SDA-free hydrothermal synthesis of high-silica ultra-nanosized zeolite Y Maeva Borel, ^{a,b} Mathias Dodin, ^a T. Jean Daou, ^{b,*} Nicolas Bats, ^a Bogdan Harbuzaru, ^a and Joël Patarin ^b ^bUniversité de Strasbourg (UNISTRA), Université de Haute Alsace (UHA), CNRS, Axe Matériaux à Porosité Contrôlée (MPC), Institut de Science des Matériaux de Mulhouse (IS2M) UMR 7361, 68093 Mulhouse, France **Table S1.** Products obtained from initial molar gel compositions 31 SiO₂: 1 Al₂O₃: 17 Na₂O: β H₂O (β varying between 360 and 615) with an aging time of 20 days at room temperature and a heating step at 60 °C during 16 hours. | Sample | β | X-ray diffraction
Zeolite type $a_0^a(\mathring{A})$ Si/Al ^b | | | V _{micro} | V _{tot pore} d | S _{BET} ^e | Average particle | |--------|-----|--|--------------------|-------|--------------------|-------------------------|-------------------------------|------------------------| | | | Zeolite type | a ₀ (A) | SI/AI | (cm^3/g) | (cm ³ /g) | (m^2/g) | size ^f (nm) | | P | 360 | Zeolite Y | 24.7252(15) | 2.12 | 0.21 | 0.80 | 617 | 114±14 | | Q | 485 | Zeolite Y | 24.7292(19) | 2.10 | 0.31 | 1.16 | 859 | 171±25 | | R | 550 | Zeolite Y | 24.688(3) | 2.35 | 0.04 | 0.90 | 199 | ND^g | | S | 615 | Zeolite Y | 24.692(4) | 2.33 | 0.04 | 0.95 | 182 | ND | ^aIFP Energies nouvelles, BP3, 69360 Solaize, France ^{*}E-mail: jean.daou@uha.fr Phone: +33 389 33 67 39. Fax: +33 389 33 68 85. ^aa₀: Lattice parameter ^bSi/Al ratio obtained by XRD and using the Breck and Flanigen equation: ((192*0.00868)/(a₀-24.191)) - 1 ^cV_{micro}: Micropore volume ^dV_{tot pore}: Total pore volume $^{e}S_{BET}$: Specific surface area ^fAverage particle size determined from transmission electron microscopy images ^gND: Not determined ## **XDR** patterns **Figure S1.** XRD patterns for samples obtained from the initial molar gel composition 15 SiO_2 : 1 Al_2O_3 : 17 Na_2O : 360 H_2O with an aging time of 7 (sample A), 10 (sample B) and 13 (sample C) days and with no heating step. **Figure S2.** XRD patterns for samples obtained from the initial molar gel composition 15 SiO₂: 1 Al₂O₃: 17 Na₂O: 360 H₂O with an aging time of 7 (sample D), 10 (sample E) and 13 (sample F) days and with a heating step at 60 °C during 16 hours. **Figure S3.** XRD patterns for samples obtained from final molar gel compositions α SiO₂: 1 Al₂O₃: 17 Na₂O: 360 H₂O (α = 21 (sample G), 26 (sample H), 31 (sample I), 36 (sample J), 41 (sample K)) with an aging time of 13 days and a heating step at 60 °C during 16 hours. **Figure S4.** XRD patterns for samples obtained from initial molar gel compositions 31 SiO₂: 1 Al₂O₃: 17 Na₂O: β H₂O (β = 360 (sample P), 485 (sample Q), 550 (sample R), 615 (sample S)) with an aging time of 20 days and a heating step at 60 °C during 16 hours. # Nitrogen adsorption curves **Figure S5.** Nitrogen adsorption-desorption isotherms at -196 °C for samples obtained from the initial molar gel composition 15 SiO₂: 1 Al₂O₃: 17 Na₂O: 360 H₂O with an aging time of 10 (sample B) and 13 (sample C) days and with no heating step. **Figure S6.** Nitrogen adsorption-desorption isotherms at -196 °C for samples obtained from the initial molar gel composition $15 \, \text{SiO}_2$: $1 \, \text{Al}_2\text{O}_3$: $17 \, \text{Na}_2\text{O}$: $360 \, \text{H}_2\text{O}$ with an aging time of 7 (sample D), 10 (sample E) and 13 (sample F) days and with a heating step at $60 \, ^{\circ}\text{C}$ during 16 hours. **Figure S7.** Nitrogen adsorption-desorption isotherms at -196 °C for samples obtained from final molar gel compositions $\alpha \, \text{SiO}_2$: 1 $\, \text{Al}_2\text{O}_3$: 17 $\, \text{Na}_2\text{O}$: 360 $\, \text{H}_2\text{O}$ (α = 21 (sample G), 26 (sample H), 31 (sample I), 36 (sample J), 41 (sample K)) with an aging time of 13 days and a heating step at 60 °C during 16 hours. **Figure S8.** Nitrogen adsorption-desorption isotherms at -196 °C for samples obtained from initial molar gel compositions 31 SiO_2 : $1 \text{ Al}_2\text{O}_3$: $17 \text{ Na}_2\text{O}$: $\beta \text{ H}_2\text{O}$ (β = 360 (sample P), 485 (sample Q), 550 (sample R), 615 (sample S)) with an aging time of 20 days and a heating step at 60 °C during 16 hours. Si/Al framework ratio and silica content in the gel **Figure S9.** Evolution of the Si/Al framework ratio for samples obtained from final molar gel compositions α SiO₂: 1 Al₂O₃: 17 Na₂O: 360 H₂O (α = 21 (sample G), 26 (sample H), 31 (sample I), 36 (sample J), 41 (sample K)) with an aging time of 13 days and a heating step at 60 °C during 16 hours. Micropore volume and silica content in the gel **Figure S10.** Evolution of the micropore volume for samples obtained from final molar gel compositions $\alpha \, \text{SiO}_2$: $1 \, \text{Al}_2\text{O}_3$: $17 \, \text{Na}_2\text{O}$: $360 \, \text{H}_2\text{O}$ ($\alpha = 21$ (sample G), 26 (sample H), 31 (sample I), 36 (sample J), 41 (sample K)) with an aging time of 13 days and a heating step at 60 °C during 16 hours. ## NMR spectra **Figure S11.** ²⁹Si solid-state MAS NMR spectrum for the sample obtained from the final molar gel composition $36 \, \text{SiO}_2$: $1 \, \text{Al}_2 \text{O}_3$: $17 \, \text{Na}_2 \text{O}$: $360 \, \text{H}_2 \text{O}$ with an aging time of 13 days and a heating step at 70 °C (sample N) during 16 hours. **Figure S12.** ²⁷Al solid-state MAS NMR spectrum for the sample obtained from the final molar gel composition $36 \, \text{SiO}_2$: $1 \, \text{Al}_2\text{O}_3$: $17 \, \text{Na}_2\text{O}$: $360 \, \text{H}_2\text{O}$ with an aging time of 13 days and a heating step at 70 °C (sample N) during 16 hours. The weak peaks indicated by an asterisk are spinning side bands. #### Size distributions and transmission electron microscopy images **Figure S13.** Size distributions (left) and transmission electron microscopy images (right) for samples obtained from initial molar gel compositions 31 SiO_2 : $1 \text{ Al}_2\text{O}_3$: $17 \text{ Na}_2\text{O}$: $\beta \text{ H}_2\text{O}$ ($\beta = 360$ (sample P), 485 (sample Q)) with an aging time of 20 days and a heating step at 60 °C during 16 hours.