Supporting Information

for

Synthesis of Violaceic Acid and Related Compounds through Aryl Triazene

Shin Ando, James Burrows, and Kazunori Koide*

Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, USA

koide@pitt.edu

Table of Contents

1. General techniques	S1
2. Synthesis	S2
3. Attempts at methoxy formation and mechanistic studies	S10
4. NMR spectra of synthesis	S14
5. NMR spectra of mechanistic investigations	S32

General Techniques

Pyrrolidine, CuBr·Me₂S, Na₂S₂O₃, and KO'Bu were purchased from Acros, and used as received unless otherwise stated. NBS and ascorbic acid were purchased from Alfa-Aesar and used as received unless otherwise stated. EtOH was purchased from Decon labs and used as received unless otherwise stated. NaNO₂ was purchased from EMD Millipore and used as received unless otherwise stated. K₂CO₃, pyridine, I₂, Na₂SO₄, *tert*-BuOH, CH₂Cl₂, EtOAc, and hexanes were purchased from Fisher Chemical and used as received unless otherwise stated. Cu₂O and Cu(NO₃)₂ were purchased from J.T. Baker and used as received unless otherwise stated. 1,4-Diacetyl-pipera-zine-2,5-dione was purchased from Oakwood Chemical and used as received unless otherwise stated. HCl, KOH, TFA, Pd₂(dba)₃, 2-di-*tert*-butylphosphino- 2',4',6'-triisopropylbiphenyl, (MeO)₂SO₂ and TEMPO were purchased from TCI chemical and used as received unless otherwise stated. Solvents under anhydrous conditions, unless otherwise noted. Glasswares were either dried with a heat gun or oven-dried (140 °C) prior to use. Moisture-sensitive reactions were performed under an inert atmosphere using a nitrogen line with standard Schlenk techniques unless otherwise stated. Unless specifically stated, the temperature of a water bath during the evaporation of organic solvents using a rotary evaporator was 40 ± 5 °C. All syringes in this study were dried in an oven at 80 °C and stored in a desiccator over Drierite©.

All reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25-mm Merck silica gel plates (60F-254) using UV light (254 nm) for visualization or with 2.4% phosphomolybdic acid, 1.4% phosphoric acid, and 5% sulfuric acid in water with heat as developing agents. TSI silica gel (230–400 mesh) was used for flash chromatography.

A rotary evaporator was connected to an air aspirator or a Büchi pump that produced a vacuum pressure of approximately 60 mmHg when it was connected to the evaporator. Solvents used for NMR spectroscopy were purchased from Cambridge Isotope Laboratories and CDCl₃ was stored over anhydrous K₂CO₃. NMR spectra were recorded on a Bruker Advance spectrometer at 300 megahertz (MHz), 400 MHz or 700 MHz and calibrated using either tetramethylsilane or residual solvent peaks as internal reference. The chemical shifts are given in parts per million (ppm) on a delta () scale. The solvent peak was used a reference value, for ¹H NMR: CHCl₃ = 7.27 ppm, CD₂Cl₂ = 5.30 ppm, D₂O = 4.79, DMSO = 2.50 ppm; for ¹³C NMR: CDCl₃ = 77.00 ppm, CD₂Cl₂ = 53.52, DMSO-*d*₆ = 49.10 ppm. The following abbreviations are used to indicate the multiplicities: s = singlet; d = doublet; t = triplet; q = quartet; qt = quintet; sex = sextet; sept = septet dd = doublet of doublets; ddd = doublet of doublet of doublet of doublet of doublets; dt = doublet of triplets; app = apparent; m = multiplet; br = broad. High-resolution mass spectra were recorded on a VG 7070 spectrometer. Low-resolution mass spectra [LCMS (ESI)] were recorded on a Shimadzu LCMS-2020. Infrared (IR) spectra were prepared as a thin film on KBr plate by dissolving the compound in CH₂Cl₂ and then evaporation the CH₂Cl₂.

Abbreviations

http://pubs.acs.org/paragonplus/submission/joceah/index.html

Synthesis

Preparation of *N*-(2-bromo-4-formylphenyl)acetamide (12). A one-necked 2-L roundbottom flask was equipped with a mechanical stirrer. NBS (28.6 g, 179 mmol) was added to the flask and dissolved in H_2O (800 mL). *p*-Acetamidobenzaldehyde (11) (20.1 g, 123

mmol) was added to the NBS solution and the reaction mixture was stirred at 500 rpm for 48 h. The precipitated solid was filtered through paper and purified by flash column chromatography (10 to 50% EtOAc in hexanes, 1000 mL silica gel) to afford the title compound (22.1 g, 74% yield) as a pale-yellow solid.

Data for *N*-(2-bromo-4-formylphenyl)acetamide (12): $R_f = 0.43$ (50% EtOAc in hexanes). For spectroscopic data, see Koo, S. B.; Kim, H. E.; Lee, J. K. *Synth. Commun.* 2002, *32*, 2275-2286.

