Supporting Information

Dominating Role of Ni⁰ on the Interface of Ni/NiO for Enhanced Hydrogen Evolution Reaction

Jing Wang, Shanjun Mao, Zeyan Liu, Zhongzhe Wei, Haiyan Wang, Yiqing Chen, Yong Wang *

Advanced Materials and Catalysis Group, Center for Chemistry of High-performance and Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China.

*Corresponding Author: chemwy@zju.edu.cn

Complea	Melamine	Ni(NO ₃) ₂ ·6H ₂ O	Temperature	Holding Time
Samples	[g]	[g]	[°C]	[h]
NiO _x @NC-700	20	1.11	700	1
NiO _x @BCNTs	20	1.11	700	2
NiO _x @NC-800	20	1.11	800	1
NiO _x @NC-900	20	1.11	900	1
NiO _x @NC-1000	20	1.11	1000	1
NiO		1.11	800	1

 Table S1. The preparation parameters of different samples.

Table S2. Textural properties of the catalysts.

entry	catalyst	BET surface area (m²/g)	pore volume (cm ³ /g)	pore size (nm)
1	NiO _x @BCNTs	314	0.52	5.24
2	NiO _x @NC-800	318	0.48	5.36
3	NiO _x @NC-900	217	0.33	5.39
4	NiO _x @NC-1000	197	0.31	5.73

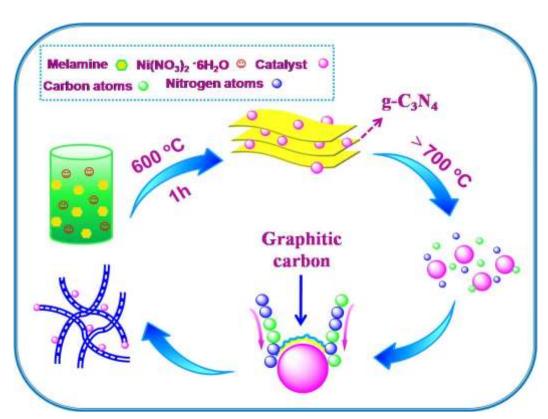
entry	catalyst	Ni/%	NiO/%	N % ^b (atomic%)
1	NiO _x @BCNTs	36.2	63.8	3.58
2	NiO _x @NC-800	32.8	67.2	3.32
3	NiO _x @NC-900	24.3	75.7	2.78
4	NiO _x @NC-1000	11.6	88.4	4.66
5	H ₂ -TPR-400 ^a	37.0	63.0	
6	H ₂ -TPR-550 ^a	46.2	53.8	
7	H ₂ -TPR-650 ^a	50.7	49.3	
8	H ₂ -TPR-750 ^a	56.6	43.4	
9	H ₂ -TPR-850 ^a	62.6	37.4	

Table S3. Ni, NiO and N contents of the catalysts.

[a] NiO_x@BCNTs was treated via H₂-TPR process under different temperature.[b] The atomic percentage of N calculated from XPS data.

Catalyst	η-j ^b	TS ^c	Stability	Electrolyte solution	Reference
NiO _x @BCNTs (~0.40 mg cm ⁻²) ^a	183-10	110	101		
NiO _x @BCNTs	79-10	119	10 h	1 M KOH	This work
(~3.18 mg cm ⁻²) ^a	181-30				
CoO _x @CN	232-10	115	1.67 h	1 M KOH	J. Am. Chem. Soc. 2015 , 137, 2688
Ni-Mo-alloy on Ti foil	~80-10		100 h	1 M NaOH	ACS Catal. 2013 , <i>3</i> , 166
Co-NRCNTs	370-10	69	10 h	1 M KOH	Angew. Chem. Int. Ed. 2014 , 53, 4372
NiO/Ni-CNT	<100-10	82	2 h	1 M KOH	Nat. Commun. 2014 . 4695
Ni	400-10			1 M KOH	Angew. Chem. Int. Ed. 2012 , 51, 12703
Ni/MWCNT	~350-10	102		1 M KOH	J. Power Sources 2014 , 266, 365
MnNi	360-10		2 h	1 M KOH	<i>Adv. Funct. Mater.</i> 2015 , 25, 393
Ni-NiO/N-rGO	160	46	11.1 h	1 M KOH	Adv. Funct. Mater. 2015 , 25, 5799
Ni@C NSs	270	143	12 h	1 M KOH	J. Mater. Chem. A , 2016 , 4,7297
Ni-G	75-1	182	1 h	0.1 M KOH	Int. J. Hydrogen Energy, 2016 , 41, 3786
NiP nanospheres	434-50	122	11.1 h	1 M NaOH	Int. J. Hydrogen Energy, 2016 , 41, 20515
Ni-S/CeO ₂	170-30	165.6		1 M NaOH	Int. J. Hydrogen Energy, 2016 , 41, 20485

Table S4. Summary of the recently reported solid-state HER catalysts in basic electrolytes.

