,74.4,40.0,39.4,37.48,37.46,37.4,37.3,32.8,32.7,31.3,28.0,24.8,24.4$, 23.9, 22.7, 22.6, 21.0, 20.7, 19.75, 19.66, 12.9, 12.0, 11.8; HRMS (EI) calculated for $\left[\mathrm{C}_{38} \mathrm{H}_{58} \mathrm{O}_{2}\right]^{+}$ requires $\mathrm{m} / \mathrm{z} 546.4437$, found $\mathrm{m} / \mathrm{z} 546.4432$.

IV. Iron-Catalyzed, Markovnikov-Selective Hydroboration of Alkenes

General Procedures for Hydroboration of Alkenes: To a 25 ml flame-dried Schlenk flask cooled under nitrogen, $\mathrm{FeCl}_{2}(0.0032 \mathrm{~g}, 0.025 \mathrm{mmol}), \mathbf{L d}(0.03 \mathrm{mmol})$, toluene $(1 \mathrm{ml})$, were added. The mixture was stirred at $30^{\circ} \mathrm{C}$ for 2 h . Then, HBpin ($180 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$), alkenes (1 mmol), $\mathrm{NaBHEt}_{3}\left(50 \mu \mathrm{~L}, 1 \mathrm{M}\right.$ in THF) were added in sequence and stirred at $30^{\circ} \mathrm{C}$ for 18 h . The resulting solution was filtered by a short pad of silica gel and the filtrate was concentrated. TMSPh (20 uL) was added as an internal standard. The resulting mixture was assessed by ${ }^{1} \mathrm{H}$ NMR and purified by flash column chromatography using $\mathrm{PE} / \mathrm{EtOAc}(100 / 1)$ as the eluent to give the corresponding products.

Table S1 Optimization studies on solvent, amount of styrene, HBpin, ligand loading, reaction temperature

${ }^{a}$ Yields were determined using TMSPh as an internal standard. ${ }^{b} \mathrm{HBpin}$ ($1.0 \mathrm{mmol}, 2.0$ equiv.). ${ }^{c}$ HBpin (0.5 mmol), 1a $(0.75 \mathrm{~mol}) .{ }^{d} \mathrm{HB}$ pin $(0.5 \mathrm{mmol})$, 1a $(1.0 \mathrm{~mol}) .{ }^{e} \mathbf{L} \mathbf{d}(10 \mathrm{~mol} \%) .{ }^{f}$ Reaction temperature ($40{ }^{\circ} \mathrm{C}$). ${ }^{g}$ Reaction temperature $\left(50{ }^{\circ} \mathrm{C}\right) .{ }^{h}$ Using $t \mathrm{BuONa}(10 \mathrm{~mol} \%)$ instead of NaBHEt_{3}
 4,4,5,5-tetramethyl-2-(1-phenylethyl)-1,3,2-dioxaborolane (2a). Prepared according to the general procedure using $\mathbf{L d}(0.0090 \mathrm{~g}, 0.03 \mathrm{mmol}), \mathrm{FeCl}_{2}$ ($0.0032 \mathrm{~g}, 0.025 \mathrm{mmol}$), toluene (1 ml), $\mathrm{NaBHEt}_{3}(50 \mu \mathrm{~L}, 0.05 \mathrm{mmol})$, HBpin $(180 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ and styrene $(115 \mu \mathrm{~L}, 0.91 \mathrm{~g} / \mathrm{ml}, 1.0 \mathrm{mmol})$. After 18 h , the resulting solution was added 20 ml of ether and filtered through a pad of silica gel, washed by
ether (10 ml x 1$)$. The combined filtrates were concentrated and regioselectivity was monitored by ${ }^{1} \mathrm{H}$ NMR analysis. The crude mixture was purified by flash column chromatography using $\mathrm{PE} / \mathrm{EtOAc}=100 / 1$ as the eluent to afford 2a $(0.1717 \mathrm{~g}, 0.74 \mathrm{mmol}, 74 \%$ yield, $\mathrm{b} / \mathrm{l}>50 / 1)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{q}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.33(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H}), 1.19(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 144.9$, 128.3, 127.7, 125.0, 83.2, 24.59, 24.55, 17.0. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data agree with the previously reported data. ${ }^{7}$

4,4,5,5-tetramethyl-2-(1-(p-tolyl)ethyl)-1,3,2-dioxaborolane (2b). Prepared according to the general procedure using $\mathbf{L d}(0.0091 \mathrm{~g}, 0.03 \mathrm{mmol}), \mathrm{FeCl}_{2}$ ($0.0034 \mathrm{~g}, 0.026 \mathrm{mmol}$), toluene (1 ml), $\mathrm{NaBHEt}_{3}(50 \mu \mathrm{~L}, 0.05 \mathrm{mmol})$, HBpin $(180 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ and 4-methylphenylene $(0.1189 \mathrm{~g}, 1.0 \mathrm{mmol})$. After 18 h , the resulting solution was added 20 ml of ether and filtered through a pad of silica gel, washed by ether ($10 \mathrm{ml} \mathrm{x} \mathrm{1)}$). The combined filtrates were concentrated and regioselectivity was monitored by ${ }^{1} \mathrm{H}$ NMR analysis. The crude mixture was purified by flash column chromatography using $\mathrm{PE} / \mathrm{EtOAc}=100 / 1$ as the eluent to afford $\mathbf{2 b}(0.1997 \mathrm{~g}, 0.81 \mathrm{mmol}, 81 \%$ yield, $\mathrm{b} / \mathrm{l}>50 / 1)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.38(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 141.9,134.3,129.0,127.6,83.2,24.60,24.57,20.9,17.2 .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data agree with the previously reported data. ${ }^{7}$

2-(1-(4-(tert-butyl)phenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2c). Prepared according to the general procedure using $\mathbf{L d}$ (0.0093 g , $0.031 \mathrm{mmol}), \mathrm{FeCl}_{2}(0.0034 \mathrm{~g}, 0.026 \mathrm{mmol})$, toluene $(1 \mathrm{ml}), \mathrm{NaBHEt}_{3}(50$ $\mu \mathrm{L}, 0.05 \mathrm{mmol}$), HBpin ($180 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$) and 4-tert-Butylstyrene $(0.1610 \mathrm{~g}, 1.0 \mathrm{mmol})$. After 18 h , the resulting solution was added 20 ml of ether and filtered through a pad of silica gel, washed by ether ($10 \mathrm{ml} \times 1$). The combined filtrates were concentrated and regioselectivity was monitored by ${ }^{1} \mathrm{H}$ NMR analysis. The crude mixture was purified by flash column chromatography using $\mathrm{PE} / \mathrm{EtOAc}=100 / 1$ as the eluent to afford $\mathbf{2 c}(0.2071 \mathrm{~g}, 0.72 \mathrm{mmol}$, 72% yield, $\mathrm{b} / \mathrm{l}>50 / 1$) as a colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.24(\mathrm{~m}, 2 \mathrm{H})$,
7.17-7.11 (m, 2H), $2.40(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{~s}, 6 \mathrm{H})$, $1.21(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ 147.6, 141.7, 127.4, 125.2, 83.2, 34.2, 31.4, 24.63, 24.60, 17.2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data agree with the previously reported data. ${ }^{8}$