Preparation of (E)-3-bromo-4-(pyrrolidine-1-yldiazenyl)ben-

zaldehyde (14). A 1-L round-bottom flask was equipped with a reflux condenser and a stir bar. *N*-(2-Bromo-4-formylphenyl)acetamide (12) (19.4 g, 80.1 mmol) was added to the flask and dissolved

in EtOH/concentrated HCl (6:1, 280 mL). The reaction mixture was heated to reflux for 3 h. The resulting solution was cooled to room temperature, and concentrated under reduced pressure by rotary evaporation. The residue was dissolved in concentrated aqueous HCl (20 mL), and the resulting solution was cooled to -10 °C with an ice-MeOH bath. A cold solution of NaNO₂ (6.62 g, 95.9 mmol) in H₂O (120 mL) was added dropwise to HCl solution while keeping the temperature of the HCl solution below 0 °C. After addition was complete, the resulting solution was stirred for 10 min at -10 °C. Pyrrolidine (7.23 mL, 88.0 mmol) was dissolved in 1.1 M aqueous KOH (50 mL) and cooled in an ice-water bath. The pyrrolidine solution was added to HCl solution in one portion, and the reaction mixture was stirred for 10 min. Solid K₂CO₃ was cafefully added to the reaction mixture until pH~7. The precipitated solid was filtered through paper and purified by flash column chromatography (2.5 to 10% EtOAc in hexanes, 800 mL silica gel) to afford the title compound (16.9 g, 75% yield) as a yellow solid.

Data for (*E*)-3-bromo-4-(pyrrolidine-1-yldiazenyl)benzaldehyde (**14**): $R_f = 0.26$ (10% EtOAc in hexanes); m.p. = 99–100 °C; IR (CH₂Cl₂): 2974, 2870, 1689 (C=O), 1588, 1393, 1307, 818 cm⁻¹; ¹H NMR (300 MHz, 293K, CDCl₃, Figure S2) δ 9.88 (s, 1H), 8.32 (d, *J* = 1.8 Hz, 1H), 7.74 (dd, *J* = 8.4, 1.8 Hz, 1H), 7.55 (d, *J* = 8.4 Hz, 1H), 4.00 (br t, *J* = 6.3 Hz, 2H), 3.79 (br t, *J* = 6.3 Hz, 2H), 2.03–2.16 (m, 4H); ¹³C NMR (75 MHz, 293K, CDCl₃, Figure S3) δ 190.5, 153.6, 135.3, 134.0, 129.3, 120.0, 118.5, 51.8, 47.7, 24.1, 23.6; HRMS (EI+) calcd. for C₁₁H₁₂BrN₃O [M]⁺ 281.0162, found 281.0164.

Preparation of methyl (*E*)-3-(5-formyl-2-(pyrrolidin-1-yldiazenyl)phenoxy)-4-methoxybenzoate (15). A one-necked 1-L round-bottom flask was equipped with a reflux condenser, a rubber septum that was equipped with a nitrogen inlet and a stir bar.

(*E*)-3-bromo-4-(pyrrolidine-1-yldiazenyl)benzaldehyde (**14**) (4.51 g, 16.0 mmol), methyl 3-hydroxy-4-methoxy benzoate (**5**) (7.00 g, 38.4 mmol), CuBr·Me₂S (32.9 g, 160 mmol), K₂CO₃ (22.1 g, 160 mmol), degassed MeCN (160 mL) and pyridine (32 mL) were added consecutively to the 1-L flask at 25 °C. The reaction mixture was heated at reflux under N₂ for 48 h. After cooling to room temperature, the resulting mixture was diluted with

EtOAc (200 mL) and saturated aqueous NH₄Cl (500 mL). The resulting mixture was stirred for 30 min before being transferred to a separatory funnel. The aqueous layer was extracted with EtOAc (2×300 mL). The combined organic phases were washed with saturated aqueous NH₄Cl (2×500 mL), brine (2×500 mL), dried over anhydrous Na₂SO₄, filtered through cotton, and concentrated under reduced pressure by rotary evaporation. The crude product was purified by flash column chromatography (10 to 40% EtOAc in hexanes, 800 mL silica gel) to afford methyl the title compound (5.21 g, 85% yield) as a pale-yellow solid.

Data for methyl (*E*)-3-(5-formyl-2-(pyrrolidin-1-yldiazenyl)phenoxy)-4-methoxybenzoate (**15**): $R_f = 0.38$ (50% EtOAc in hexanes); m.p. = 144–145 °C; IR (CH₂Cl₂): 2971, 2882, 1686 (C=O), 1437, 1294, 1205, 1094, 1002, 898, 764 cm⁻¹; ¹H NMR (300 MHz, 293K, CDCl₃, Figure S4) δ 9.89 (s, 1H), 7.78 (dd, *J* = 8.4, 2.1 Hz, 1H), 7.64 (s, 2H), 7.51 (s, 1H), 7.44 (d, *J* = 2.1 Hz, 1H), 6.99 (d, *J* = 8.4 Hz, 1H), 3.95 (s, 3H), 3.88–3.95 (br s, 2H), 3.81 (s, 3H), 3.35–3.43 (br s, 2H), 1.94–1.99 (br m, 4H); ¹³C NMR (75 MHz, 293K, CDCl₃, Figure S5) δ 190.9, 166.4, 154.0, 149.8, 147.5, 146.9, 133.7, 126.8, 125.6, 122.8, 121.3, 119.4, 118.5, 111.3, 56.1, 51.9, 51.3, 46.6, 23.8, 23.3; HRMS (ES+) calcd. for C₂₀H₂₁N₃O₅Na [M+Na]⁺ 406.1379, found 406.1369.

ber septum that was equipped with a nitrogen inlet, and a stir bar. Methyl (*E*)-3-(5-formyl-2-(pyrrolidin-1-yldiazenyl)phenoxy)-4-methoxybenzoate (**15**) (19.0 mg, 50.0 μ mol) and 5% v/v trifluoroacetic acid in MeOH (5 mL) were added to the 25-mL flask, and the reaction mixture was heated to 60 °C for 2 h. The resulting solution was cooled to room temperature and concentrated under reduced pressure by rotary evaporation. The crude product was purified by flash column chromatography (10 to 30% EtOAc in hexanes, 10 mL silica gel) to afford the title compound (12.0 mg, 84% yield) as a colorless oil.

