Transition-Metal-Free Alkynylation of 2-Oxindoles through Radical-Radical Coupling

Hong-Yan Huang,†,‡ Liang Cheng†,‡,* Jie-Jie Liu, †,‡ Dong Wang,† Li Liu,†,‡,* Chao-Jun Li§,*

‡University of Chinese Academy of Sciences, Beijing 100049, China

†Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

§Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada

Table of Contents				
1	General information	S2		
2	Reations of 2-oxindole with other kinds of alkynylation reagents	S3		
3	¹ H and 13 C NMR spectra of compounds 3a-3z	S4-S29		
4	¹ H, ¹³ C and 2D NMR spectra of compound 7	S30-S31		
5	¹ H and ¹³ C NMR spectra of compound 10	S32		
6	1 H, 13 C and 2D NMR spectra of compound ${f 11}$	S33-S34		
7	¹ H, ¹³ C and 2D NMR spectra of compound 12	S35-S36		

General Information

All chemicals were obtained from commercial sources and were used as received unless otherwise noted. TLC analysis was performed on pre-coated, glass-backed silica gel plates and visualized with UV light. Column chromatography was performed on silica gel (200-300 mesh) using ethyl acetate (EA)/petroleum ether (PE). ¹H, ¹³C and 2D-NMR Spectra were obtained on a Bruker 300 MHz, 400 MHz or 500 MHz NMR spectrometer in the deuterated solvents indicated. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard. The following abbreviations were used to designate chemical shift multiplicities: s= singlet, d= doublet,t= triplet, q= quartet, h= heptet, m= multiplet. All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or broad (br). Melting points were measured on Beijing Tech X-4 apparatus without correction. IR spectra were recorded on a Nicolet 6700 FT-IR spectrometer. HRMS were obtained using electrospray ionization (ESI)-Orbitrap.

Table S1 Reations of 2-oxindole with other kinds of alkynylation reagents a

Entry	2	1a:2	Cat.	base	solvent	T/ºC	t/h	Yield of 3a /% ^b
1	2b	1:1.5	Sc(OTf) ₃ (0.2)	Na ₂ CO ₃ (2.0)	DCM	r.t.	24	N.R.e
2	2b	1:1.5	n-Bu ₄ N+I- (0.2)	KF (33%w) ^c	oxylene/CHCl ₃ $(7:1)^d$	r.t.	12	N.R.
3	2b	1:3		NaOAc (2.0)	PhCl	120 °C	24	N.Pf
4	2c	1:1.5	Sc(OTf) ₃ (0.2)	Na_2CO_3 (2.0)	DCM	r.t.	12	N.R.
5	2c	1:1.5	n-Bu ₄ N+I- (0.2)	KF (33%w) ^c	oxylene/CHCl $_3$ (7:1) d	r.t.	24	N.R.
6	2c	1:3		NaOAc (2.0)	PhCl	120 °C	12	N.P.
7	2d	1:1.5	DABCO (0.2)		DMF	r.t.	24	38
8	2d	1:3		NaOAc (2.0)	PhCl	120 ºC	12	9

^aUnless noted, the reaction was carried out with **1a** (0.1 mmol), **2** (x mmol), catalyst (y mol %), base (2.0 equiv) in 2 mL of solvent under N₂. ^bIsolated yields. ^c1ml of aqueous solution. ^d1ml of solvents. ^eN.P. = no product. ^fN.R. = no reaction.

9.0

-3.28

0.0

3j

9

140.52 138.27 132.83 132.81 132.11 128.27 128.27 128.27 125.20 112.60 110.72 86.18 84.88 77.42 77.72 76.78

3k

0.0

3u

2.27 2.27 2.27 2.25 1.53 1.53 0.99 0.98 0.00

3y

175.04 138.99 132.69 132.69 126.86 127.81 126.86 124.84 123.50 124.84 123.50 12