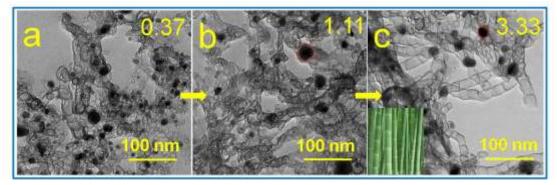

[a] The loading mass was based on the mass of nickel.

[b] η (mV) stands for the overpotential at current density of j (mA cm^{-2}).

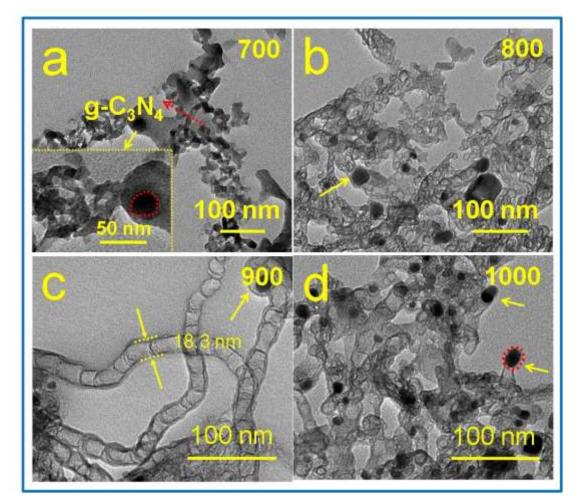
[c] TS represents Tafel slope (mV dec⁻¹).

entry	catalyst	Exchange current density / mA cm ⁻²
1	NiO _x @BCNTs	0.308
2	NiO _x @NC-800	0.214
3	NiO _x @NC-900	0.212
4	NiO _x @NC-1000	0.171

Table S5. Exchange current density of the catalysts.



Scheme S1. Scheme for the fabrication of NiO_x@BCNTs.


In our case, thermal condenstion of melamine formed layered graphitic carbon nitride $(g-C_3N_4)$ at low-temperature zone (<600 °C).¹ The Ni species were partially reduced to metallic Ni NPs by reductive groups decomposed from $g-C_3N_4$ as the the temperature rises. On the other hand, the $g-C_3N_4$ also acted as precursor to deposit nitrogen-doped carbon around the Ni NPs.² A high pyrolysis temperature or long holding period probably resulted in a sufficient decomposition of $g-C_3N_4$, and thus high concentrations of nitrogen and carbon fragments around the Ni NPs, which promoted the growth of nitrogen-doped carbon nanotubes. As a consequence, the Ni NPs were encapsulated in nitrogen-doped carbon shells. The experiment results show that controlled parameter in the experiment can lead to the production of BCNTs.

- $H_2O + e^- \longrightarrow H_{ads} + OH^-$ (Volmer) (1)
- $H_{ads} + H_{ads} \longrightarrow H_2$ (Tafel) (2)
- $H_2O + H_{ads} + e^- \longrightarrow H_2 + OH^-$ (Heyrovsky) (3)

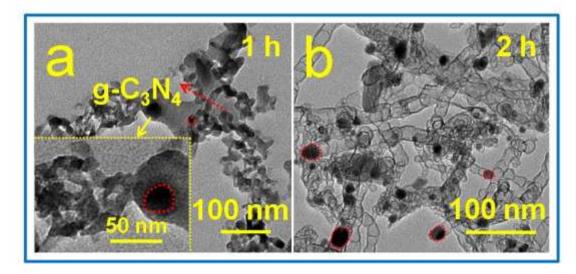

Scheme S2. Hydrogen evolution reaction mechanism.

Figure S1. TEM images of samples with different Ni(NO₃)₂·6H₂O concentration calcinated at 800 °C, 1 h, a) 0.37 g, b) 1.11 g, c) 3.33 g.

Figure S2. TEM images of samples with 1.11 g Ni(NO₃)₂·6H₂O calcinated at a) 700 ^oC, 1 h; b) 800 ^oC, 1 h; c) 900 ^oC, 1 h; d) 1000 ^oC, 1 h.

Figure S3. TEM images of samples with 1.11 g Ni(NO₃)₂·6H₂O calcinated at 700 °C with different holding time a) 1 h (NiO_x@NC-700), b) 2 h (NiO_x@BCNTs).