Data for methyl 3-(3-formylphenoxy)-4-methoxybenzoate (**16**): $R_f = 0.52$ (50% EtOAc in hexanes); IR (neat): 1717 (C=O), 1609, 1581, 1512, 1439, 1279, 1130, 1023, 900, 765 cm⁻¹; ¹H NMR (300 MHz, 293 K, CDCl₃, Figure S6 and Figure S7) δ 9.96 (s, 1H), 7.94 (dd, J = 8.7, 2.1 Hz, 1H), 7.72 (d, J = 2.1 Hz, 1H), 7.59 (ddd, J =7.5, 1.2, 1.2 Hz, 1H), 7.49 (dd, J = 7.5, 7.5 Hz, 1H), 7.35 (dd, 1H, J = 2.4, 1.2 Hz), 7.25 (ddd, J = 7.5, 2.4, 1.2 Hz, 1H), 7.06 (d, J = 8.7 Hz, 1H), 3.89 (s, 3H), 3.88 (s, 3H); ¹³C NMR (75 MHz, 293 K, CDCl₃, Figure S8) δ 191.7, 166.1, 158.5, 155.5, 143.4, 138.0, 130.3, 128.0, 124.6, 123.4, 123.2, 123.0, 116.3, 112.1, 56.1, 52.1; HRMS (EI+) calcd. for C₁₆H₁₄O₅ [M]⁺ 286.0841, found 286.0851.

Formation of methyl 3-(3-formylphenoxy-6-*d*)-4-methoxybenzoate (*d*-16). A one-necked 25-mL round-bottom flask was equipped with a reflux condenser, a rubber septum that was equipped with a nitrogen inlet, and a stir bar. A solution of me-

thyl (*E*)-3-(5-formyl-2-(pyrrolidin-1-yldiazenyl)phenoxy)-4-methoxybenzoate (**15**) (19.0 mg, 50.0 μ mol) and 5% v/v trifluoroacetic acid in CD₃OD (5 mL) were added to the 25-mL round-bottom flask, and the reaction mixture was heated to 60 °C for 2 h. The resulting solution was cooled to room temperature and concentrated under reduced pressure by rotary evaporation. The crude product was purified by flash column chromatography (10 to 30% EtOAc in hexanes, 10 mL silica gel) to afford the title compound (12.0 mg, 84% yield) as a colorless oil.

Data for methyl 3-(3-formylphenoxy-6-*d*)-4-methoxybenzoate (*d*-16): $R_f = 0.52$ (50% EtOAc in hexanes); ¹H NMR (300 MHz, 293 K, CDCl₃, Figure S9) δ 9.95 (s, 1H), 7.94 (dd, J = 8.7, 2.1 Hz, 1H), 7.72 (d, J = 2.1 Hz, 1H), 7.59 (dd, J = 7.5, 1.2 Hz, 1H), 7.49 (d, J = 7.5 Hz, 1H), 7.35 (d, 1H, J = 1.2 Hz), 7.06 (d, J = 8.7 Hz, 1H), 3.96 (s, 3H), 3.89 (s, 3H).

Preparation of methyl 3-(5-formyl-2-iodophenoxy)-4-methox-

ybenzoate (17). A 25-mL sealed tube was equipped with a stir bar.Methyl(E)-3-(5-formyl-2-(pyrrolidin-1-yldiazenyl)phenoxy)-4-methoxybenzoate (15) (959 mg, 2.50 mmol) was added to the sealedtube, and the tube was capped with a rubber septum. This tube was

evacuated and backfilled with N₂ (this procedure was repeated three times). Degassed MeCN (5 mL) and I₂ (635 mg, 2.50 mmol) were added to the sealed tube, and the vessel was sealed with a Teflon cap. The reaction mixture was heated to 100 °C and stirred for 6 h. The resulting solution was then cooled to 25 °C and diluted with EtOAc (15 mL). The resulting mixture was passed through a short silica gel pad, eluting with 30% EtOAc in hexanes. The filtrate was concentrated under reduced pressure by rotary evaporation. The residue was dissolved in EtOAc (100 mL), washed with saturated aqueous Na₂S₂O₃ (100 mL), H₂O (100 mL), dried over anhydrous Na₂SO₄, filtered through cotton, and concentrated under reduced pressure by rotary evaporation. The crude product was purified by flash column chromatography (10 to 40% EtOAc in hexanes, 150 mL silica gel) to afford methyl 3-(5-formyl-2-iodophenoxy)-4-methoxybenzoate (804 mg, 78% yield) as a white solid.

