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S1. General synthetic scheme
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S2. Synthetic procedures

Benzimidazolium salts 1-5, benzimidazole-based NHC-AgBr (j-b-AgBr, j = 1-5) and NHC-
CuBr complexes, imidazole-based NHC-AgBr (j-i-AgBr, j = 1-3) complexes, and (TBDMS),Se
were synthesized according to modified literature procedures.'™ The following abbreviations are
used: s = singlet, d = doublet, t = triplet, q = quadruplet, m = multiplet, br = broad.

1,3-(Ditetradecyl)benzimidazolium bromide (1)." Benzimidazole (2.36 g, 20.0 mmol), K,CO;
e (2.76 g, 20.0 mmol), n-tetradecyl bromide (18 mL, 60 mmol) and
CH;3CN (20 mL) were added into a three-neck flask and stirred at reflux
NN (~85 °C) for 24 h. After the reaction, the solvent was removed under
CigHae™ N+ “Cuatze reduced pressure, and the resulting solid was dissolved in CH,Cl,. The
mixture was filtered to remove the KBr precipitate. The filtrate was then concentrated under
reduced pressure. After, the residue was recrystallized from CH,Cly/pentane and dried under
vacuum to yield a white solid (6.8 g, 57%). 'H NMR (400 MHz, CDCls) 6 11.56 (s, 1H),
7.71-7.63 (m, 4 H), 4.62 (t, J = 7.6 Hz, 4H), 2.10-2.00 (m, 4H), 1.45-1.2 (m, 44H), 0.87 (t, J =
7.1 Hz, 6H). >C NMR (125 MHz, CDCls) 6 143.06, 131.46, 127.18, 113.18, 47.82, 32.04, 29.79,
29.76, 29.70, 29.68, 29.62, 29.51, 29.47, 29.17, 22.81, 14.24.

1,3-(Didecyl)benzimidazolium bromide (2). Benzimidazole (2.36 g, 20.0 mmol), K»COs (2.76 g,

; ; Br 20.0 mmol), n-decyl bromide (13 mL, 60 mmol) and CH3CN (20 mL)

were added into a three-neck flask and stirred at reflux (~85 °C) for 24 h.

After the reaction, the solvent was removed under reduced pressure,

C1on1/N\/’}rl\C1on1 followed by the dissolution in CH,Cl,. The mixture was filtered to

remove the KBr precipitate. The filtrate was then concentrated under reduced pressure. After,

the residue was recrystallized from CH,Cly/pentane and dried under vacuum to yield a white

solid (3.4 g, 35%). "H NMR (500 MHz, CDCls) 6 11.56 (s, 1H), 7.71-7.65 (m, 4 H), 4.62 (t, J =

7.49 Hz, 4H), 2.08-2.02 (m, 4H), 1.43-1.23 (m, 28H), 0.86 (t, J= 6.64 Hz, 6H). °C NMR (125

MHz, CDCl3) 6 142.94, 131.45, 127.19, 113.19, 47.82, 31.93, 29.66, 29.55, 29.48, 29.33, 29.15,
26.67,22.75, 14.20.

1,3-(Dioctyl)benzimidazolium bromide (3). Benzimidazole (2.36 g, 20.0 mmol), K,COs (2.76 g,
g 20.0 mmol), n-octyl bromide (12 mL, 60 mmol) and CH;CN (20 mL)

were added into a three-neck flask and stirred under reflux (~85 °C) for

24 h. After the reaction, the solvent was removed under reduced
CeHi NN ~CgH,, pressure, followed by the dissolution in CH,Cl,. The mixture was
filtered to remove the KBr precipitate. The filtrate was then concentrated under reduced pressure.
After, the residue was recrystallized from CH,Cly/pentane and dried under vacuum to yield a
white solid (2.5 g, 30%). 'H NMR (500 MHz, CDCls) 6 11.49 (s, 1H), 7.71-7.64 (m, 4 H), 4.62
(t, J = 7.52 Hz, 4H), 2.08-2.02 (m, 4H), 1.44-1.23 (m, 20H), 0.85 (t, J = 6.70 Hz, 6H). "“C
NMR (125 MHz, CDCl;) 6 142.85, 131.43, 127.20, 113.19, 47.81, 31.76, 29.63, 29.12, 29.08,
26.65, 22.65, 14.13.
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1,3-(Dihexyl)benzimidazolium bromide (4). Benzimidazole (2.36 g, 20.0 mmol), K»COs (2.76 g,
g 20.0 mmol), n-hexyl bromide (5.6 mL, 40 mmol) and CH3CN (20 mL)