2-(1-([1,1'-biphenyl]-4-yl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2d). Prepared according to the general procedure using $\mathbf{L d}(0.0092 \mathrm{~g}, 0.031$ $\mathrm{mmol}), \mathrm{FeCl}_{2}(0.0033 \mathrm{~g}, 0.026 \mathrm{mmol})$, toluene $(1 \mathrm{ml}), \mathrm{NaBHEt}_{3}(50 \mu \mathrm{~L}$, $0.05 \mathrm{mmol})$, HBpin ($180 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$) and 1-ethenyl-4-phenylbenzene $(0.1802 \mathrm{~g}, 1.0 \mathrm{mmol})$. After 18 h , the resulting solution was added 20 ml of ether and filtered through a pad of silica gel, washed by ether ($10 \mathrm{ml} \times 1$). The combined filtrates were concentrated and regioselectivity was monitored by ${ }^{1} \mathrm{H}$ NMR analysis. The crude mixture was purified by flash column chromatography using $\mathrm{PE} / \mathrm{EtOAc}=100 / 1$ as the eluent to afford $\mathbf{2 d}(0.2094 \mathrm{~g}, 0.68 \mathrm{mmol}$, 68% yield, $\mathrm{b} / \mathrm{l}>50 / 1)$ as a white solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 3 \mathrm{H}), 2.48(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.37$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 6 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 144.2, 141.2, 137.9, 128.6, 128.2, 127.0, 126.9, 126.8, 83.3, 24.63, 24.60, 17.1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data agree with the previously reported data. ${ }^{9}$

2-(1-(4-methoxyphenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2e). Prepared according to the general procedure using $\mathbf{L d}(0.0092 \mathrm{~g}$, $0.031 \mathrm{mmol}), \mathrm{FeCl}_{2}(0.0033 \mathrm{~g}, 0.026 \mathrm{mmol})$, toluene $(1 \mathrm{ml}), \mathrm{NaBHEt}_{3}(50$ $\mu \mathrm{L}, 0.05 \mathrm{mmol}$), HBpin ($180 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$) and 4-methoxystyrene $(0.1345 \mathrm{~g}, 1.0 \mathrm{mmol})$. After 18 h , the resulting solution was added 20 ml of ether and filtered through a pad of silica gel, washed by ether ($10 \mathrm{ml} \times 1$). The combined filtrates were concentrated and regioselectivity was monitored by ${ }^{1} \mathrm{H}$ NMR analysis. The crude mixture was purified by flash column chromatography using $\mathrm{PE} / \mathrm{EtOAc}=20 / 1$ as the eluent to afford $\mathbf{2 e}(0.0921 \mathrm{~g}, 0.35 \mathrm{mmol}$, 35% yield, $\mathrm{b} / \mathrm{l}=50 / 1$) as a colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18-7.09(\mathrm{~m}, 2 \mathrm{H})$, 6.85-6.77 (m, 2H), $3.77(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H})$, $1.20(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta 157.2,137.0,128.6,113.7,83.2,55.2,24.61,24.57$, 17.3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data agree with the previously reported data. ${ }^{9}$

tert-butyldimethyl(4-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)eth yl)phenoxy)silane (2f). Prepared according to the general procedure using $\mathbf{L d}(0.0090 \mathrm{~g}, 0.03 \mathrm{mmol}), \mathrm{FeCl}_{2}(0.0033 \mathrm{~g}, 0.026 \mathrm{mmol})$, toluene $(1 \mathrm{ml}), \mathrm{NaBHEt}_{3}(50 \mu \mathrm{~L}, 0.05 \mathrm{mmol})$, HBpin $(180 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ and tert-butyldimethyl (4-vinylphenoxy)silane ($0.2359 \mathrm{~g}, 1.0 \mathrm{mmol}$). After 18 h , the resulting solution was added 20 ml of ether and filtered through a pad of silica gel, washed by ether $(10 \mathrm{ml} \times 1)$. The combined filtrates were concentrated and regioselectivity was monitored by ${ }^{1} \mathrm{H}$ NMR analysis. The crude mixture was purified by flash column chromatography using $\mathrm{PE} / \mathrm{EtOAc}=100 / 1$ as the eluent to afford $\mathbf{2 f}(0.2725 \mathrm{~g}, 0.75 \mathrm{mmol}, 75 \%$ yield, $\mathrm{b} / \mathrm{l}>50 / 1)$ as a colorless oil. IR (neat): 2958, 2860, 1508, 1354, 1321, 1253, $1144 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.09-7.01(\mathrm{~m}, 2 \mathrm{H})$, 6.76-6.70 (m, 2H), 2.36(q, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}), 1.18(\mathrm{~s}, 6 \mathrm{H})$, $0.97(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 153.0,137.4,128.5,119.8,83.1,25.7$, 24.6, 24.5, 18.2, 17.1, -4.4; HRMS (EI) calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{BO}_{3} \mathrm{Si}^{+}\right.$requires $\mathrm{m} / \mathrm{z} 362.2449$, found $\mathrm{m} / \mathrm{z} 362.2450$.

4,4,5,5-tetramethyl-2-(1-(4-(methylthio)phenyl)ethyl)-1,3,2-dioxaborolane $\mathbf{(2 g})$. Prepared according to the general procedure using Ld (0.0092 g, $0.031 \mathrm{mmol}), \mathrm{FeCl}_{2}(0.0033 \mathrm{~g}, 0.026 \mathrm{mmol})$, toluene $(1 \mathrm{ml}), \mathrm{NaBHEt}_{3}(50$ $\mu \mathrm{L}, 0.05 \mathrm{mmol}$), HBpin ($180 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$) and 1-ethenyl-4-methylsulfanylbenzene $(0.1508 \mathrm{~g}, 1.0 \mathrm{mmol})$. After 18 h , the resulting solution was added 20 ml of ether and filtered through a pad of silica gel, washed by ether ($10 \mathrm{ml} \times 1$). The combined filtrates were concentrated and regioselectivity was monitored by ${ }^{1} \mathrm{H}$ NMR analysis. The crude mixture was purified by flash column chromatography using $\mathrm{PE} / \mathrm{EtOAc}=100 / 1$ as the eluent to afford $\mathbf{2 g}$ ($0.1976 \mathrm{~g}, 0.71 \mathrm{mmol}, 71 \%$ yield, $\mathrm{b} / \mathrm{l}=40 / 1$) as a colorless oil. IR (neat): 2977, 2926, 1493, 1375, $1352,1322,1143 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22-7.12(\mathrm{~m}, 4 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{q}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H}), 1.19(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ $142.2,134.2,128.3,127.3,83.3,24.59,24.56,17.0,16.4$; HRMS (EI) calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{BO}_{2} \mathrm{~S}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 278.1512$, found $\mathrm{m} / \mathrm{z} 278.1517$.