Data for methyl 3-(5-formyl-2-iodophenoxy)-4-methoxybenzoate (**17**): $R_f = 0.34$ (30% EtOAc in hexanes); m.p. = 112–113 °C; IR (CH₂Cl₂): 1715 (C=O) 1609, 1512, 1438, 1279, 1131, 1021, 764 cm⁻¹; ¹H NMR (300 MHz, 293 K, CDCl₃, Figure S10) δ 9.83 (s, 1H), 8.05 (d, J = 8.1 Hz, 1H), 7.95 (dd, J = 8.7, 2.1 Hz, 1H), 7.70 (d, J = 2.1Hz, 1H), 7.29 (dd, J = 8.1, 1.8 Hz, 1H), 7.06 (d, J = 8.7 Hz, 1H), 7.01 (d, J = 1.8 Hz, 1H), 3.87 (s, 3H), 3.86 (s, 3H); ¹³C NMR (75 MHz, 293K, CDCl₃, Figure S11) δ 190.8, 166.0, 157.9, 155.2, 143.2, 140.6, 137.7, 128.4, 125.5, 123.3, 123.0, 114.4, 112.3, 95.3, 56.1, 52.1; HRMS (ES+) calcd. for C₁₆H₁₃IO₅Na [M+Na]⁺ 434.9705, found 434.9715.

stir bar. Methyl 3-(5-formyl-2-iodophenoxy)-4-methoxybenzoate (17) (82.0 mg, 200 μ mol), 2-di-*tert*-butylphosphino- 2',4',6'-triisopropylbiphenyl (4.30 mg, 10.0 μ mol), Pd₂(dba)₃ (5.50 mg, 6.00 μ mol), and KOH (45.0 mg, 800 μ mol) were added consecutively to the sealed tube, and the tube capped with a rubber septum. This tube was evacuated and backfilled with N₂ (this procedure was repeated three times). Degassed H₂O/1,4-dioxane (1:1, 2 mL) were added to the solid mixture via syringe, and the tube was sealed with a Teflon cap. The reaction mixture was heated to 100 °C and stirred for 9 h. The resulting solution was cooled to room temperature and acidified with 0.1 *N* aqueous HCl until pH = 3. The resulting solution was transferred to a separatory funnel and extracted with EtOAc (3 × 10 mL). The combined organic extracts were washed with brine (20 mL), dried over anhydrous Na₂SO₄, filtered through cotton, and concentrated under reduced pressure by rotary evaporation. The crude residue was dissolved in acetone (5 mL), and K₂CO₃ (111 mg, 0.8 mmol) and (MeO)₂SO₂ (38 mL, 0.6 mmol) were added to the resulting solution in a one-necked 25-mL round-bottom flask that was equipped with a reflux condenser and a stir bar. The reaction mixture was heated at reflux under N₂ for 3 h. The resulting mixture was cooled to room temperature and filtered through cotton. The filtrate was concentrated under reduced pressure by rotary evaporation and the crude product was purified by flash column chromatography (10 to 40% EtOAc in hexanes, 12 mL silica gel) to afford the title compound (54.0 mg, 86% yield) as a pale-yellow foam.

Data for methyl 3-(5-formyl-2-methoxyphenoxy)-4-methoxybenzoate (1): $R_f = 0.41$ (50% EtOAc in hexanes); IR (CH₂Cl₂): 1715 (C=O), 1687(C=O), 1606, 1511, 1437, 1274, 1120, 1021, 765 cm⁻¹; ¹H NMR (300 MHz, 293 K, CD₂Cl₂, Figure S12) δ 9.77 (s, 1H), 7.86 (dd, J = 8.4, 2.1 Hz, 1H), 7.63 (dd, J = 8.4, 2.1 Hz, 1H), 7.51 (d, J = 2.1 Hz, 1H), 7.21 (d, J = 2.1 Hz, 1H), 7.13 (d, J = 8.4 Hz, 1H), 7.06 (d, J = 8.4 Hz, 1H), 3.96 (s, 3H), 3.89 (s, 3H), 3.81 (s, 3H); ¹³C NMR (75 MHz, 293K, CD₂Cl₂, Figure S13) δ 190.7, 166.5, 156.0, 155.3, 147.2, 144.9,

130.7, 128.4, 127.5, 123.7, 121.2, 117.3, 112.58, 112.56, 56.8, 56.6, 52.4; HRMS (EI+) calcd. for $C_{17}H_{16}O_6 [M]^+$ 316.0947, found 316.0934.

Synthesis of violaceic acid. A 10-

mL sealed reaction tube was equipped with a stir bar. Methyl 3-(5-formyl-2-iodophenoxy)-4-

methoxybenzoate (17) (82 mg, 200 μ mol), 2-di-*tert*-butylphosphino-2',4',6'-triisopropylbiphenyl (4.3 mg, 10 μ mol), Pd₂(dba)₃ (5.5 mg, 6.0 μ mol), and KOH (45 mg, 800 μ mol) were added consecutively to the tube, and the tube was capped with a rubber septum. This tube was evacuated and backfilled with N₂ (this procedure was repeated three times). Degassed H₂O/1,4-dioxane (1:1, 2 mL) were added to the solid mixture via syringe, and the vessel was sealed with a Teflon cap. The reaction mixture was heated to 100 °C and stirred for 14 h. The reaction mixture was cooled to room temperature, and acidified with 0.1 *N* aqueous HCl until the pH = 3. The resulting solution was extracted with EtOAc (3 × 10 mL). The combined organic layers were washed with brine (20 mL), dried over anhydrous Na₂SO₄, filtered through cotton, and concentrated under reduced pressure by rotary evaporation. The crude product was purified by flash chromatography (20 to 80% EtOAc in hexanes, 10 mL silica gel) to afford the title compound (60.0 mg, quantitative yield) as a pale-yellow solid.