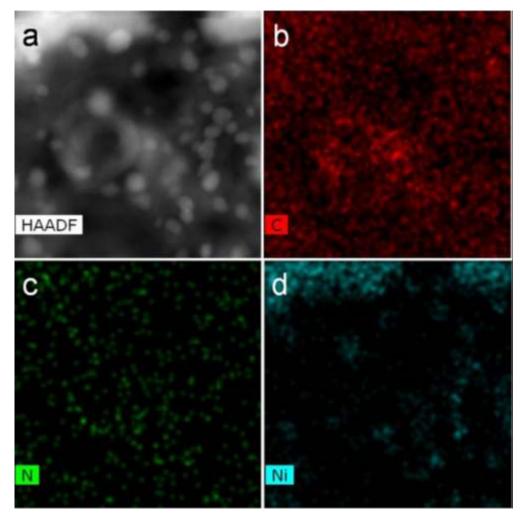
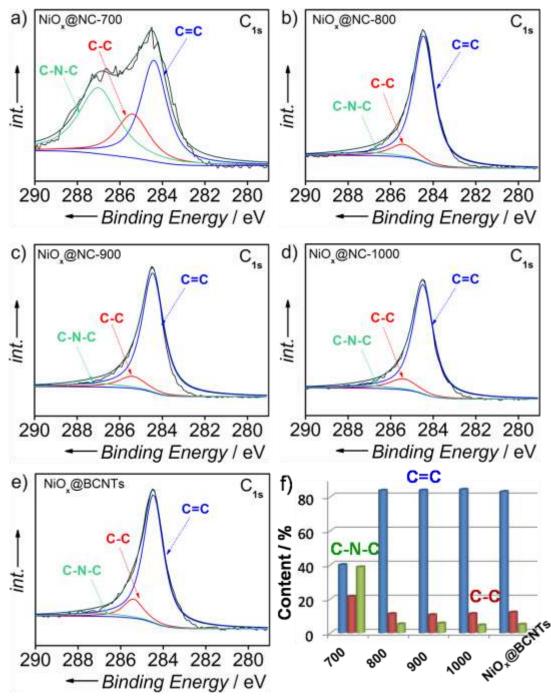



Figure S4. EDX elemental mapping of NiO_x@BCNTs.

Figure S5. a, b, c, d, e) High-resolution C_{1s} XPS spectra of NiO_x@NC-700, NiO_x@NC-800, NiO_x@NC-900, NiO_x@NC-1000 and NiO_x@BCNTs. f) The content of the C=C, C-C and C-N-C species in products.

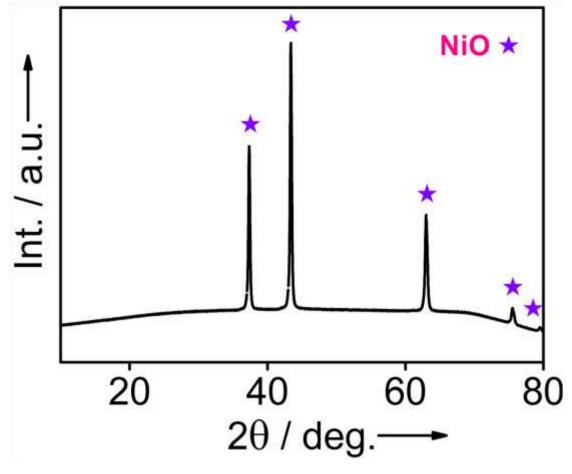


Figure S6. XRD of NiO calcinated at 800 °C for 1 h.

On the basis of XRD analysis (Figure S6), the characteristic peaks of contrast sample that directly calcinated $Ni(NO_3)_2$ ·6H₂O were assigned to NiO.

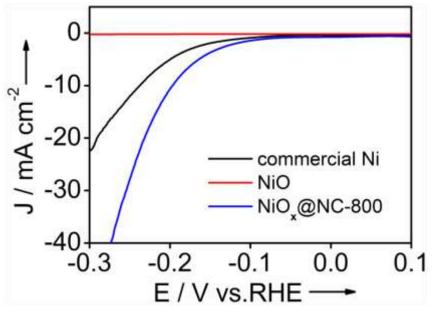


Figure S7. Polarization curves for control samples of commercial Ni, NiO and $NiO_x@NC-800$ in 1 M KOH.