4,4,5,5-tetramethyl-2-(1-(4-(trifluoromethyl)phenyl)ethyl)-1,3,2-dioxaboro lane (2h). Prepared according to the general procedure using $\mathbf{L d}(0.0090 \mathrm{~g}$, $0.03 \mathrm{mmol}), \mathrm{FeCl}_{2}(0.0034 \mathrm{~g}, 0.027 \mathrm{mmol})$, toluene $(1 \mathrm{ml}), \mathrm{NaBHEt}_{3}(50$ $\mu \mathrm{L}, 0.05 \mathrm{mmol})$, HBpin ($180 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$) and 1-(Trifluoromethyl)-4vinylbenzene $(0.1718 \mathrm{~g}, 1.0 \mathrm{mmol})$. After 18 h , the resulting solution was added 20 ml of ether and filtered through a pad of silica gel, washed by ether ($10 \mathrm{ml} \times 1$). The combined filtrates were concentrated and regioselectivity was monitored by ${ }^{1} \mathrm{H}$ NMR analysis. The crude mixture was purified by flash column chromatography using $\mathrm{PE} / \mathrm{EtOAc}=100 / 1$ as the eluent to afford $\mathbf{2 h}$ $(0.1710 \mathrm{~g}, 0.57 \mathrm{mmol}, 57 \%$ yield, $\mathrm{b} / \mathrm{l}>50 / 1)$ as a white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.21(\mathrm{~s}, 6 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.3,128.0,127.4(\mathrm{q}, J=32.4 \mathrm{~Hz}, 1 \mathrm{C})$, $125.2(\mathrm{q}, J=3.6 \mathrm{~Hz}, 1 \mathrm{C}), 124.5(\mathrm{q}, J=268.8 \mathrm{~Hz}, 1 \mathrm{C}), 83.5,24.6,24.5,16.7 ;{ }^{19} \mathrm{~F}$ NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-62.1 ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data agree with the previously reported data. ${ }^{9}$

2-(1-(4-fluorophenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane
Prepared according to the general procedure using $\mathbf{L d}(0.0092 \mathrm{~g}, 0.031 \mathrm{mmol})$, $\mathrm{FeCl}_{2}(0.0033 \mathrm{~g}, 0.026 \mathrm{mmol})$, toluene $(1 \mathrm{ml}), \mathrm{NaBHEt}_{3}(50 \mu \mathrm{~L}, 0.05 \mathrm{mmol})$, HBpin $(180 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ and 1-fluoro-4-vinylbenzene $(0.1230 \mathrm{~g}, 1.0 \mathrm{mmol})$. After 18 h , the resulting solution was added 20 ml of ether and filtered through a pad of silica gel, washed by ether ($10 \mathrm{ml} \times 1$). The combined filtrates were concentrated and regioselectivity was monitored by ${ }^{1} \mathrm{H}$ NMR analysis. The crude mixture was purified by flash column chromatography using $\mathrm{PE} / \mathrm{EtOAc}=100 / 1$ as the eluent to afford $2 \mathbf{i}(0.1626 \mathrm{~g}, 0.65 \mathrm{mmol}, 65 \%$ yield, $\mathrm{b} / \mathrm{l}>50 / 1)$ as a colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.86(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{q}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ $160.9(\mathrm{~d}, J=121.5 \mathrm{~Hz}, 1 \mathrm{C}), 140.5(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{C}), 129.0(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{C}), 114.9(\mathrm{~d}, J=$ 20.6 Hz, 2C), 83.3, 24.60, 24.55, 17.2; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-119.0 ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data agree with the previously reported data. ${ }^{8}$

2-(1-(3-fluorophenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane
Prepared according to the general procedure using $\mathbf{L d}(0.0093 \mathrm{~g}, 0.031 \mathrm{mmol})$, $\mathrm{FeCl}_{2}(0.0034 \mathrm{~g}, 0.027 \mathrm{mmol})$, toluene $(1 \mathrm{ml}), \mathrm{NaBHEt}_{3}(50 \mu \mathrm{~L}, 0.05 \mathrm{mmol})$, HBpin ($180 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$) and 1-fluoro-3-vinylbenzene ($0.1228 \mathrm{~g}, 1.0 \mathrm{mmol}$). After 18 h , the resulting solution was added 20 ml of ether and filtered through a pad of silica gel, washed by ether ($10 \mathrm{ml} \times 1$). The combined filtrates were concentrated and regioselectivity was monitored by ${ }^{1} \mathrm{H}$ NMR analysis. The crude mixture was purified by flash column chromatography using $\mathrm{PE} / \mathrm{EtOAc}=100 / 1$ as the eluent to afford $\mathbf{2 j}(0.1584 \mathbf{g}, 0.63$ $\mathrm{mmol}, 63 \%$ yield, $\mathrm{b} / \mathrm{l}=44 / 1)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.23-7.16 $(\mathrm{m}, 1 \mathrm{H})$, $7.00-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.78(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~s}$, $6 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 162.9(\mathrm{~d}, J=246.0 \mathrm{~Hz}, 1 \mathrm{C}), 147.6(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{C}), 129.5(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{C}), 123.4(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{C}), 114.5(\mathrm{~d}, J=21.4 \mathrm{~Hz}, 1 \mathrm{C}), 111.9(\mathrm{~d}$, $J=20.6 \mathrm{~Hz}, 1 \mathrm{C}), 83.4,24.6,24.5,16.7 ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-114.0 ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data agree with the previously reported data. ${ }^{8}$