Data for violaceic acid: $R_f = 0.37$ (EtOAc); m.p. = 222–223 °C; IR (KBr): 3398, 2935, 2840, 1685 (C=O), 1602, 1511, 1439, 1275, 1011, 909 cm⁻¹; ¹H NMR (300 MHz, 293 K, DMSO- d_6 , Figure S14) δ 9.73 (s, 1H), 7.75 (dd, J = 8.7, 1.8 Hz, 1H), 7.61 (dd, J = 8.1, 2.1 Hz, 1H), 7.28 (d, J = 2.1 Hz, 1H), 7.25 (d, J = 8.7 Hz, 1H), 7.24 (d, J = 1.8 Hz, 1H), 7.13 (d, J = 8.1 Hz, 1H), 3.88 (s, 3H); ¹³C NMR (75 MHz, 293 K, DMSO- d_6 , Figure S15) δ 190.7, 166.5, 154.4, 153.8, 144.7, 144.3, 128.8, 127.9, 126.2, 123.3, 118.9, 118.7, 117.2, 112.6, 56.0; HRMS (EI+) calcd. for C₁₅H₁₂O₆ [M]⁺ 288.0634, found 288.0648.

Table S1: ¹H NMR comparison for violaceic acid

Synthetic Violaceic Acid	Natural Violaceic Acid ⁴	
δ_{H} (mult, J (Hz))	$\delta_{\rm H}$ (mult, J (Hz))	
9.73 (s)	9.76 (s)	
7.75 (dd, 8.7, 1.8)	7.78 (dd, 8.7, 1.9)	
7.61 (dd, 8.1, 2.1)	7.64 (dd, 8.2, 2.2)	
7.28 (d, 2.1)	7.32 (d, 2.2)	
7.24 (d, 1.8)	7.28 (d, 1.9)	
7.25 (d, 8.7)	7.26 (d, 8.7)	
7.13 (d, 8.1)	7.16 (d, 8.2)	
3.88 (s)	3.89 (s)	

Table S2: ¹³C NMR comparison for violaceic acid

Desition	Synthetic Violaceic Acid	Natural Violaceic Acid ⁴	
Position	δ_{C}	δ_{C}	
1	144.7	144.6	
2	154.4	154.3	
3	117.2	117.0	
4	127.9	127.8	
5	128.8	128.8	
6	118.7	118.7	
7	190.7	190.5	
1'	144.3	144.3	
2'	153.8	153.7	
3'	112.6	112.4	
4'	126.2	126.2	
5'	123.3	123.2	
6'	118.9	118.7	
7'	166.5	166.4	
-OMe	56.0	55.9	

Preparation of methyl (Z)-3-(5-((4-acetyl-3,6-dioxopiperazin-2ylidene)methyl)-2-methoxyphenoxy)-4-methoxybenzoate (25).

A one-necked 5-mL round-bottom

flask was equipped with a rubber septum that was connected to a nitrogen inlet and a stir bar. Methyl 3-(5-formyl-2-methoxyphenoxy)-4-methoxybenzoate (1) (11.6 mg, 36.7 μ mol), 1,4-diacetyl-piperazine-2,5-dione (24) (8.27 mg, 41.7 μ mol) and CH₂Cl₂ (300 μ L) were added to the 5-mL flask under N₂. A solution of KO'Bu (5.1 mg, 45.3 μ mol) in *tert*-BuOH (150 μ L) was added to a resulting mixture, and the reaction mixture was stirred at the room temperature for 2 h. The resulting solution was then cooled in an ice-water bath to 0 °C, and neutralized with saturated aqueous NH₄Cl solution (2.0 mL). The resulting solution was transferred to a separatory funnel, and extracted with CH₂Cl₂ (2 × 2 mL). The combined organic layers were washed with brine (5 mL), dried over anhydrous Na₂SO₄, filtered through cotton, and concentrated under reduced pressure by rotary evaporation. The crude product was purified by flash column chromatography (20 to 50% EtOAc in hexanes, 10 mL silica gel) to afford the title compound (13.0 mg, 75%) as a pale-yellow oil. The geometry of the olefin was determined by an NOE experiment (Figure S17).

Data for compound methyl (*Z*)-3-(5-((4-acetyl-3,6-dioxopiperazin-2-ylidene)methyl)-2-methoxyphenoxy)-4methoxybenzoate (**25**): $R_f = 0.32$ (60% EtOAc in hexanes); IR (CH₂Cl₂): 3291 (N-H), 3010, 2925, 2850, 1702 (C=O), 1630, 1606, 1513, 1438, 1368, 1272, 1209, 1133, 1099, 1022, 765 cm⁻¹; ¹H NMR (400 MHz, 293 K, DMSO-*d*₆, Figure S16) δ 7.73 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.54 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.35 (d, *J* = 2.0 Hz, 1H), 7.30 (d, *J* = 8.4 Hz, 1H), 7.26 (d, *J* = 8.8 Hz, 1H), 7.13 (d, *J* = 2.0 Hz, 1H), 6.95 (s, 1H), 4.37 (s, 2H), 3.95 (s, 3H), 3.82 (s, 3H), 3.78 (s, 3H), 2.51 (s, 3H); ¹³C NMR (75 MHz, 293 K, CDCl₃, Figure S18) δ 172.5, 166.3, 162.7, 160.2, 154.6, 151.1, 146.4, 144.4, 127.1, 125.2, 124.6, 124.5, 123.2, 120.6, 119.5, 118.2, 113.1, 111.9, 56.3, 56.2, 52.1, 46.0, 27.1; HRMS (ES+) calcd. for C₂₃H₂₂N₂O₈ [M+Na]⁺ 477.1274, found 477.1228.

