Supporting Information for

Asymmetric Oxidation of a Dihydrothienopyrimidine

Sonia Rodríguez, * Nizar Haddad, Rogelio Frutos, Nelu Grinberg, Chris H. Senanayake

Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc. 900 Ridgebury Rd., Ridgefield, CT 06877 (US)

E-mail: sonia.rodriguez@boehringer-ingelheim.com

*Corresponding Author

Table of Contents

- 1. General
- 2. General experimental procedure for DOE studies
- 3. Data for DOE studies
- 4. NMR Spectra of (R)-4-chloro-2-(4-(4-chlorophenyl)piperazin-1-yl)-6,7-dihydrothieno[3,2-d]pyrimidine 5-oxide, 2

1. General

Reagents were used as purchased without further purification. NMR spectra were recorded on a Bruker 400 MHz spectrometer. The chemical shift data are reported as δ (ppm) downfield from tetramethylsilane which is used as an internal standard; coupling constants (J) are reported in Hertz, and refer to apparent peak multiplicities. HPLC analysis was performed on an Agilent 1100 series using an Agilent XDB-C18 column; flow rate 2 mL/min; with a UV detection at 215 nm; mobile phase from 48% to 97% acetonitrile in water (0.1% HClO₄) in 1.3 min, then hold to 97% for 1.2 min. Enantioselectivities were measured on an Agilent 1100 series using a chiralpak AD-H column; flow rate 1 mL/min; with a UV detection at 220 nm; mobile phase 20% isopropanol in heptane for 10 min.

2. General experimental procedure for DOE studies

Titanium(IV) isopropoxide (5-20 mol%) was added to (*S*,*S*)-hydrobenzoin (10-40 mol%) in toluene at 23 °C followed by water (0-1.5 equiv). After stirring for certain time (0.5-2 h), the sulfide **1** (1.0 equiv) was added, and the reaction mixture was cooled to 0°C over 30 min before addition of *tert*-butyl hydroperoxide (2 equiv). After 24 h, the reaction mixture was quenched with 5% Na₂SO₃ (5 mL) and extracted with dichloromethane (10 mL). The combined organic layers were washed with water (5 mL), dried (MgSO₄) and concentrated. The crude reactions were analyzed by HPC and NMR.

Entry	Catalyst preparation	Catalyst loading	Water	Conversion	ee
	time (h)	(mol%)	(equiv)	(%)	(%)
1	0.5	5	0	97	88
2	2	5	0	90	94
3	0.5	20	0	88	95
4	2	20	0	93	94
5	0.5	5	1.5	89	90
6	2	5	1.5	90	92
7	0.5	20	1.5	95	97
8	2	20	1.5	90	64
9	1.25	12.5	0.78	92	82
10	0.5	5	1	88	93
11	0.5	5	1	95	89
12	0.5	5	1	92	90
13	0.5	5	1	90	91

3. NMR Spectra of (R)-4-chloro-2-(4-(4-chlorophenyl)piperazin-1-yl)-6,7-dihydrothieno[3,2-d]pyrimidine 5-oxide, 2