2-(1-(3-chlorophenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane
(2k).
Prepared according to the general procedure using $\mathbf{L d}(0.0093 \mathrm{~g}, 0.031 \mathrm{mmol})$, $\mathrm{FeCl}_{2}(0.0033 \mathrm{~g}, 0.026 \mathrm{mmol})$, toluene $(1 \mathrm{ml}), \mathrm{NaBHEt}_{3}(50 \mu \mathrm{~L}, 0.05 \mathrm{mmol})$, HBpin ($180 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$) and 1-chloro-3-vinylbenzene ($0.1390 \mathrm{~g}, 1.0 \mathrm{mmol}$). After 18 h , the resulting solution was added 20 ml of ether and filtered through a pad of silica gel, washed by ether ($10 \mathrm{ml} \times 1$). The combined filtrates were concentrated and regioselectivity was monitored by ${ }^{1} \mathrm{H}$ NMR analysis. The crude mixture was purified by flash column chromatography using $\mathrm{PE} / \mathrm{EtOAc}=100 / 1$ as the eluent to afford $\mathbf{2 k}(0.1674 \mathrm{~g}, 0.63 \mathrm{mmol}$, 63% yield, $\mathrm{b} / \mathrm{l}>50 / 1$) as a colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23-7.14(\mathrm{~m}, 2 \mathrm{H})$, 7.13-7.06 (m, 2H), $2.41(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 147.1,134.0,129.4,127.8,126.0,125.2,83.5,24.58,24.55,16.8$. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data agree with the previously reported data. ${ }^{10}$

2-(1-(3-bromophenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane
Prepared according to the general procedure using $\mathbf{L d}(0.0091 \mathrm{~g}, 0.031 \mathrm{mmol})$, $\mathrm{FeCl}_{2}(0.0034 \mathrm{~g}, 0.027 \mathrm{mmol})$, toluene $(1 \mathrm{ml}), \mathrm{NaBHEt}_{3}(50 \mu \mathrm{~L}, 0.05 \mathrm{mmol})$, HBpin ($180 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$) and 1-bromo-3-vinylbenzene ($0.1829 \mathrm{~g}, 1.0 \mathrm{mmol}$). After 18 h , the resulting solution was added 20 ml of ether and filtered through a pad of silica gel, washed by ether ($10 \mathrm{ml} \times 1$). The combined filtrates were concentrated and regioselectivity was monitored by ${ }^{1} \mathrm{H}$ NMR analysis. The crude mixture was purified by flash column chromatography using $\mathrm{PE} / \mathrm{EtOAc}=100 / 1$ as the eluent to afford $\mathbf{2 l}(0.1247 \mathrm{~g}, 0.40 \mathrm{mmol}$, 40% yield, $\mathrm{b} / \mathrm{l}=37 / 1)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}$, $1 \mathrm{H}), 7.17-7.09(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H}), 1.20(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.4,130.8,129.8,128.2,126.5,122.4,83.5,24.59,24.56$, 16.8. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data agree with the previously reported data. ${ }^{11}$

4,4,5,5-tetramethyl-2-(1-(3-(trifluoromethyl)phenyl)ethyl)-1,3,2-dioxaborolane (2m). Prepared according to the general procedure using Ld (0.0091 g, 0.031 $\mathrm{mmol}), \mathrm{FeCl}_{2}(0.0035 \mathrm{~g}, 0.027 \mathrm{mmol})$, toluene $(1 \mathrm{ml}), \mathrm{NaBHEt}_{3}(50 \mu \mathrm{~L}, 0.05$ mmol), HBpin (180 $\mu \mathrm{L}, 1.2 \mathrm{mmol}$) and 1-(trifluoromethyl)-3-vinylbenzene $(0.1720 \mathrm{~g}, 1.0 \mathrm{mmol})$. After 18 h , the resulting solution was added 20 ml of ether and filtered through a pad of silica gel, washed by ether ($10 \mathrm{ml} \times 1$). The combined filtrates were concentrated and regioselectivity was monitored by ${ }^{1} \mathrm{H}$ NMR analysis. The crude mixture was purified by flash column chromatography using $\mathrm{PE} / \mathrm{EtOAc}=100 / 1$ as the eluent to afford $\mathbf{2 m}$ $(0.1779 \mathrm{~g}, 0.59 \mathrm{mmol}, 59 \%$ yield, $\mathrm{b} / \mathrm{l}>50 / 1)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.48(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.33(\mathrm{~m}, 3 \mathrm{H}), 2.50(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H})$, $1.20(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.9,131.2,130.5(\mathrm{q}, J=31.6 \mathrm{~Hz}, 1 \mathrm{C}), 128.6,124.4$ $(\mathrm{q}, J=273.2 \mathrm{~Hz}, 1 \mathrm{C}), 124.5(\mathrm{q}, J=3.7 \mathrm{~Hz}, 1 \mathrm{C}), 122.0(\mathrm{q}, J=3.7 \mathrm{~Hz}, 1 \mathrm{C}), 83.5,24.6,24.5,16.8$. ${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.5 ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data agree with the previously reported data. ${ }^{8}$

4,4,5,5-tetramethyl-2-(1-(m-tolyl)ethyl)-1,3,2-dioxaborolane (2n). Prepared according to the general procedure using $\mathbf{L d}(0.0094 \mathrm{~g}, 0.032 \mathrm{mmol}), \mathrm{FeCl}_{2}$ $(0.0035 \mathrm{~g}, 0.028 \mathrm{mmol})$, toluene $(1 \mathrm{ml}), \mathrm{NaBHEt}_{3}(50 \mu \mathrm{~L}, 0.05 \mathrm{mmol})$, HBpin ($180 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$), 1-methyl-3-vinylbenzene ($0.1192 \mathrm{~g}, 1.0 \mathrm{mmol}$). After 18 h , the resulting solution was added 20 ml of ether and filtered through a pad of silica gel, washed by ether (10 ml x 1). The combined filtrates were concentrated and regioselectivity was monitored by ${ }^{1} \mathrm{H}$ NMR analysis. The crude mixture was purified by flash column chromatography using $\mathrm{PE} / \mathrm{EtOAc}=100 / 1$ as the eluent to afford $2 \mathrm{n}(0.1683 \mathrm{~g}, 0.68 \mathrm{mmol}, 68 \%$ yield, $\mathrm{b} / \mathrm{l}>50 / 1$) as a colorless oil. IR (neat): 2978, 2931, 1605, 1461, 1376, 1352, 1322, 1144 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.39(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 144.8,137.7,128.6,128.1,125.8,124.8,83.2,24.57,24.55,21.4$, 17.1; HRMS (EI) calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{BO}_{2}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 246.1791$, found $\mathrm{m} / \mathrm{z} 246.1794$.