Attempts to prepare methyl 3-(5-formyl-2-methoxyphenoxy)-4-methoxybenzoate (1) from methyl (E)-3-(5-formyI-2-(pyrrolidin-1-yldiazenyl)phenoxy)-4-methoxybenzoate (15) in one step

		Isolated yield
Entry	Conditions	(Yield based on recovered
		starting material)
1	10% TFA in MeOH, reflux, O ₂ atmosphere, 12 h	88%
2	Dowex 50WX8-200, t-BuOH/H2O, reflux, 3 h	19% (86%)
3	5% TFA in CH_2Cl_2 , 0 °C; then Cu_2O (2.8 equiv), $Cu(NO_3)_2$	68%
	(30 equiv), H ₂ O, 23 °C, 0.5 h	

Table S3: Failed examples of acid-mediated methoxylation

Preparation of methyl 7formyl-4-methox-

ydibenzo[b,d]furan-1-car-

equipped with a stir bar. A solution of 5% trifluoroacetic acid v/v in CH₂Cl₂ (5 mL) was added to the flask and cooled in an ice-water bath to 0 °C. Methyl (E)-3-(5-formyl-2-(pyrrolidin-1-yldiazenyl)phenoxy)-4-methoxybenzoate (15) (19 mg, 49.5 μ mol) was added to the solution and stirred at 0 °C. After consumption of methyl (*E*)-3-(5-formyl-2-(pyrrolidin-1-yldiazenyl)phenoxy)-4-methoxybenzoate (15) was observed by TLC analysis, the solution was concentrated under reduced pressure by rotary evaporation. A solution of $Cu(NO_3)_2$ (0.35 g, 1.49 mmol) in H₂O (5 mL) was added to the residue, and then Cu₂O (0.006 g, 41.9 µmol) was added to the resulting solution at 25 °C. After stirring at the same temperature for 10 min, the resulting mixture was extracted with CH_2Cl_2 (3 × 5 mL). The organic extracts were combined, washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude residue was purified by flash chromatography (10 to 40% EtOAc in hexanes, 8 mL silica gel) to afford the inseparable mixture of methyl 7-formyl-4-methoxydibenzo [b,d] furan-1-carboxylate (18) and methyl 3-(3-formylphenoxy)-4-methoxybenzoate (16) as a white solid (9.65 mg, 68% yield)...

Data for methyl 7-formyl-4-methoxydibenzo[*b*,*d*]furan-1-carboxylate (**18**): $R_f = 0.52$ (50% EtOAc in hexanes); ¹H NMR (300 MHz, 293 K, CDCl₃, Figure S19) δ 10.17 (s, 1H, CHO), 9.09 (d, *J* = 8.1 Hz, 1H, Ar), 8.14 (d, *J* = 1.5 Hz, 1H, Ar), 8.07 (d, *J* = 8.4 Hz, 1H, Ar), 7.93 (dd, *J* = 8.1, 1.5 Hz, 1H, Ar), 7.09 (d, *J* = 8.4 Hz, 1H, Ar), 4.16 (s, 3H), 4.05 (s, 3H); HRMS (ESI+) calcd. for C₁₆H₁₂O₅ [M]⁺ 285.07575, found 285.07657.

Studies into mechanism of dibenzofuran formation

Table S4: Investigative experiments into the mechanism of triazene reaction

entry	acid	additive	equivalents	yield (%)	ratio (16:18)
1	TFA	none	0	40	1:1
2	TFA	pyrrolidine	5	40	6:1
3	TFA	TEMPO	3	5	1:1
4	ascorbic acid	none	3	54	4:1

Table S4, Entry 1. Methyl (E)-3-(5-formyl-2-(pyrrolidin-1-yldiazenyl)phenoxy)-4-methoxybenzoate (15) (50.0 mg, 0.130mmol) and 5% v/v trifluoroacetic acid in

MeCN (5 mL) were added to a 20-mL scintillation vial that was equipped with a stir bar, and the resulting solution was heated to reflux for 2.5 h. The reaction mixture was diluted with Et_2O (10 mL) and transferred to a 30-mL separatory funnel. The organic layer was washed with saturated aqueous NaHCO₃ (10 mL) and H₂O (10 mL). The organic extract was dried over Na₂SO₄, filtered through cotton, concentrated under reduced pressure by a rotary evaporator. The crude residue was purified by flash column chromatography (10 to 40% EtOAc in hexanes, 3 mL silica gel) to afford the inseparable mixture of methyl 7-formyl-4-methoxydibenzo[*b*,*d*]furan-1-carboxylate (**18**) and methyl 3-(3-formylphenoxy)-4-methoxybenzoate (**16**) as a white solid (15.0 mg, 40% yield).