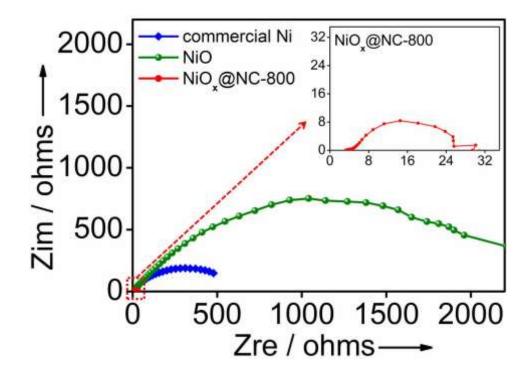
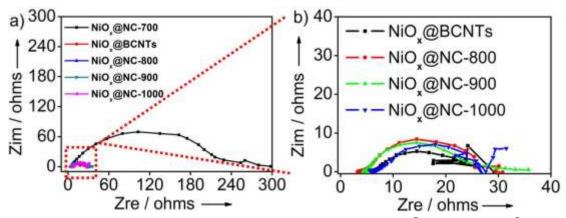
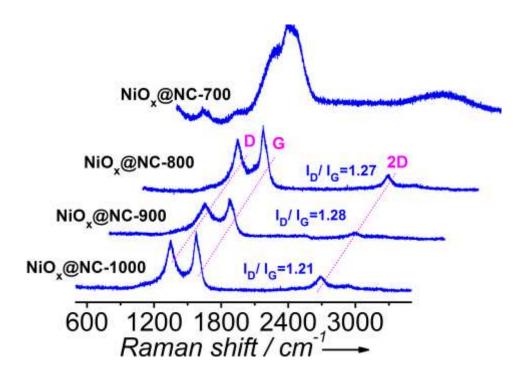




Figure S8. EIS spectra of commercial Ni, NiO and NiO_x@NC-800. The insert showed the enlarged EIS spectra of NiO_x@NC-800.

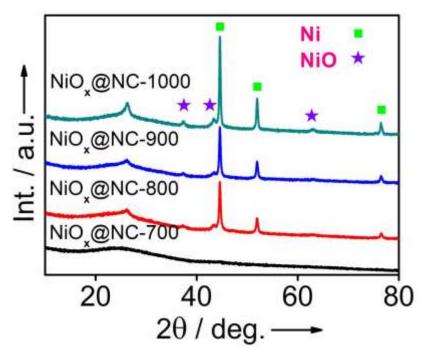
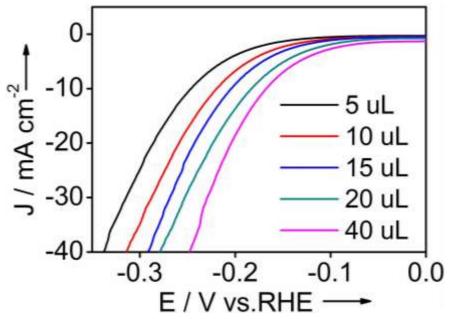


Figure S9. a) EIS spectra of samples calcinated at 700 °C, 1 h, 700 °C, 2h (NiO_x@BCNTs); 800 °C, 1 h; 900 °C, 1 h; 1000 °C, 1 h. b) The enlarged EIS spectra of samples NiO_x@BCNTs; 800 °C, 1 h; 900 °C, 1 h; 1000 °C, 1 h.


Figure S10. Raman spectra of samples calcinated at different temperatures, 1.11 g $Ni(NO_3)_2$ ·6H₂O, 1 h.

On the basis of Raman data (Figure S10), the graphitization degrees of catalysts were determined by obtaining the ratio of intensities of the two bands (i.e., I_D/I_G). The I_D/I_G ratio of NiO_x@NC-800 (I_D/I_G =1.27) is similar to that of NiO_x@NC-900 (I_D/I_G =1.28), and NiO_x@NC-1000 (I_D/I_G =1.21).

Figure S11. XRD of samples with 1.11 g Ni(NO₃)₂·6H₂O calcinated under different temperature for 1 h.

As shown in Figure S11, NiO_x@NC-700 only showed the diffraction peaks of graphite, owing to the formed Ni or NiO with lower crystallinity and smaller particle size under 700 $^{\circ}$ C.

Figure S12. Polarization curves of NiO_x@BCNTs in 1 M KOH with different loading mass.

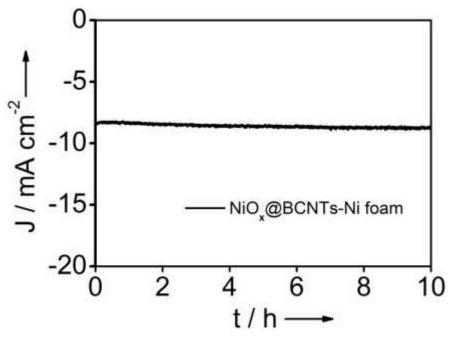


Figure S13. Chronoamperometric response of $NiO_x@BCNTs-Ni$ foam. The corresponding LSV data in Figure 3b was obtained after i-t test.