4,4,5,5-tetramethyl-2-(1-(4-(2-methyl-1,3-dioxolan-2-yl)phenyl)ethyl)-1,3, 2-dioxaborolane (20). Prepared according to the general procedure using $\mathbf{L d}(0.0091 \mathrm{~g}, 0.031 \mathrm{mmol}), \mathrm{FeCl}_{2}(0.0034 \mathrm{~g}, 0.027 \mathrm{mmol})$, toluene $(1 \mathrm{ml})$, $\mathrm{NaBHEt}_{3}(50 \mu \mathrm{~L}, 0.05 \mathrm{mmol})$, HBpin (180 $\left.\mu \mathrm{L}, 1.2 \mathrm{mmol}\right)$ and 2-methyl-2-(4-vinylphenyl)-1,3-dioxolane ($0.1928 \mathrm{~g}, 1.0 \mathrm{mmol}$). After 18 h , the resulting solution was added 20 ml of ether and filtered through a pad of silica gel, washed by ether (10 ml x 1). The combined filtrates were concentrated and regioselectivity was monitored by ${ }^{1} \mathrm{H}$ NMR analysis. The crude mixture was purified by flash column chromatography using $\mathrm{PE} / \mathrm{EtOAc}=100 / 1$ as the eluent to afford $2 \mathrm{om}(0.1368 \mathrm{~g}, 0.42 \mathrm{mmol}, 42 \%$ yield, $\mathrm{b} / \mathrm{l}>50 / 1)$ as a white solid. M.p. $62.5-63.7{ }^{\circ} \mathrm{C}$; IR (neat): 2980, 2884, 1461, 1375, 1352, 1322, $1144 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) δ 7.45-7.29 (m, 2H), 7.23-7.09 (m, 2H), 4.15-3.93 (m, 2H), 3.93-3.71 $(\mathrm{m}, 2 \mathrm{H}), 2.43(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 6 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 144.5,139.8,127.5,125.2,108.9,83.3,64.4,27.5,24.62,24.58$, 17.1; HRMS (EI) calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{BO}_{4}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 318.2002$, found $\mathrm{m} / \mathrm{z} 318.2003$.

2-(1-(3,4-dimethylphenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2p). Prepared according to the general procedure using $\mathbf{L d}(0.0093 \mathrm{~g}, 0.031 \mathrm{mmol})$, $\mathrm{FeCl}_{2}(0.0035 \mathrm{~g}, 0.028 \mathrm{mmol})$, toluene $(1 \mathrm{ml}), \mathrm{NaBHEt}_{3}(50 \mu \mathrm{~L}, 0.05 \mathrm{mmol})$, HBpin ($180 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$) and 1,2-dimethyl-4-vinylbenzene ($0.1331 \mathrm{~g}, 1.0$ mmol). After 18 h , the resulting solution was added 20 ml of ether and filtered through a pad of silica gel, washed by ether ($10 \mathrm{ml} \times 1$). The combined filtrates were concentrated and regioselectivity was monitored by ${ }^{1} \mathrm{H}$ NMR analysis. The crude mixture was purified by flash column chromatography using $\mathrm{PE} / \mathrm{EtOAc}=100 / 1$ as the eluent to afford $\mathbf{2 p}(0.1600 \mathrm{~g}, 0.61 \mathrm{mmol}$, 61% yield, $\mathrm{b} / \mathrm{l}>50 / 1$) as a white solid. M.p. $66.8-67.6^{\circ} \mathrm{C}$; IR (neat): $2976,2926,1456,1351$, $1324,1143 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.04-6.90(\mathrm{~m}, 3 \mathrm{H}), 2.35(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.22$ $(\mathrm{s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 6 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 142.4,136.2,133.0,129.6,129.2,125.1,83.2,24.6,19.8,19.2,17.4 ;$ HRMS (EI) calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{BO}_{2}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 260.1948$, found $\mathrm{m} / \mathrm{z} 260.1949$.

2-(1-(4-fluoro-3-methylphenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2q). Prepared according to the general procedure using Ld (0.0090 g, 0.030 $\mathrm{mmol}), \mathrm{FeCl}_{2}(0.0034 \mathrm{~g}, 0.027 \mathrm{mmol})$, toluene (1 ml), $\mathrm{NaBHEt}_{3}(50 \mu \mathrm{~L}, 0.05$ mmol), HBpin ($180 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$) and 1,2-dimethyl-4-vinylbenzene (0.1365 $\mathrm{g}, 1.0 \mathrm{mmol}$). After 18 h , the resulting solution was added 20 ml of ether and filtered through a pad of silica gel, washed by ether ($10 \mathrm{ml} \times 1$). The combined filtrates were concentrated and regioselectivity was monitored by ${ }^{1} \mathrm{H}$ NMR analysis. The crude mixture was purified by flash column chromatography using $\mathrm{PE} / \mathrm{EtOAc}=100 / 1$ as the eluent to afford $\mathbf{2 q}$ ($0.1414 \mathrm{~g}, 0.53 \mathrm{mmol}, 53 \%$ yield, b/l > 50/1) as a colorless oil. IR (neat): 2978, 2931, 1503, 1461, $1353,1323,1145 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.01-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{dd}, J=9.6,8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.36(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.4(\mathrm{~d}, J=242.3 \mathrm{~Hz}, 1 \mathrm{C}), 140.2(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{C}), 130.6(\mathrm{~d}, J$ $=5.2 \mathrm{~Hz}, 1 \mathrm{C}), 126.2(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{C}), 124.2(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{C}), 114.6(\mathrm{~d}, J=22.1 \mathrm{~Hz}, 1 \mathrm{C})$, 83.3, 24.58, 24.55, 17.3, $14.6(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{C}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-123.4 ; \mathrm{HRMS}$ (EI) calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{BFO}_{2}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 264.1697$, found $\mathrm{m} / \mathrm{z} 264.1700$.

4,4,5,5-tetramethyl-2-(1-(naphthalen-2-yl)ethyl)-1,3,2-dioxaborolane (2r). Prepared according to the general procedure using $\mathbf{L d}(0.0093 \mathrm{~g}, 0.031$ $\mathrm{mmol}), \mathrm{FeCl}_{2}(0.0036 \mathrm{~g}, 0.028 \mathrm{mmol})$, toluene $(1 \mathrm{ml}), \mathrm{NaBHEt}_{3}(50 \mu \mathrm{~L}$, $0.05 \mathrm{mmol})$, HBpin ($180 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$) and 2-vinylnaphthalene (0.1558 g , 1.0 mmol). After 18 h , the resulting solution was added 20 ml of ether and filtered through a pad of silica gel, washed by ether (10 ml x 1). The combined filtrates were concentrated and regioselectivity was monitored by ${ }^{1} \mathrm{H}$ NMR analysis. The crude mixture was purified by flash column chromatography using $\mathrm{PE} / \mathrm{EtOAc}=100 / 1$ as the eluent to afford $2 \mathbf{r}(0.1811 \mathrm{~g}, 0.64 \mathrm{mmol}$, 64% yield, $\mathrm{b} / \mathrm{l}>50 / 1$) as a white solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80-7.71(\mathrm{~m}, 3 \mathrm{H}), 7.64(\mathrm{~s}$, $1 \mathrm{H}), 7.45-7.33(\mathrm{~m}, 3 \mathrm{H}), 2.61(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H}), 1.19(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.6,133.9,131.7,127.6,127.50,127.46,127.2,125.6$, 125.2, 124.7, 83.4, 24.62, 24.59, 16.8. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data agree with the previously reported data. ${ }^{9}$