Data for methyl 7-formyl-4-methoxydibenzo[b,d]furan-1-carboxylate (**18**): $R_f = 0.52$ (50% EtOAc in hexanes); ¹H NMR (300 MHz, 293 K, CDCl₃, Figure S20) δ 10.19 (s, 1H, CHO), 9.13 (d, J = 8.1 Hz, 1H, Ar), 8.17

(d, *J* = 1.5 Hz, 1H, Ar), 8.10 (d, *J* = 8.4 Hz, 1H, Ar), 7.96 (dd, *J* = 8.1, 1.5 Hz, 1H, Ar), 7.12 (d, *J* = 8.4 Hz, 1H, Ar), 4.18 (s, 3H), 4.07 (s, 3H).

Table S4, Entry 2. Methyl (*E*)-3-(5-formyl-2-(pyrrolidin-1-yldiazenyl)phenoxy)-4methoxybenzoate (**15**) (50.0 mg, 0.130 mmol), 5% v/v trifluoroacetic acid in MeCN (5 mL) and pyrrolidine (53.5 μL, 0.652

mmol) were added to a 20-mL scintillation vial that was equipped with a stir bar, and the reaction mixture heated to reflux for 2.5 h. The reaction mixture was diluted with Et₂O (10 mL) and transferred to a 30-mL separatory funnel. The organic layer was washed with saturated aqueous NaHCO₃ (10 mL) and H₂O (10 mL). The organic extract was dried over Na₂SO₄, filtered through cotton, concentrated under reduced pressure by a rotary evaporator. The crude residue was purified by flash column chromatography (10 to 40% EtOAc in hexanes, 3 mL silica gel) to afford the inseparable mixture of methyl 7-formyl-4-methoxydibenzo[*b*,*d*]furan-1-carboxylate (**18**) and methyl 3-(3-formylphenoxy)-4-methoxybenzoate as a white solid (**16**) (14.6 mg, 40% yield)

Data for methyl 7-formyl-4-methoxydibenzo[b,d]furan-1-carboxylate (**18**): $R_f = 0.52$ (50% EtOAc in hexanes); ¹H NMR (300 MHz, 293 K, CDCl₃, Figure S21) δ 10.16 (s, 1H, CHO), 9.09 (d, J = 8.1 Hz, 1H, Ar), 8.14 (d, J = 1.5 Hz, 1H, Ar), 8.07 (d, J = 8.4 Hz, 1H, Ar), 7.93 (dd, J = 8.1, 1.5 Hz, 1H, Ar), 7.09 (d, J = 8.4 Hz, 1H, Ar), 4.15 (s, 3H), 4.04 (s, 3H).

Table S4, Entry 3. Methyl (E)-3-(5-formyl-2-(pyrrolidin-1-yldiazenyl)phenoxy)-4-methoxybenzoate (15) (50.0 mg, 0.130mmol), 5% v/v trifluoroacetic acid in MeCN(5 mL) and TEMPO (61.1 mg, 0.391 mmol)

were added to a 20-mL scintillation vial that was equipped with a stir bar, and the reaction mixture heated to reflux for 2.5 h. The reaction mixture was diluted with Et_2O (10 mL) and transferred to a 30-mL separatory funnel. The organic layer was washed with saturated aqueous NaHCO₃ (10 mL) and H₂O (10 mL). The organic extract was dried over Na₂SO₄, filtered through cotton, concentrated under reduced pressure by a rotary evaporator. The crude residue was purified by flash column chromatography (10 to 40% EtOAc in hexanes, 3 mL silica gel) to afford the inseparable mixture of methyl 7-formyl-4-methoxydibenzo[*b*,*d*]furan-1-carboxylate (**18**) and methyl 3-(3formylphenoxy)-4-methoxybenzoate (**16**) as a white solid (1.87 mg, 5% yield) Data for methyl 7-formyl-4-methoxydibenzo[b,d]furan-1-carboxylate (18): $R_f = 0.52$ (50% EtOAc in hexanes); ¹H NMR (300 MHz, 293 K, CDCl₃, Figure S22) δ 10.17 (s, 1H, CHO), 9.09 (d, J = 8.1 Hz, 1H, Ar), 8.14 (d, J = 1.5 Hz, 1H, Ar), 8.07 (d, J = 8.4 Hz, 1H, Ar), 7.93 (dd, J = 8.1, 1.5 Hz, 1H, Ar), 7.09 (d, J = 8.4 Hz, 1H, Ar), 4.16 (s, 3H), 4.05 (s, 3H).

Table S4, Entry 4. Methyl (*E*)-3-(5-formyl-2-(pyrrolidin-1-yldiazenyl)phenoxy)-4-methoxybenzoate (15) (50.0 mg, 0.130mmol), ascorbic acid (64.3 mg, 0.391 mmol),and MeCN (5 mL) were added to a 20-mL

scintillation vial that was equipped with a stir bar. The reaction mixture was heated to reflux for 7 h. After, the reaction mixture was diluted with EtOAc (10 mL) and transferred to a 30-mL separatory funnel. The organic layer was washed with saturated aqueous NaHCO₃ (10 mL) and H₂O (10 mL). The organic extract was dried over Na₂SO₄, filtered through cotton, concentrated under reduced pressure by a rotary evaporator. The crude residue was purified by flash column chromatography (10 to 40% EtOAc in hexanes, 3 mL silica gel) to afford the inseparable mixture of methyl 7-formyl-4-methoxydibenzo[*b*,*d*]furan-1-carboxylate (**18**) and methyl 3-(3-formylphenoxy)-4-methoxybenzoate (**16**) as a white solid (20.8 mg, 54% yield).

