Transition-Metal-Free Alkynylation of 2-Oxindoles through Radical-Radical Coupling

Hong-Yan Huang, ${ }^{\dagger, \ddagger}$ Liang Cheng ${ }^{\dagger, \ddagger, *}$ Jie-Jie Liu,,$+ \neq$ Dong Wang, ${ }^{\dagger}$ Li Liu,,+,,* Chao-Jun Li§,*
†Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognitionand Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China¥University of Chinese Academy of Sciences, Beijing 100049, China
§Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
Table of Contents Pages
1 General information S2
2 Reations of 2-oxindole with other kinds of alkynylation reagents S3
$3{ }^{1} \mathrm{H}$ and 13 C NMR spectra of compounds $\mathbf{3 a - 3 z}$ S4-S29
$4{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and 2D NMR spectra of compound 7 S30-S31
$5{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 0}$ S32
$6{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and 2D NMR spectra of compound 11 S33-S34
$7{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and 2D NMR spectra of compound 12 S35-S36

General Information

All chemicals were obtained from commercial sources and were used as received unless otherwise noted. TLC analysis was performed on pre-coated, glass-backed silica gel plates and visualized with UV light. Column chromatography was performed on silica gel (200-300 mesh) using ethyl acetate (EA)/petroleum ether (PE). ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and 2D-NMR Spectra were obtained on a Bruker $300 \mathrm{MHz}, 400 \mathrm{MHz}$ or 500 MHz NMR spectrometer in the deuterated solvents indicated. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard. The following abbreviations were used to designate chemical shift multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{h}=$ heptet, $\mathrm{m}=$ multiplet. All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or broad (br). Melting points were measured on Beijing Tech X-4 apparatus without correction. IR spectra were recorded on a Nicolet 6700 FT-IR spectrometer. HRMS were obtained using electrospray ionization (ESI)-Orbitrap.

Table S1 Reations of 2-oxindole with other kinds of alkynylation reagents ${ }^{a}$

	 1 a		$\begin{aligned} & +\mathbf{x} \longrightarrow \text { Cat, base } \\ & \begin{array}{l} \text { 2b-d } \\ \text { 2b: } \mathbf{X}=\mathbf{C l} \\ \mathbf{2 c}: \mathbf{X}=\mathrm{Br} \end{array} \end{aligned}$			 3a		
Entry	2	1a:2	Cat.	base	solvent	T/ ${ }^{\circ} \mathrm{C}$	t/h	Yield of $\mathbf{3 a} / \%^{b}$
1	2b	1:1.5	$\begin{gathered} \mathrm{Sc}(\mathrm{OTf})_{3} \\ (0.2) \end{gathered}$	$\begin{gathered} \mathrm{Na}_{2} \mathrm{CO}_{3} \\ (2.0) \end{gathered}$	DCM	r.t.	24	N.R.e
2	2b	1:1.5	$\begin{gathered} \mathrm{n}-\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{I}^{-} \\ (0.2) \end{gathered}$	$\begin{gathered} \mathrm{KF} \\ (33 \% \mathrm{w})^{c} \end{gathered}$	$\begin{gathered} \text { oxylene } / \mathrm{CHCl}_{3} \\ (7: 1)^{d} \end{gathered}$	r.t.	12	N.R.
3	2b	1:3	--	NaOAc (2.0)	PhCl	$120{ }^{\circ} \mathrm{C}$	24	N.P. ${ }^{f}$
4	2c	1:1.5	$\begin{gathered} \mathrm{Sc}(\mathrm{OTf})_{3} \\ (0.2) \end{gathered}$	$\begin{gathered} \mathrm{Na}_{2} \mathrm{CO}_{3} \\ (2.0) \end{gathered}$	DCM	r.t.	12	N.R.
5	2c	1:1.5	$\begin{gathered} \mathrm{n}-\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{I}^{-} \\ (0.2) \end{gathered}$	KF (33\%w) ${ }^{\text {c }}$	$\begin{gathered} \text { oxylene } / \mathrm{CHCl}_{3} \\ (7: 1)^{d} \end{gathered}$	r.t.	24	N.R.
6	2c	1:3	--	NaOAc (2.0)	PhCl	$120{ }^{\circ} \mathrm{C}$	12	N.P.
7	2d	1:1.5	$\begin{gathered} \text { DABCO } \\ (0.2) \end{gathered}$	--	DMF	r.t.	24	38
8	2d	1:3	--	NaOAc (2.0)	PhCl	$120{ }^{\circ} \mathrm{C}$	12	9

${ }^{a}$ Unless noted, the reaction was carried out with 1a (0.1 mmol), 2 (x mmol), catalyst ($\mathrm{y} \mathrm{mol} \%$), base (2.0 equiv) in 2 mL of solvent under N_{2}. ${ }^{b}$ Isolated yields. ${ }^{c} 1 \mathrm{ml}$ of aqueous solution. ${ }^{d} 1 \mathrm{ml}$ of solvents. ${ }^{e}$ N.P. $=$ no product. \AA N.R. $=$ no reaction.

Y

N్ల్ల
$\stackrel{\infty}{\sim}$

$\underset{\mathrm{N}}{\mathrm{N}}$

๗
$\stackrel{\text { Ñ }}{\stackrel{N}{\mathrm{~N}}}$

(

3e

9ી

© © No
N్
$\stackrel{\mathrm{N}}{\mathrm{N}}$

3g

$\begin{array}{llllllllllllllll}170 & 160 & 150 & 140 & 130 & 120 & 110 & \begin{array}{c}100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array} & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

3j
 ofヘNへNNへNNNNNNO

ゅ．m No
饣్ల

N
N
N
in
$\stackrel{M}{4}$
$\stackrel{\circ}{\stackrel{0}{\mathrm{~N}}}$

$\begin{array}{llllllllllllllll}170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & \underset{\mathrm{f} 1(\mathrm{ppm})}{90} 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

31

3m

30

$\stackrel{\sim}{\sim}$
$\stackrel{8}{i}$

M

~~
$\stackrel{\circ}{\sim} \stackrel{0}{\underset{N}{N}}$

3p

N゙ণ

$\stackrel{\text { º }}{\text { º }}$

N
$\underset{\underset{\sim}{i}}{\underset{\sim}{\underset{N}{E}}}$

3q

N $\stackrel{-}{\mathbf{i}}$ $\stackrel{\text { T }}{\underset{1}{1}}$
$\stackrel{8}{\circ}$

3r

3s

గ్గ్రి
$\stackrel{\infty}{\circ} \stackrel{0}{\dot{\sim}} \underset{\sim}{i}$

| 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

3v

O.

3x

ભ

3y

3z

Nั

 No

ल゙
$\stackrel{\text { N }}{\stackrel{\infty}{\circ}} \stackrel{0}{\stackrel{+}{\sim}}$

$\begin{array}{lllllllll}170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 \\ \mathrm{f1}(\mathrm{ppm})\end{array}$

구웅
๗ّ
$\stackrel{\circ}{\circ} \stackrel{\infty}{\circ}$

\circ
0
0
0

©
$\stackrel{\circ}{\dot{m}}$
$\stackrel{\circ}{\stackrel{\circ}{\circ}}$

$-\infty$
∞
∞
$\underset{\sim}{\infty}$
$\underset{\sim}{\infty}$
No