4,4,5,5-tetramethyl-2-(1-(naphthalen-1-yl)ethyl)-1,3,2-dioxaborolane (2s).
Prepared according to the general procedure using $\mathbf{L d}(0.0093 \mathrm{~g}, 0.031$ $\mathrm{mmol}), \mathrm{FeCl}_{2}(0.0034 \mathrm{~g}, 0.027 \mathrm{mmol})$, toluene $(1 \mathrm{ml}), \mathrm{NaBHEt}_{3}(50 \mu \mathrm{~L}$, $0.05 \mathrm{mmol})$, HBpin $(180 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ and 1-vinylnaphthalene $(0.1556 \mathrm{~g}$, 1.0 mmol). After 18 h , the resulting solution was added 20 ml of ether and filtered through a pad of silica gel, washed by ether (10 ml x 1$)$. The combined filtrates were concentrated and regioselectivity was monitored by ${ }^{1} \mathrm{H}$ NMR analysis. The crude mixture was purified by flash column chromatography using $\mathrm{PE} / \mathrm{EtOAc}=100 / 1$ as the eluent to afford $2 \mathrm{~s}(0.1703 \mathrm{~g}, 0.60 \mathrm{mmol}$, 60% yield, $\mathrm{b} / \mathrm{l}=13 / 1)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.82(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.36(\mathrm{~m}, 4 \mathrm{H}), 3.11(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.50(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 6 \mathrm{H}), 1.18(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 141.4,133.9$, 132.0, 128.7, 125.8, 125.3, 125.2, 124.2, 124.0, 83.4, 24.6, 24.5, 16.4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data agree with the previously reported data. ${ }^{9}$

1-methyl-5-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-1H-indol e (2t). Prepared according to the general procedure using Ld (0.0093 g, $0.031 \mathrm{mmol}), \mathrm{FeCl}_{2}(0.0035 \mathrm{~g}, 0.028 \mathrm{mmol})$, toluene $(1 \mathrm{ml}), \mathrm{NaBHEt}_{3}(50$ $\mu \mathrm{L}, 0.05 \mathrm{mmol}$), HBpin ($180 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$) and 1-methyl-5-vinyl-1 H indole $(0.1580 \mathrm{~g}, 1.0 \mathrm{mmol})$. After 18 h , the resulting solution was added 20 ml of ether and filtered through a pad of silica gel, washed by ether ($10 \mathrm{ml} \times 1$). The combined filtrates were concentrated and regioselectivity was monitored by ${ }^{1} \mathrm{H}$ NMR analysis. The crude mixture was purified by flash column chromatography using $\mathrm{PE} / \mathrm{EtOAc}=100 / 1$ as the eluent to afford $2 \mathrm{t}(0.1190 \mathrm{~g}, 0.42 \mathrm{mmol}, 42 \%$ yield, $\mathrm{b} / \mathrm{l}>50 / 1$) as a yellow oil. IR (neat): 2976, 1487, 1446, $1350,1320,1142 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10$ $(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{q}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $135.8,135.1,128.8,128.5,122.2,119.2,108.9,100.5,83.1,32.7,24.61,17.9$; HRMS (EI) calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{BNO}_{2}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 285.1900$, found $\mathrm{m} / \mathrm{z} 285.1895$.

2-(2,3-dihydro-1H-inden-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2u). Prepared according to the general procedure using $\mathbf{L d}(0.0094 \mathrm{~g}, 0.032 \mathrm{mmol})$, $\mathrm{FeCl}_{2}(0.0034 \mathrm{~g}, 0.027 \mathrm{mmol})$, toluene $(1 \mathrm{ml}), \mathrm{NaBHEt}_{3}(50 \mu \mathrm{~L}, 0.05 \mathrm{mmol})$, HBpin $(180 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ and indene $(0.1186 \mathrm{~g}, 1.0 \mathrm{mmol})$. After 18 h , the resulting solution was added 20 ml of ether and filtered through a pad of silica gel, washed by ether ($10 \mathrm{ml} \times 1$). The combined filtrates were concentrated and regioselectivity was monitored by ${ }^{1} \mathrm{H}$ NMR analysis. The crude mixture was purified by flash column chromatography using $\mathrm{PE} / \mathrm{EtOAc}=100 / 1$ as the eluent to afford $\mathbf{2 u}(0.1232 \mathrm{~g}, 0.49 \mathrm{mmol}, 49 \%$ yield, $\mathrm{b} / \mathrm{l}=11 / 1)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.05$ $(\mathrm{m}, 2 \mathrm{H}), 3.00-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~s}$, $6 \mathrm{H}), 1.24(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 145.1,144.2,125.9,125.5,124.3,124.2,83.3$, 33.3, 27.8, 24.8, 24.7. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data agree with the previously reported data. ${ }^{12}$

4,4,5,5-tetramethyl-2-(1-phenylpropyl)-1,3,2-dioxaborolane (2v). Prepared according to the general procedure using $\mathbf{L d}(0.0090 \mathrm{~g}, 0.030 \mathrm{mmol}), \mathrm{FeCl}_{2}$ ($0.0032 \mathrm{~g}, 0.025 \mathrm{mmol}$), toluene (1 ml), $\mathrm{NaBHEt}_{3}(50 \mu \mathrm{~L}, 0.05 \mathrm{mmol})$, HBpin ($180 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$) and β-methylstyrene ($0.1180 \mathrm{~g}, 1.0 \mathrm{mmol}$). After 18 h , the resulting solution was added 20 ml of ether and filtered through a pad of silica gel, washed by ether ($10 \mathrm{ml} \mathrm{x} \mathrm{1)}$. The combined filtrates were concentrated and regioselectivity was monitored by ${ }^{1} \mathrm{H}$ NMR analysis. The crude mixture was purified by flash column chromatography using $\mathrm{PE} / \mathrm{EtOAc}=100 / 1$ as the eluent to afford $2 \mathbf{2 v}(0.0947 \mathrm{~g}, 0.38 \mathrm{mmol}, 38 \%$ yield, $\mathrm{b} / \mathrm{l}>50 / 1)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.93-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H}), 1.19(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 143.3,128.4,128.2,125.1,83.2,25.8,24.63,24.55,13.9 .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data agree with the previously reported data. ${ }^{12}$