Data for methyl 7-formyl-4-methoxydibenzo[b,d]furan-1-carboxylate (**18**): $R_f = 0.52$ (50% EtOAc in hexanes); ¹H NMR (300 MHz, 293 K, CDCl₃, Figure S23) δ 10.17 (s, 1H, CHO), 9.09 (d, J = 8.1 Hz, 1H, Ar), 8.14 (d, J = 1.5 Hz, 1H, Ar), 8.07 (d, J = 8.4 Hz, 1H, Ar), 7.93 (dd, J = 8.1, 1.5 Hz, 1H, Ar), 7.09 (d, J = 8.4 Hz, 1H, Ar), 4.16 (s, 3H), 4.05 (s, 3H).

3. NMR spectra

Figure S1. ¹H NMR spectrum of *N*-(2-bromo-4-formylphenyl)acetamide (**12**) (CDCl₃, 293 K, 300 MHz)

Figure S2. ¹H NMR spectrum of (*E*)-3-bromo-4-(pyrrolidine-1-yldiazenyl)benzaldehyde (**14**) (CDCl₃, 293 K, 300 MHz)

Figure S3. ¹³C NMR spectrum of (*E*)-3-bromo-4-(pyrrolidine-1-yldiazenyl)benzaldehyde (**14**) (CDCl₃, 293 K, 75 MHz)

Figure S4. ¹H NMR spectrum of (*E*)-3-(5-formyl-2-(pyrrolidin-1-yldiazenyl)phenoxy)-4-methoxybenzoate (**15**) (CDCl₃, 293 K, 300 MHz)

Figure S5. ¹³C NMR spectrum of (*E*)-3-(5-formyl-2-(pyrrolidin-1-yldiazenyl)phenoxy)-4-methoxybenzoate (**15**) (CDCl₃, 293 K, 75 MHz)

Figure S6. ¹H NMR spectrum of 1-methyl 3-(3-formylphenoxy)-4-methoxybenzoate (**16**) (CDCl₃, 293 K, 300MHz)

Figure S7. NOE Difference NMR spectrum of methyl 3-(3-formylphenoxy)-4-methoxybenzoate (**16**) (CDCl₃, 293 K, 700 MHz)

Figure S8. ¹³C NMR spectrum of methyl 3-(3-formylphenoxy)-4-methoxybenzoate (**16**) (CDCl₃, 293 K, 75 MHz)

Figure S9. ¹H NMR spectrum of methyl 3-(3-formylphenoxy-6-*d*)-4-methoxybenzoate (*d*-16) (CDCl₃, 293 K, 300 MHz)

Figure S10. ¹H NMR spectrum of methyl 3-(5-formyl-2-iodophenoxy)-4-methoxybenzoate (**17**) (CDCl₃, 293 K, 300 MHz)

Figure S11. ¹³C NMR spectrum of methyl 3-(5-formyl-2-iodophenoxy)-4-methoxybenzoate (**17**) (CDCl₃, 293 K, 75 MHz)

OMe

1

Figure S12. ¹H NMR spectrum of methyl 3-(5-formyl-2-methoxyphenoxy)-4-methoxybenzoate (1) (CD₂Cl₂, 293 K, 300 MHz)

Figure S13. ¹³C NMR spectrum of methyl 3-(5-formyl-2-methoxyphenoxy)-4-methoxybenzoate (1) (CD₂Cl₂, 293 K, 75 MHz)

Figure S14. ¹H NMR spectrum of violaceic acid (DMSO-*d*₆, 293 K, 300 MHz)

Н

Figure S15. ¹³C NMR spectrum of violaceic acid (DMSO-*d*₆, 293 K, 75 MHz)

Figure S16. ¹H NMR spectrum of methyl (*Z*)-3-(5-((4-acetyl-3,6-dioxopiperazin-2-ylidene)methyl)-2-methoxyphenoxy)-4-methoxybenzoate (**25**) (DMSO-*d*₆, 293 K, 400 MHz)

Figure S17. NOE spectrum of methyl (*Z*)-3-(5-((4-acetyl-3,6-dioxopiperazin-2-ylidene)methyl)-2-methoxyphenoxy)-4-methoxybenzoate (**25**) (DMSO- d_6 , 293 K, 400 MHz)

Figure S18. ¹³C NMR spectrum of methyl (*Z*)-3-(5-((4-acetyl-3,6-dioxopiperazin-2-ylidene)methyl)-2methoxyphenoxy)-4-methoxybenzoate (**25**) (CDCl₃, 293 K, 100 MHz)

OMe

т

Figure S19. ¹H NMR spectrum of methyl 7-formyl-4-methoxydibenzo[*b*,*d*]furan-1-carboxylate (**18**) (CDCl₃, 293 K, 300 MHz)

Figure S20. ¹H NMR spectrum for Table S4, Entry 1 (300 MHz, CDCl₃, 298K)

Figure S21. ¹H NMR spectrum for Table S4, Entry 2 (300 MHz, CDCl₃, 298K)

Figure S22. ¹H NMR spectrum for Table S4, Entry 3 (400 MHz, CDCl₃, 298K)

Figure S23. ¹H NMR spectrum for Table S4, Entry 4 (400 MHz, CDCl₃, 298K)