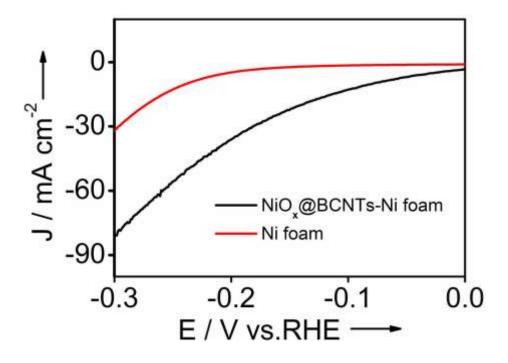


Figure S14. LSV curves of NiO_x@BCNTs on Ni foam and Ni foam.

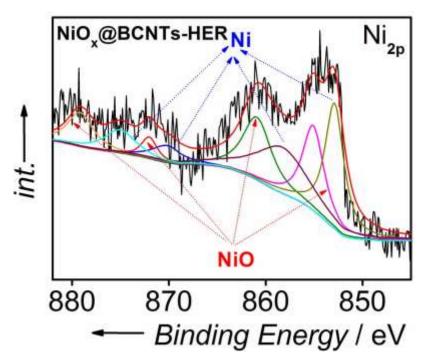


Figure S15. High-resolution Ni_{2p} XPS spectra of $NiO_x@BCNTs$ -HER.

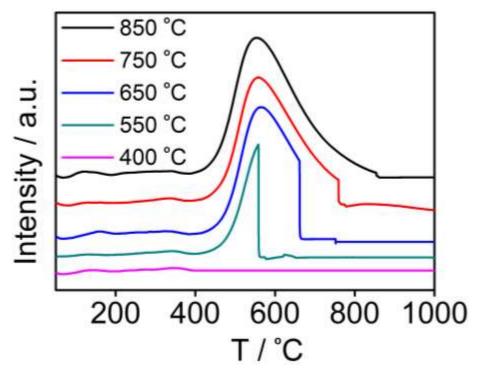
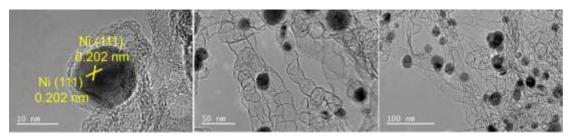
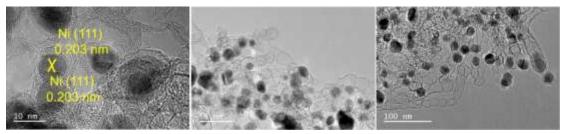
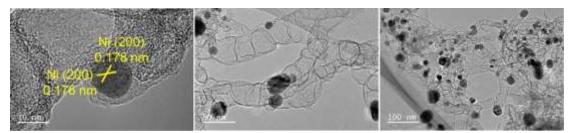




Figure S16. H₂-TPR plots of NiO_x@BCNTs treated with different temperatures.


In order to prevent the H_2 to continue reducing NiO during the cooling process, we immediately switch H_2 to He after reaching the target final temperature. When there is no H_2 in the gas circuit, the curve will show a sudden change in signals.

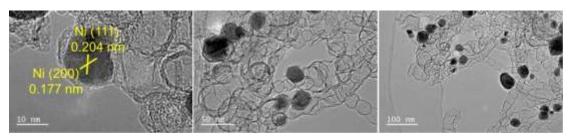

Figure S17. HRTEM images of $NiO_x@BCNTs$ treated via H₂-TPR process under 400 °C.

Figure S18. HRTEM images of $NiO_x@BCNTs$ treated via H₂-TPR process under 550 °C.

Figure S19. HRTEM images of $NiO_x@BCNTs$ treated via H₂-TPR process under 650 °C.

Figure S20. HRTEM images of NiO_x@BCNTs treated via H₂-TPR process under 750 $^{\circ}$ C.