Prepared according to the general procedure using $\mathbf{L d}$ (0.0091 $\mathrm{g}, 0.031 \mathrm{mmol}), \mathrm{FeCl}_{2}(0.0034 \mathrm{~g}, 0.027 \mathrm{mmol})$, toluene $(1 \mathrm{ml})$, $\mathrm{NaBHEt}_{3}(50 \mu \mathrm{~L}, 0.05 \mathrm{mmol})$, HBpin $(180 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ and allylbenzene $(0.1198 \mathrm{~g}, 1.0 \mathrm{mmol})$. After 18 h , the resulting solution was added 20 ml of ether and filtered through a pad of silica gel, washed by ether ($10 \mathrm{ml} \times 1$). The combined filtrates were concentrated and regioselectivity was monitored by ${ }^{1} \mathrm{H}$ NMR analysis and compared to the literature. ${ }^{13}$ The crude mixture was purified by flash column chromatography using $\mathrm{PE} / \mathrm{EtOAc}=100 / 1$ as the eluent to afford two isomers $\mathbf{2 v}$ and $\mathbf{3 w}$ $\left(0.2294 \mathrm{~g}, 0.90 \mathrm{mmol}, 90 \%\right.$ yield, $\left.\mathrm{n}_{2 \mathrm{w}} / \mathrm{n}_{3 \mathrm{w}}=3: 1\right)$ as a colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.26-7.10 (m, 7H), $2.80(\mathrm{dd}, J=13.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{t}, J=7.6 \mathrm{~Hz}, 0.66 \mathrm{H}), 2.54(\mathrm{dd}, J=13.2$, $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.68(\mathrm{~m}, 0.70 \mathrm{H}), 1.40-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 3.96 \mathrm{H}), 1.18(\mathrm{~s}, 6 \mathrm{H}), 1.17(\mathrm{~s}, 6 \mathrm{H})$, $0.97(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{t}, J=7.6 \mathrm{~Hz}, 0.69 \mathrm{H})$.

2x

3x

Prepared according to the general procedure using $\mathbf{L d}(0.0090 \mathrm{~g}, 0.030 \mathrm{mmol}), \mathrm{FeCl}_{2}$ ($0.0031 \mathrm{~g}, 0.025 \mathrm{mmol}$), toluene (1 ml),
$\mathrm{NaBHEt}_{3}(50 \mu \mathrm{~L}, 0.05 \mathrm{mmol})$, HBpin $(180 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ and 1 -octene $(0.1120 \mathrm{~g}, 1.0 \mathrm{mmol})$.

After 18 h , the resulting solution was added 20 ml of ether and filtered through a pad of silica gel, washed by ether ($10 \mathrm{ml} \times 1$). The combined filtrates were concentrated and regioselectivity was monitored by ${ }^{1} \mathrm{H}$ NMR analysis and compared to the literature. ${ }^{13}$ The crude mixture was purified by flash column chromatography using $\mathrm{PE} / \mathrm{EtOAc}=100 / 1$ as the eluent to afford two isomers $\mathbf{2 x}$ and $\mathbf{3 x}\left(0.1514 \mathrm{~g}, 0.63 \mathrm{mmol}, 63 \%\right.$ yield, $\left.\mathrm{n}_{2 \mathrm{x}} / \mathrm{n}_{3 \mathrm{x}}=1: 1\right)$ as a colorless oil.

2-(1-(4-((((1S,2R,5S)-2-isopropyl-5-methylcyclohexyl)oxy) methyl)phenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborola ne (2y) (diastereomer 1:1). Prepared according to the general procedure using $\mathbf{L d}(0.0090 \mathrm{~g}, 0.030 \mathrm{mmol}), \mathrm{FeCl}_{2}$ $(0.0033 \mathrm{~g}, 0.025 \mathrm{mmol})$, toluene $(1 \mathrm{ml}), \mathrm{NaBHEt}_{3}(50 \mu \mathrm{~L}, 0.05 \mathrm{mmol})$, HBpin $(180 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ and $\mathbf{1 y}(0.2728 \mathrm{~g}, 1.0 \mathrm{mmol})$. After 18 h , the resulting solution was added 20 ml of ether and filtered through a pad of silica gel, washed by ether ($10 \mathrm{ml} \times 1$). The combined filtrates were concentrated and regioselectivity was monitored by ${ }^{1} \mathrm{H}$ NMR analysis. The crude mixture was purified by flash column chromatography using $\mathrm{PE} / \mathrm{EtOAc}=100 / 1$ as the eluent to afford $\mathbf{2 y}$ ($0.2006 \mathrm{~g}, 0.5 \mathrm{mmol}, 50 \%$ yield, $\mathrm{b} / \mathrm{l}>50 / 1$) as a colorless oil. IR (neat): 2955, 2924, 1453, 1374, $1350,1323,1145 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 4.60(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{td}, J=10.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{qd}$, $J=7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.24(\mathrm{~m}$, $5 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}), 1.19(\mathrm{~s}, 6 \mathrm{H}), 0.94-0.83(\mathrm{~m}, 9 \mathrm{H}), 0.68(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; HRMS (EI) calculated for $\left[\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{BO}_{3}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 400.3149$, found $\mathrm{m} / \mathrm{z} 400.3149$.

4,4,5,5-tetramethyl-2-(1-(4-(((R)-2,5,7,8-tetramethyl-2-((4S,8S)-4,8,12-trimethyltridecyl)chroman -6-yl)oxy)methyl)phenyl)ethyl)-1,3,2-dioxaborolane (2z) (diastereomer 1:1). Prepared according
to the general procedure using $\mathbf{L d}(0.0092 \mathrm{~g}, 0.031 \mathrm{mmol}), \mathrm{FeCl}_{2}(0.0033 \mathrm{~g}, 0.025 \mathrm{mmol})$, toluene $(1 \mathrm{ml}), \mathrm{NaBHEt}_{3}(50 \mu \mathrm{~L}, 0.05 \mathrm{mmol})$, HBpin $(90 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$ and $\mathbf{1 z}(0.2658 \mathrm{~g}, 0.5 \mathrm{mmol})$. After 18 h , the resulting solution was added 20 ml of ether and filtered through a pad of silica gel, washed by ether ($10 \mathrm{ml} \times 1$). The combined filtrates were concentrated and regioselectivity was monitored by ${ }^{1} \mathrm{H}$ NMR analysis. The crude mixture was purified by flash column chromatography using $\mathrm{PE} / \mathrm{EtOAc}=100 / 1$ as the eluent to afford $\mathbf{2 z}(0.1316 \mathrm{~g}, 0.2 \mathrm{mmol}, 40 \%$ yield, $\mathrm{b} / \mathrm{l}=40 / 1)$ as a colorless oil. IR (neat): 2926, 2867, 1459, 1374, 1322, 1256, 1144, $1087 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 2.58(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.45(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.87-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.00$ $(\mathrm{m}, 39 \mathrm{H}), 0.92-0.80(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.2,147.8,144.7,134.6,128.02$, $128.00,127.9,126.0,122.8,117.5,83.3,74.79,74.76,40.1,39.4,37.47,37.45,37.4,37.3,32.8$, $32.7,31.3,28.0,24.8,24.6,24.4,23.9,22.7,22.6,21.0,20.7,19.74,19.66,17.2,12.9,12.0,11.8 ;$ HRMS (EI) calculated for $\left[\mathrm{C}_{44} \mathrm{H}_{71} \mathrm{BO}_{4}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 674.5445$, found $\mathrm{m} / \mathrm{z} 674.5462$.

