Supporting Information

Bactericidal Effects of Natural Nanotopography of Dragonfly Wing on *Escherichia coli*

Chaturanga D. Bandara^{† ‡}, Sanjleena Singh[§], Isaac O. Afara[†], Annalena Wolff[§], Tuquabo Tesfamichael^{*§}, Kostya (Ken) Ostrikov^{‡§}, Adekunle Oloyede[†]

[†]School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia

[‡]Institute for Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, Queensland 4059, Australia

[§]Institute for Future Environments, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia

^TResearch and Innovation Centre, Elizade University, 1 Wuraola Ade.Ojo Avenue, P.M.B 002, Ilara-Mokin, Ondo State, Nigeria

Email: t.tesfamichael@qut.edu.au

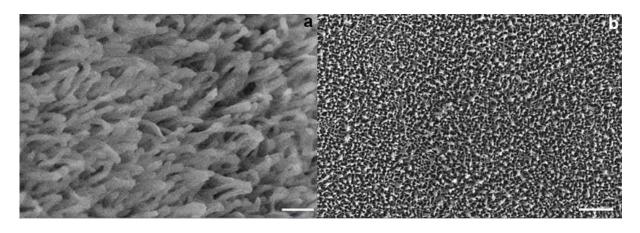


Figure S1: SEM images of dragonfly wing. (a) 1 nm thick Cr coated dragonfly wing showing nanopillars are at single height. Low depth of focus in SEM cause blurring of nanopillars away from plane of focus. Scale bar 200 nm (b) 10 nm gold coated dragonfly wing show nanopillar topography Scale bar 1 μm

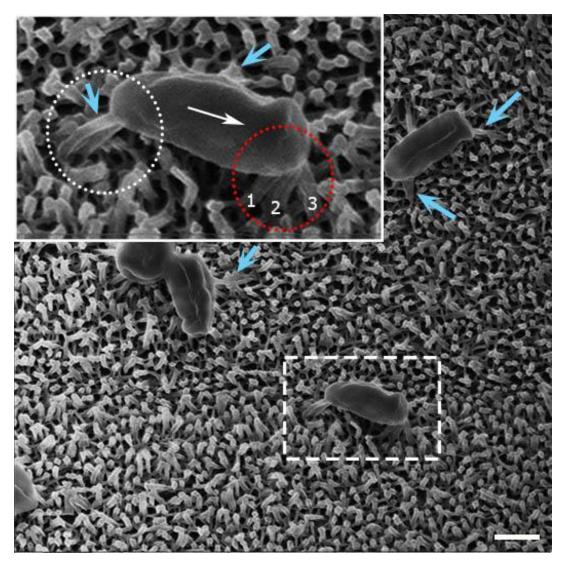


Figure S2: HIM micrograph show *Escherichia coli* bacterium attempts to move on nanopillars of dragonfly wing. Secreted EPS by bacteria during adhesion is pointed by blue arrows. At this larger field of view (FOV), these EPS secretions are not dominantly seen. Adhesion of bacteria to nanopillars has caused bending nanopillars to the direction of movement. Inset shows magnified area. Bent nanopillars in front are circled in red. Front side nanopillars are pushed and back side nanopillars with EPS are stretched (white circle). White arrow shows the direction which bacterium attempt to move. Other bacteria show the secreted EPS to attach on to the nanopillars. Scale bar 500 nm