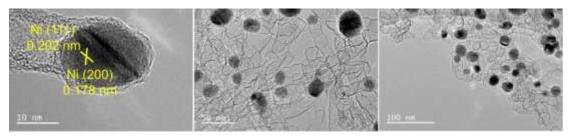
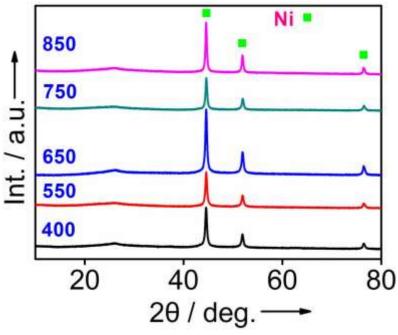
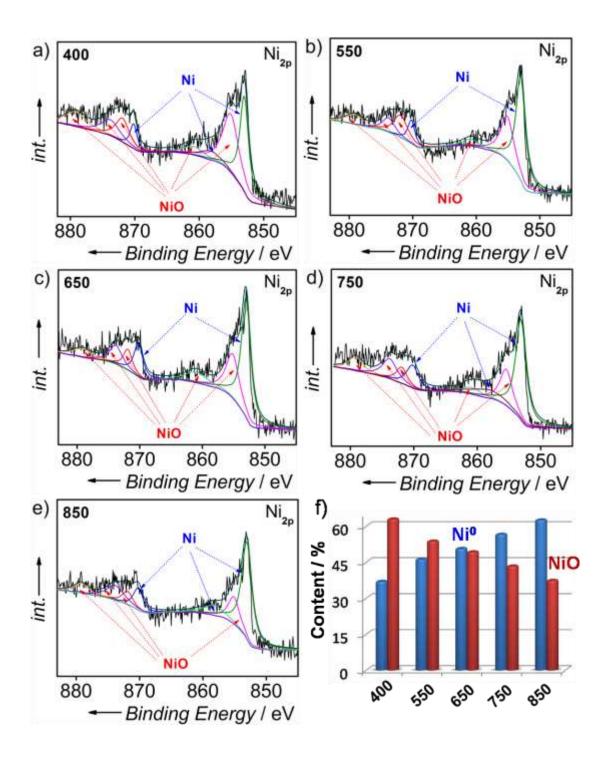


Figure S21. HRTEM images of NiO_x@BCNTs treated via H₂-TPR process under 850 $^{\circ}$ C.





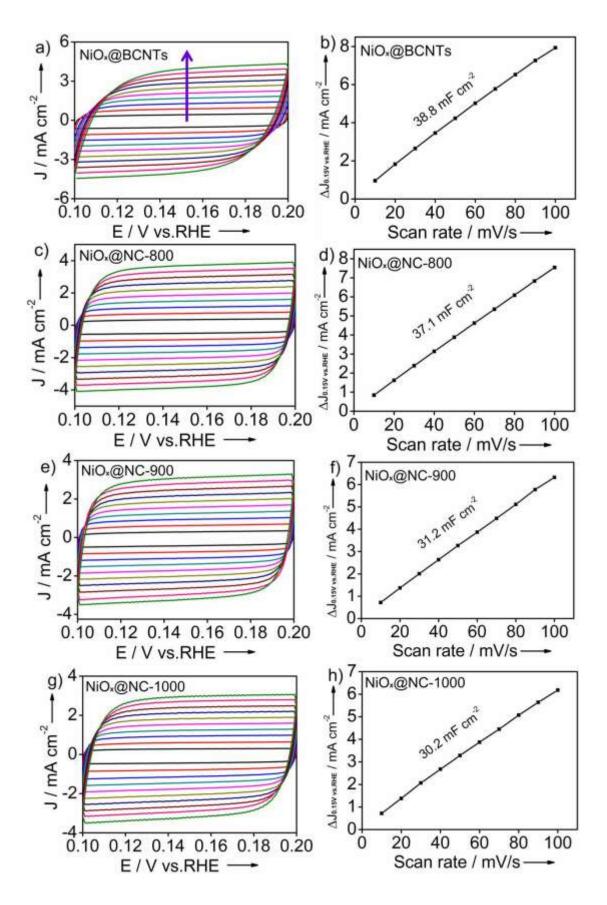

Figure S22. XRD patterns of $NiO_x@BCNTs$ treated via H₂-TPR process under different temperature.

Figure S23. a, b, c, d, e) High-resolution C_{1s} XPS spectra of NiO_x@BCNTs treated via H₂-TPR process under different temperature. f) The content of the C=C, C-C and C-N-C species in products.

Figure S24. a, b, c, d, e) High-resolution Ni_{2p} XPS spectra of $NiO_x@BCNTs$ treated via H₂-TPR process under different temperature. f) The content of the Ni and NiO species in products.

Figure S25. a, c, e, g) Cyclic voltammetry curves of $NiO_x@BCNTs$, $NiO_x@NC-800$, $NiO_x@NC-900$ and $NiO_x@NC-1000$, respectively, at different scan rates under

overpotential from 0.1 to 0.2 V (vs.RHE). The purple arrow indicates the scan rate from 10 mV to 100 mV. b, d, f, h) The differences in current density variation (ΔJ =Ja-Jc) at an overpotential of 0.15 V plotted against scan rate fitted to a linear regression enables the estimation of C_{dl}, where the slope is twice C_{dl}.

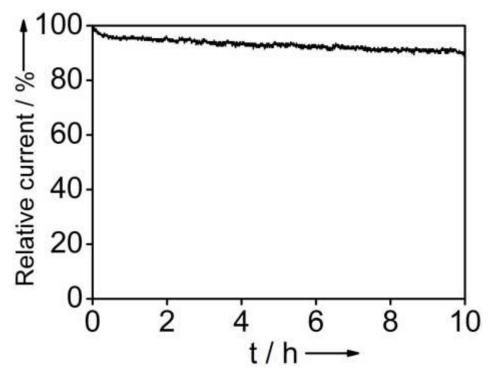


Figure S26. Current-time (i-t) chronoamperometric response of $NiO_x@BCNTs$ in 1 M KOH.