Gram-scale Reaction:

Prepared according to the general procedure, the reaction using $\mathbf{L d}(0.0712 \mathrm{~g}, 0.24 \mathrm{mmol}), \mathrm{FeCl}_{2}$ $(0.0253 \mathrm{~g}, 0.20 \mathrm{mmol})$, toluene $(8 \mathrm{ml}), \mathrm{NaBHEt}_{3}(400 \mu \mathrm{~L}, 0.4 \mathrm{mmol})$, HBpin $(1.44 \mathrm{ml}, 9.6 \mathrm{mmol})$ and styrene $(0.92 \mathrm{ml}, 0.91 \mathrm{~g} / \mathrm{ml}, 8.0 \mathrm{mmol})$. After 18 h , the resulting solution was concentrated and purified by flash column chromatography using $\mathrm{PE} / \mathrm{EtOAc}=100 / 1$ as the eluent to afford 2a $(1.7230 \mathrm{~g}, 7.44 \mathrm{mmol}, 93 \%$ yield, $\mathrm{b} / \mathrm{l}>50 / 1)$ as a colorless oil.

Deuterium Experiments

The reaction was performed according to the general procedure by using DBpin instead of HBpin. The deuteration of products was determined by ${ }^{1} \mathrm{H}$ NMR spectra of the alcohols from oxidation of corresponding boronates. The deuterated atom was only observed at the methyl position (30%
deuteration) and the hydrogen atom might come from reductant NaBHEt_{3} or the β-hydride elimination from alkene.

The reaction was performed according to the general procedure by using d8-styrene instead of styrene, which gave the monoprotio-boronic ester d8-2a in 65% yield with H incorporation at the terminal methyl group. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.29$ (brs, 1 H), 1.21 (s, 6H), $1.20(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13}$ C NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 144.7,127.7(\mathrm{t}, J=24.2 \mathrm{~Hz}), 127.3(\mathrm{t}, J=24.2 \mathrm{~Hz}), 124.5(\mathrm{t}, J=$ 24.3 Hz), 83.2, 24.6, 24.5, 16.3 (quint., $J=19.2 \mathrm{~Hz}$).

V. References

1. Garcia-Barrantes, P. M.; Lindsley, C. W. Org. Lett. 2016, 18, 3810-3813.
2. (a) Chen, J. H.; Cheng, B.; Cao, M. Y.; Lu, Z. Angew. Chem. Int. Ed. 2015, 54, 4661-4664; (b) Zhang, H. Y.; Lu, Z. ACS Catal. 2016, 6, 6596-6600; (c) Chen, X.; Lu, Z. Org. Lett. 2016, 18, 4658-4661.
3. Wolinska, E. Tetrahedron 2013, 69, 7269-7278.
4. Giri, R.; Maugel, N.; Foxman, B. M.; Yu, J.-Q. Organometallics 2008, 27, 1667-1670.
5. Decken, A.; Gossage, R. A.; Yadav, P. N. Can. J. Chem. 2005, 83, 1185-1189.
6. Urgoitia, G.; SanMartin, R.; Herrero, M. T.; Domínguez, E. Adv. Synth. Catal. 2016, 358, 3307-3312.
7. Zhang, G. Q.; Zeng, H. S.; Wu, J.; Yin, Z. W.; Zheng, S. P.; Fettinger, J. C. Angew. Chem. Int. Ed. 2016, 55, 14367-14370.
8. MacNair, A. J.; Millet, C. R. P.; Nichol, G. S.; Ironmonger, A.; Thomas, S. P. ACS Catal. 2016, 6, 7217-7221.
9. Touney, E. E.; Van Hoveln, R.; Buttke, C. T.; Freidberg, M. D.; Guzei, I. A.; Schomaker, J. M. Organometallics 2016, 35, 3436-3439.
10. Noh, D.; Chea, H.; Ju, J.; Yun, J. Angew. Chem. Int. Ed. 2009, 48, 6938-6938.
11. Endo, K.; Hirokami, M.; Shibata, T. Organometallics 2008, 27, 5390-5393.
12. Scheuermann, M. L.; Johnson, E. J.; Chirik, P. J. Org. Lett. 2015, 17, 2716-2719.
13. (a) Kerchner, H. A.; Montgomery, J. Org. Lett. 2016, 18, 5760-5763; (b) Yin, Q.; Kemper, S.; Klare, H. F. T.; Oestreich, M. Chem-Eur. J. 2016, 22, 13840-13844.
VI. NMR Spectra

$\stackrel{\infty}{\stackrel{\infty}{\circ}}$

Sa
${ }^{1} \mathrm{H}$ NMR
400 MHz
CDCl_{3}

L
${ }^{1} \mathrm{H}$ NMR
400 MHz
CDCl_{3}
L

2.03
$\begin{array}{lllll}1.00 & 1.01 & 0.99 & 1.03 & 1.02\end{array}$
0.92

色谱图

$2 h$
${ }^{19}$ F NMR
376 MHz
CDCl_{3}

20

${ }^{1} \mathrm{H}$ NMR
400 MHz CDCl_{3}

$3.05 \quad 3.07$

6.06

3.10

しいししいいしいいうい！

2u
${ }^{1} \mathrm{H}$ NMR
400 MHz
CDCl_{3}
2.02
0.97
0.99
2.07
$1.00 \quad 1.05$
1.03
\qquad

し！｜｜｜」」」」」」

2x

${ }^{13}$ C NMR
101 MHz
CDCl_{3}

||||||l| $\|\|\|\|$

$2 y$
${ }^{1}$ HNMR
400 MHz CDCl_{3}

. 90

2z
${ }^{1}$ H NMR
400 MHz
CDCl_{3}