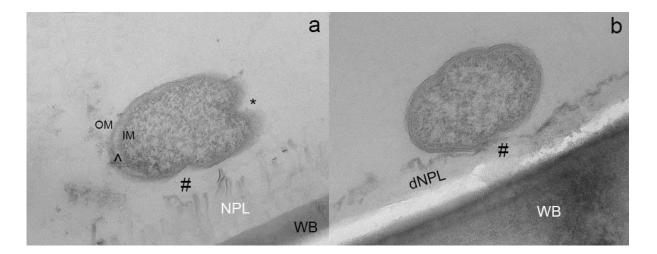


Figure S3: TEM tomograph compare interfaces of bacteria on nanopillar topography and a damaged area (no nanopillars) of dragonfly wing. (a) *E. coli* on nanopillar layer (NPL) and b) *E. coli* on damaged nanopillars (dNPL) of dragonfly wing. When nanopillars are present, a gap between membrane and nanopillars (#) at interface, separation of inner and outer membranes ($^$) and membrane deformations (*) are evident. When nanopillars are damaged, a gap (#), membrane deformations or separation of bacterial membranes are not present. This indicates bacterium experience more stress on a nanopillar surface, compared to a surface without nanopillars. Therefore more EPS is secreted on a nanopillar surface (a) compared to a flat surface (b). Therefore gap is greater where nanopillars are present.

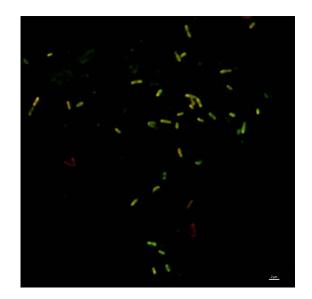


Figure S4: Confocal micrograph of live/dead staining of *Escherichia coli* on dragonfly wing. All cells are stained in red or yellow color. This confirms all cells are dead and their membranes are ruptured. Scale bar 2 µm

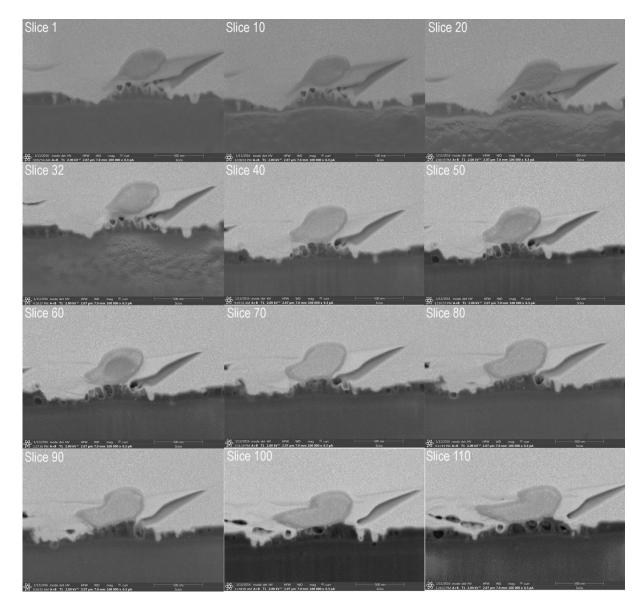
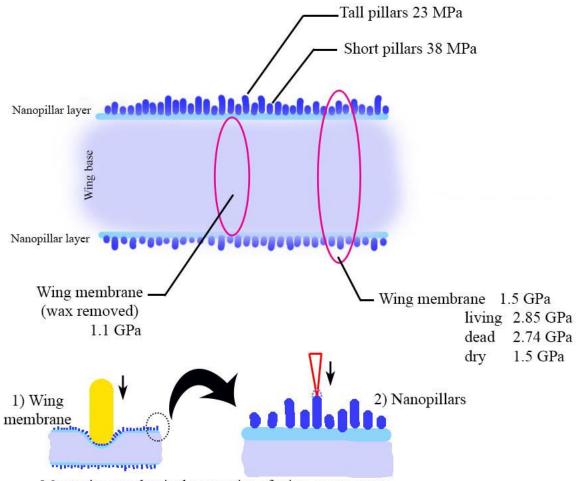



Figure S5: FIB/SEM data showing interface. Data shown at every 10 slice. These data were used to reconstruct 3D interface in Figure 6.

Measuring mechanical properties of wing components

Figure S6: Comparison of mechanical properties reported in different wing components. 1) Previous studies reported the mechanical properties of the wing membrane. This study reports the mechanical properties of the nanopillars on dragonfly wing.

Advantages and limitations of AFM and TEM approach for measuring the height of high aspect ratio surface features.