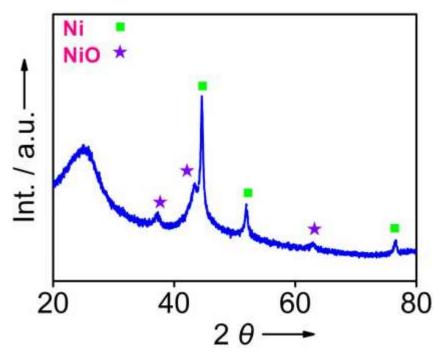
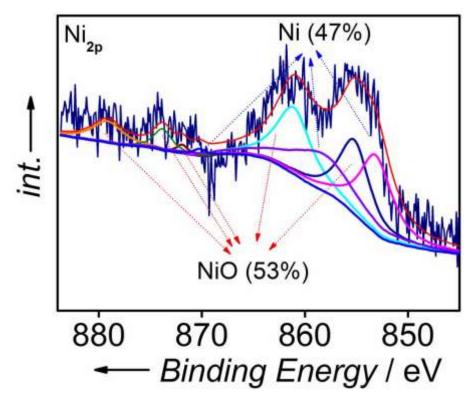



Figure S27. XRD patterns of NiO_x@BCNTs after long-term HER test.

Figure S28. High-resolution Ni_{2p} XPS spectra of NiO_x@BCNTs after long-term HER test.

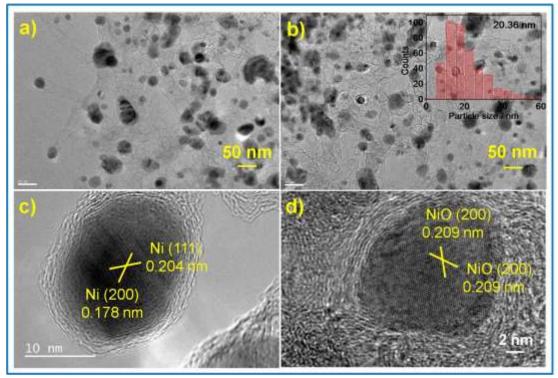


Figure S29. TEM and HRTEM images of NiO_x@BCNTs after long-term HER test

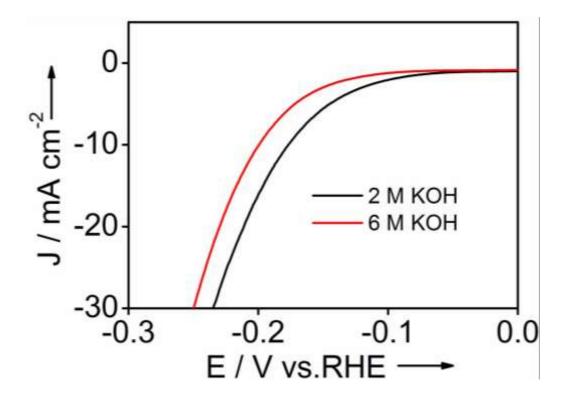


Figure S30. Polarization curves of NiO_x@BCNTs in 2 M KOH and 6 M KOH.

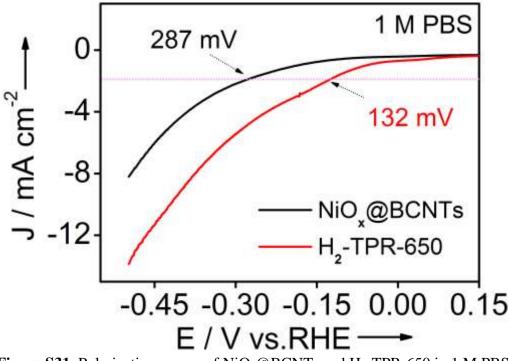
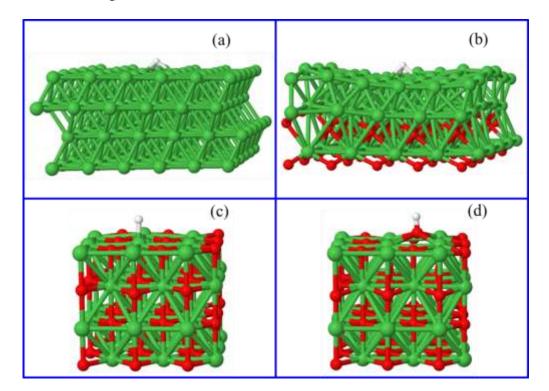


Figure S31. Polarization curves of NiO_x@BCNTs and H₂-TPR-650 in 1 M PBS.


