SDA-free hydrothermal synthesis of high-silica ultra-nanosized zeolite Y

Maeva Borel, ^{a,b} Mathias Dodin, ^a T. Jean Daou, ^{b,*} Nicolas Bats, ^a Bogdan Harbuzaru, ^a and Joël Patarin ^b

^bUniversité de Strasbourg (UNISTRA), Université de Haute Alsace (UHA), CNRS, Axe Matériaux à Porosité Contrôlée (MPC), Institut de Science des Matériaux de Mulhouse (IS2M) UMR 7361, 68093 Mulhouse, France

Table S1. Products obtained from initial molar gel compositions 31 SiO₂: 1 Al₂O₃: 17 Na₂O: β H₂O (β varying between 360 and 615) with an aging time of 20 days at room temperature and a heating step at 60 °C during 16 hours.

Sample	β	X-ray diffraction Zeolite type $a_0^a(\mathring{A})$ Si/Al ^b			V _{micro}	V _{tot pore} d	S _{BET} ^e	Average particle
		Zeolite type	a ₀ (A)	SI/AI	(cm^3/g)	(cm ³ /g)	(m^2/g)	size ^f (nm)
P	360	Zeolite Y	24.7252(15)	2.12	0.21	0.80	617	114±14
Q	485	Zeolite Y	24.7292(19)	2.10	0.31	1.16	859	171±25
R	550	Zeolite Y	24.688(3)	2.35	0.04	0.90	199	ND^g
S	615	Zeolite Y	24.692(4)	2.33	0.04	0.95	182	ND

^aIFP Energies nouvelles, BP3, 69360 Solaize, France

^{*}E-mail: jean.daou@uha.fr Phone: +33 389 33 67 39. Fax: +33 389 33 68 85.

^aa₀: Lattice parameter

^bSi/Al ratio obtained by XRD and using the Breck and Flanigen equation: ((192*0.00868)/(a₀-24.191)) - 1

^cV_{micro}: Micropore volume

^dV_{tot pore}: Total pore volume

 $^{e}S_{BET}$: Specific surface area

^fAverage particle size determined from transmission electron microscopy images

^gND: Not determined

XDR patterns

Figure S1. XRD patterns for samples obtained from the initial molar gel composition 15 SiO_2 : 1 Al_2O_3 : 17 Na_2O : 360 H_2O with an aging time of 7 (sample A), 10 (sample B) and 13 (sample C) days and with no heating step.

Figure S2. XRD patterns for samples obtained from the initial molar gel composition 15 SiO₂: 1 Al₂O₃: 17 Na₂O: 360 H₂O with an aging time of 7 (sample D), 10 (sample E) and 13 (sample F) days and with a heating step at 60 °C during 16 hours.

Figure S3. XRD patterns for samples obtained from final molar gel compositions α SiO₂: 1 Al₂O₃: 17 Na₂O: 360 H₂O (α = 21 (sample G), 26 (sample H), 31 (sample I), 36 (sample J), 41 (sample K)) with an aging time of 13 days and a heating step at 60 °C during 16 hours.

Figure S4. XRD patterns for samples obtained from initial molar gel compositions 31 SiO₂: 1 Al₂O₃: 17 Na₂O: β H₂O (β = 360 (sample P), 485 (sample Q), 550 (sample R), 615 (sample S)) with an aging time of 20 days and a heating step at 60 °C during 16 hours.

Nitrogen adsorption curves

Figure S5. Nitrogen adsorption-desorption isotherms at -196 °C for samples obtained from the initial molar gel composition 15 SiO₂: 1 Al₂O₃: 17 Na₂O: 360 H₂O with an aging time of 10 (sample B) and 13 (sample C) days and with no heating step.

Figure S6. Nitrogen adsorption-desorption isotherms at -196 °C for samples obtained from the initial molar gel composition $15 \, \text{SiO}_2$: $1 \, \text{Al}_2\text{O}_3$: $17 \, \text{Na}_2\text{O}$: $360 \, \text{H}_2\text{O}$ with an aging time of 7 (sample D), 10 (sample E) and 13 (sample F) days and with a heating step at $60 \, ^{\circ}\text{C}$ during 16 hours.

Figure S7. Nitrogen adsorption-desorption isotherms at -196 °C for samples obtained from final molar gel compositions $\alpha \, \text{SiO}_2$: 1 $\, \text{Al}_2\text{O}_3$: 17 $\, \text{Na}_2\text{O}$: 360 $\, \text{H}_2\text{O}$ (α = 21 (sample G), 26 (sample H), 31 (sample I), 36 (sample J), 41 (sample K)) with an aging time of 13 days and a heating step at 60 °C during 16 hours.

Figure S8. Nitrogen adsorption-desorption isotherms at -196 °C for samples obtained from initial molar gel compositions 31 SiO_2 : $1 \text{ Al}_2\text{O}_3$: $17 \text{ Na}_2\text{O}$: $\beta \text{ H}_2\text{O}$ (β = 360 (sample P), 485 (sample Q), 550 (sample R), 615 (sample S)) with an aging time of 20 days and a heating step at 60 °C during 16 hours.

Si/Al framework ratio and silica content in the gel

Figure S9. Evolution of the Si/Al framework ratio for samples obtained from final molar gel compositions α SiO₂: 1 Al₂O₃: 17 Na₂O: 360 H₂O (α = 21 (sample G), 26 (sample H), 31 (sample I), 36 (sample J), 41 (sample K)) with an aging time of 13 days and a heating step at 60 °C during 16 hours.

Micropore volume and silica content in the gel

Figure S10. Evolution of the micropore volume for samples obtained from final molar gel compositions $\alpha \, \text{SiO}_2$: $1 \, \text{Al}_2\text{O}_3$: $17 \, \text{Na}_2\text{O}$: $360 \, \text{H}_2\text{O}$ ($\alpha = 21$ (sample G), 26 (sample H), 31 (sample I), 36 (sample J), 41 (sample K)) with an aging time of 13 days and a heating step at 60 °C during 16 hours.

NMR spectra

Figure S11. ²⁹Si solid-state MAS NMR spectrum for the sample obtained from the final molar gel composition $36 \, \text{SiO}_2$: $1 \, \text{Al}_2 \text{O}_3$: $17 \, \text{Na}_2 \text{O}$: $360 \, \text{H}_2 \text{O}$ with an aging time of 13 days and a heating step at 70 °C (sample N) during 16 hours.

Figure S12. ²⁷Al solid-state MAS NMR spectrum for the sample obtained from the final molar gel composition $36 \, \text{SiO}_2$: $1 \, \text{Al}_2\text{O}_3$: $17 \, \text{Na}_2\text{O}$: $360 \, \text{H}_2\text{O}$ with an aging time of 13 days and a heating step at 70 °C (sample N) during 16 hours. The weak peaks indicated by an asterisk are spinning side bands.

Size distributions and transmission electron microscopy images

Figure S13. Size distributions (left) and transmission electron microscopy images (right) for samples obtained from initial molar gel compositions 31 SiO_2 : $1 \text{ Al}_2\text{O}_3$: $17 \text{ Na}_2\text{O}$: $\beta \text{ H}_2\text{O}$ ($\beta = 360$ (sample P), 485 (sample Q)) with an aging time of 20 days and a heating step at 60 °C during 16 hours.