AFM is one of the most commonly used methods to characterize the surface topography in general. However, when AFM is used to characterize high-aspect ratio topography as found in our sample, it requires a special high-aspect ratio cantilever. In AFM measurements, surface is characterized from top to the bottom. This setup requires the movement of cantilever from the top to the bottom, otherwise it will report the height as the depth which cantilever can travel. In a situation where surface features are densely packed, this characterization is even challenging and could lead to disturb the movement of cantilever tip to the bottom, reporting false measurements in the height measurements. Therefore the optimum measurement requires a sharp tip. This is illustrated in the Figure S7.

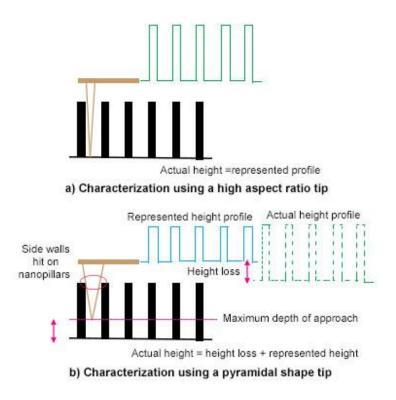


Figure S7: Limitation of AFM characterization when characterizing a high aspect ratio surface with pyramidal tip.

In this experiment, we use AFM to measure and map the mechanical properties of individual nanopillars while characterizing the topography, so the topography and its mechanical properties can be related to each other. Therefore, we have used a cantilever which can measure the mechanical properties while resolving the surface topography. As the triangular shaped cantilever tip used here is not designed for characterizing high-aspect ratio surfaces, the tip may not travel the entire height scale of nanopillars, but stops in midway as the expanding side walls of AFM tip can approach on to adjacent nanopillars while descending through the gap of two nanopillars. With the PeakForce tapping AFM, where Z movement is governed by the adhesion force at tip, this type of interference from adjacent pillars can influence the advancement of cantilever tip to

the bottom of nanopillars. However, this interference does not have an effect on the mechanical property measurement of the nanopillars.

In TEM, it images the cross-section, hence such limitation in AFM is not possible. There is a potential limitation associated in TEM measurements as the samples do not cut through the center of each pillar during sample preparation. As electrons are transmitted through a 100 nm thick lamella, it is not required to cut through the middle of a nanopillar. Secondly, the prepared TEM lamellas were 100 nm thick while the nanopillars are mostly about 40 nm in diameter. For this reason, there is a high chance of the entire nanopillar to be within a TEM cross-section rather than chance of a tiny slice of nanopillar trapped in the TEM lamella during the measurement. Therefore, use of TEM is associated with less errors despite the position of cross-section compared to AFM measurements to determine the height of nanopillars.

Referenc	Substrate	Sha	Uniformi	Dimensions	Cells tested	Killing efficiency	Main findings
e		ре	ty				
Ivanova	Cicada wing	pilla	regular	d=100 nm at	Pseudomonas	not tested	Take 220 s to occur
et al. ¹		r		base, 60 nm at	aeruginosa		membrane damage
(2012)				cap $h=200 \text{ nm},$	(ATCC 9027)		Bactericidal activity is
				λ= 170 nm			physico-mechanical
							effect.
Hasan et	Cicada wing	pilla	regular		Bacillus subtilis	resistant	Kill Gram-negative
al. ² (2012)		r			Staphylococcus aureus	resistant	cells only, Gram-
					Planococcus maritimus	resistant	positive cells are
					Branhamella	efficiency not given	resistant
					catarrhalis	efficiency not given	
					Escherichia coli	efficiency not given	

Table S1: Natural nanotopographies and their bactericidal efficiencies reported

				Pseudomonas	$6.1\pm1.5\times10^6$ cells in	
				fluorescens	30 min	
				Pseudomonas		
				aeruginosa		
Ivanova	Dragonfly	pilla random	d<90 nm,	Pseudomonas	$3.0 \ge 10^5$	Nanopillars of
et al. ³	wing	r	many below	aeruginosa	4.6 x 10 ⁵	dragonfly wings are
(2013)	D.		30 nm	Staphylococus aureus	1.4 x 10 ⁵	highly bactericidal
	bipunctata		h=240 nm,	Bacillus subtilis	~1.0 x 10 ⁵	against Gram-negative,
			λ=200-	spores		Gram-positive bacteria
			1800 nm			and endospores
Kelleher	Cicada wing	Pilla	d = 156 nm, h	Pseudomonas	0.222	Pitch and diameter of
et al. ⁴	1	r	= 241 nm	fluorescens		pillars effect bactericidal
(2015)			λ=165 nm		0.123	property
	Cicada wing	Pilla	d = 159 nm, h			
	2	r	= 182nm		0.0067	