Computational section

Calculations were performed by using periodic, spin-polarized DFT as implemented in Vienna ab initio program package (VASP).³⁻⁴ The electron-ion interactions were described by the projector augmented wave (PAW) method proposed by Blöchl⁵ and implemented by Kresse.⁶ PBE functional⁷ was used as

exchange-correlation functional approximation and a plane wave basis set with an energy cutoff of 400 eV was chosen. A p (6×6) four-layer slab with (1 1 1) surface cleavaged was modeled as the active surface for the inherent Ni⁰. As for the Ni/NiO interface model, a p (5 \times 5) four-layer (1 1 1) NiO slab was embedded under one p (6 \times 6) single layer (1 1 1) Ni⁰ slab (see Figure S32). Only gamma k-point is used for the Brillouin zone sampling for these two models. A p (3×3) four-layer NiO slab with (100) surface was modeled for bulk NiO since this face is most stable.⁸ A ($2 \times 2 \times 1$) k-point sampling is used for NiO model to ensure accuracy. Hubbard-U correction (DFT+U method)⁹ was applied to improve the description of localized Ni d-electrons for Ni⁰/NiO interface model. A value of U = 6.3 eV was set since this value is considered reasonable.¹⁰⁻¹¹ The bottom two layers were kept fixed during the structure optimization. Only gamma k-point is used for the Brillouin zone sampling. The periodic condition is employed along the x and y direction. The vacuum space along the z direction was set to be 15 Å. The relaxation is stopped when the force residue on the atom is smaller than 0.02 eV/Å. The hydrogen binding energy is defined using the equation:¹²

 $E^{H}_{atomic} = E_{H-slab} - E_{slab} - 0.5 \times E_{H2(g)}$

where E_{atomic}^{H} is the binding energy of atomic hydrogen on the given slab, E_{H-slab} is the energy of the slab with one hydrogen adsorbed, E_{slab} is the energy of the slab in a vacuum, and $E_{H2(g)}$ is the energy of hydrogen in the gas phase.

Figure S32. Hydrogen binding on (a) inherent Ni^0 (111); (b) Ni/NiO (111) interface; (c) Ni site of NiO(100); (d) O site of NiO (100). Cyan: nickel; red: oxygen; white: hydrogen.

Reference

 Wang, Y.; Wang, X.; Antonietti, M. Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry. *Angew. Chem., Int. Ed.* **2012**, *51*, 68-89.

(2) Duan, J. J.; Chen, S.; Jaroniec, M.; Qiao, S. Z. Porous C₃N₄ Nanolayers@N-Graphene Films as Catalyst Electrodes for Highly Efficient Hydrogen Evolution. *ACS Nano* **2015**, *9*, 931-940.

(3) Kresse, G.; Furthmüller, J. Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set. *Comput. Mater. Sci.* **1996**, *6*, 15-50.

(4) Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-energy Calculations Using a Plane-wave Basis Set. *Phys. Rev. B* **1996**, *54*, 11169-11186.

(5) Blöchl, P. E. Projector Augmented-wave Method. Phys. Rev. B 1994, 50, 17953-17979.

(6) Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-wave Method. *Phys. Rev. B* **1999**, *59*, 1758-1775.

(7) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, *77*, 3865-3868.

(8) Pacchioni, G.; Di Valentin, C.; Dominguez-Ariza, D.; Illas, F.; Bredow, T.; Kluner, T.; Staemmler, V. Bonding of NH₃, CO, and NO to NiO and Ni-doped MgO: a Problem for Density Functional Theory. *J. Phys.: Condens. Matter* **2004**, *16*, S2497-S2507.

(9) Liechtenstein, A. I.; Anisimov, V. I.; Zaanen, J. Density-functional Theory and Strong
Interactions: Orbital Ordering in Mott-Hubbard Insulators. *Phys. Rev. B* 1995, *52*, R5467-R5470.
(10) Rohrbach, A.; Hafner, J.; Kresse, G. Molecular Adsorption on the Surface of Strongly
Correlated Transition-metal Oxides: A Case Study for CO/NiO(100). *Phys. Rev. B* 2004, *69*, 075413-1-075413-13.

(11) Rohrbach, A.; Hafner, J. Molecular Adsorption of NO on NiO(100): DFT and DFT+UCalculations. *Phys. Rev. B* 2005, *71*, 045405-1-045405-7.

(12) Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.;
Stimming, U. Trends in the Exchange Current for Hydrogen Evolution. *J. Electrochem. Soc.* 2005, *152*, J23-J26.