		λ=187 nm	(Dead:live ratio)	
	Cicada wing pilla	d = 207 nm, h		
	3 r	= 182 nm		
		λ=251 nm		
Mainwar	Dragonfly pilla random	d = 80 nm, h = Pseudomon	as H. papuensis and H.	Changes to
ing et al. ⁵	wing of <i>H</i> . r	200-300 nm, $\lambda = aeruginosa$	<i>papuensis</i> <10x10 ⁴	topography result in
(2016)	papuensis	180 nm Staphylocod	cus aureus	substantial changes in
	Dragonfly pilla	Bacillus sul	otilis D. bipunctata 13-	bactericidal activity and
	wing of <i>H</i> . r		$47x10^{4}$	their behaviour may also
	papuensis		cells cm ⁻² min ⁻¹ over	influence the
	Dragonfly pilla		3 h	bactericidal efficiency
	wing of <i>D</i> . r			
	bipunctata			

Referenc	Substrate	Shape(s)	Regularit	Dimensions	Cells tested	Killing	Main findings
e			У			efficiency	
Ivanova	SiO ₂	pillar	random	d<90 nm, many	Pseudomonas	4.3 x	Dragonfly wing and black Si
et al. ³				d=20-80 nm	aeruginosa	10 ⁵	surface nanoarchitecture is
(2013)				bimodel,	Staphylococus		complex compared to cicada wing.
				h= 500nm,	aureus	4.5 x	Both surfaces have independent
				λ=200-1800 nm	Bacillus subtilis	10 ⁵	chemical compositions and are
					Spores	1.4 x	highly bactericidal against Gram-
						10 ⁵	negative, Gram-positive bacteria
						~0.7 x	and endospores.
						10 ⁵	
						cells	

Table S2: Fabricated nanotopographical surfaces and their bactericidal efficiencies reported

						$cm^{-2} min^{-1}$ ¹ over 3 h	
Dickson	PMMA	pillar	regular		Escherichia coli	16-	Optimal nanopillar spacing to
et al. ⁶						141%	kill bacteria is 130-380 nm
(2015)							
Yee et	PMMA	Cicada	regular	d = 60nm,	Escherichia coli	~22%	Nanostructures were created on
al. ⁷ (2015)		wing		h = 200 nm			PMMA using nanoimprint
		replica		λ=170 nm			lithography.
		Flat				~7%	Imprinted polymer
		surface		N/A			nanostructures can prevent
							bacteria adhesion without
		pillar				~12%	chemical modifications to the
				d = 267nm, h =			polymer surface

	300 nm λ=692 nm		
pillar		~10%	
	d = 215nm, h =		Dead bacterial cells are longer
	300 nm λ=595 nm		than live cells
pillar		~17%	
	d = 190nm, h =		
	350 nm λ=320 nm		
Square	e	Not	
pillar	d = 442nm, h =	given	
	300 nm λ=848 nm		
Square	e		
pillar	d = 139nm, h =	Not	
	300 nm λ=278 nm	given	
pillar Square	$350 \text{ nm } \lambda = 320 \text{ nm}$ e d = 442 nm, h = $300 \text{ nm } \lambda = 848 \text{ nm}$ e d = 139 nm, h =	given Not	

Bhadra	a	Titanium	nano-	random		Pseudomonas	7	50%	Hydrothermally etched titanium
et	al. ⁸		wire array			aeruginosa			surfaces show bactericidal activity
(2015)						Staphylococu	\$	20%	and survival of primary human
						aureus			fibroblasts on surface
SjÖstr	Ö	Ti alloy	spikes	random	d=20 nm, h and	Escherichia	coli	40%	By annealing the Ti alloy
m et a	al. ⁹				λ not given	(K12)		reduction	surfaces, it is possible to grow
(2016)								of	vertically aligned nanospikes with
								viability	bactericidal properties
Fisher	et	Diamond	cone	Uniform					Random array show enhanced
al. ¹⁰ (201	16)			and random					bactericidal ability over uniform
									and highly dense nanocone surface

References

1. Ivanova, E. P.; Hasan, J.; Webb, H. K.; Truong, V. K.; Watson, G. S.; Watson, J. A.; Baulin, V. A.; Pogodin, S.; Wang, J. Y.; Tobin, M. J.; Löbbe, C.; Crawford, R. J., Natural Bactericidal Surfaces: Mechanical Rupture of Pseudomonas Aeruginosa Cells by Cicada Wings. *Small* **2012**, *8*, 2489-2494.

2. Hasan, J.; Webb, H. K.; Truong, V. K.; Pogodin, S.; Baulin, V. A.; Watson, G. S.; Watson, J. A.; Crawford, R. J.; Ivanova, E. P., Selective Bactericidal Activity of Nanopatterned Superhydrophobic Cicada Psaltoda Claripennis Wing Surfaces. *Appl. Microbiol. Biotechnol.* **2012**, *97*, 1-6.

3. Ivanova, E. P.; Hasan, J.; Webb, H. K.; Gervinskas, G.; Juodkazis, S.; Truong, V. K.; Wu, A. H.; Lamb, R. N.; Baulin, V. A.; Watson, G. S.; Watson, J. A.; Mainwaring, D. E.; Crawford, R. J., Bactericidal Activity of Black Silicon. *Nat Commun* **2013**, *4*, 2838.

4. Kelleher, S. M.; Habimana, O.; Lawler, J.; O' Reilly, B.; Daniels, S.; Casey, E.; Cowley, A., Cicada Wing Surface Topography: An Investigation into the Bactericidal Properties of Nanostructural Features. *ACS Applied Materials & Interfaces* **2015**.

5. Mainwaring, D. E.; Nguyen, S. H.; Webb, H. K.; Jakubov, T.; Tobin, M.; Lamb, R.; Wu, A. H.-F.; Marchant, R.; Crawford, R. J.; Ivanova, E. P., The Nature of Inherent Bactericidal Activity: Insights from the Nanotopology of Three Species of Dragonfly. *Nanoscale* **2016**, *6*, 6527-6534.

6. Dickson, M. N.; Liang, E. I.; Rodriguez, L. A.; Vollereaux, N.; Yee, A. F., Nanopatterned Polymer Surfaces with Bactericidal Properties. *Biointerphases* **2015**, *10*, 021010.

7. Yee, A. F. I., CA, US), Liang, Elena (Irvine, CA, US), Nicole, Ing. (Irvine, CA, US), Gibbs, Markelle (Irvine, CA, US), Dickson, Mary Nora (Irvine, CA, US) Bactericidal Surface Patterns. 2015/10/01, **2015**.

8. Bhadra, C. M.; Khanh Truong, V.; Pham, V. T. H.; Al Kobaisi, M.; Seniutinas, G.; Wang, J. Y.; Juodkazis, S.; Crawford, R. J.; Ivanova, E. P., Antibacterial Titanium Nano-Patterned Arrays Inspired by Dragonfly Wings. *Sci. Rep.* **2015**, *5*, 16817.

9. Sjöström, T.; Nobbs, A. H.; Su, B., Bactericidal nanospike surfaces via thermal oxidation of Ti alloy substrates. *Mater. Lett.* **2016**, *167*, 22-26.

10. Fisher, L. E.; Yang, Y.; Yuen, M.-F.; Zhang, W.; Nobbs, A. H.; Su, B., Bactericidal Activity of Biomimetic Diamond Nanocone Surfaces. *Biointerphases* **2016**, *11*, 011014.