were added into a three-neck flask and stirred under reflux (~85 °C) for

24 h. After the reaction, the solvent was removed under reduced
CoHi N~ N~CyH,; pressure, followed by the dissolution in CH,Cl,. The mixture was
filtered to remove the KBr precipitate. The filtrate was then concentrated under reduced pressure.
After, the residue was recrystallized from CH,Cly/pentane and dried under vacuum to yield a
white solid (3.2 g, 44%). 'H NMR (500 MHz, CDCls) 6 11.60 (s, 1H), 7.71-7.65 (m, 4 H), 4.62
(t, J = 7.52 Hz, 4H), 2.08-2.02 (m, 4H), 1.42-1.33 (m, 12H), 0.87 (t, J = 7.52 Hz, 6H). "“C
NMR (125 MHz, CDCl3) 6 143.06, 131.46, 127.21, 113.18, 47.82, 31.27, 29.64, 26.35, 22.54,
14.06.

1,3-(Diethyl)benzimidazolium bromide (5). Benzimidazole (2.36 g, 20.0 mmol), K,COs (2.76 g,
- 20.0 mmol), n-ethyl bromide (3.0 mL, 40 mmol) and CH3CN (20 mL)

Br
were added into a three-neck flask and stirred under reflux (~85 °C) for
24 h. After the reaction, the solvent was removed under reduced
CZH5/N\/N\C2H5 pressure, followed by the dissolution in CH,Cl,. The mixture was

filtered to remove the KBr precipitate.  The filtrate was then
concentrated under reduced pressure. After, the residue was recrystallized from CH,Cl,/pentane
and dried under vacuum to yield a white solid (3.3 g, 66%). 'H NMR (500 MHz, CDCl;)
8 11.28 (s, 1H), 7.75-7.62 (m, 4 H), 4.67 (q, J = 7.34 Hz, 4H), 1.70 (t, J = 7.36 Hz, 6H). "°C
NMR (125 MHz, CDCls) 6 142.04, 131.22, 127.25, 113.17, 42.99, 14.98.

NHC-AgBr (1-b-AgBr).! Ag,0 (0.56 g, 2.4 mmol) was added to a solution of 1 (1.2 g, 2.0
mmol) in dried CH,Cl, (40 mL). The mixture was refluxed for 20 h,
and excess Ag,O was filtered away. The filtrate was concentrated
under reduced pressure. After, the residue was recrystallized from

CoaHos™ \( ~CyuHoe CHgClz/pentane1 and dried under vacuum to yield a light brown solid
(0.94 g, 74%). 'H NMR (500 MHz, CD,Cl,) 6 7.51 (dd, J=5.9 and 3.0

AgBr Hz, 2H), 7.43 (dd, J = 6.0 and 3.2 Hz, 2 H), 4.62 (t, J = 7.3 Hz, 4H),

2.10-1.9 (m, 4H), 1.4-1.1 (m, 44H), 0.87 (t, J = 6.7 Hz, 6H). "°C NMR (125 MHz, CD,Cl,)

0134.27, 12441, 112.14, 50.14, 32.50, 30.81, 30.26, 30.23, 30.20, 30.12, 30.04, 29.93, 29.81,

27.40, 23.27, 14.45.

NHC-AgBr (2-b-AgBr). Ag,O (0.56 g, 2.4 mmol) was added to a solution of 2 (0.96 g, 2.0
mmol) in dried CH,Cl, (40 mL). The mixture was refluxed for 20 h, and
excess AgrO was filtered away. The filtrate was concentrated under

‘Y reduced pressure. After, the residue was recrystallized from
CioH2™ TCioH21 CH,Clo/pentane and dried under vacuum to yield a white solid (0.65 g,
AgBr 56%). 'H NMR (500 MHz, CDCl;) 67.49 (dd, J = 6.2 and 3.1 Hz, 2H),

7.41 (dd, J= 6.1 and 3.1 Hz, 2 H), 4.39 (t, /= 7.3 Hz, 4H), 1.93-1.87 (m,
4H), 1.33-1.24 (m, 28H), 0.86 (t, J = 6.8 Hz, 6H). '*C NMR (125 MHz, CDCls) 6 133.79,
124.12, 111.66, 49.76, 31.97, 30.50, 26.61, 29.57, 29.39, 29.37, 27.00, 22.80, 14.24.
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NHC-AgBr (3-b-AgBr). Ag,O (0.56 g, 2.4 mmol) was added to a solution of 3 (0.85 g, 2.0
mmol) in dried CH,Cl, (40 mL). The mixture was refluxed for 20 h, and
excess AgrO was filtered away. The filtrate was concentrated under
reduced pressure. After, the residue was recrystallized from

CeHi— N~ _N~cgH,; CH>Cly/pentane and dried under vacuum to yield a light grey solid (0.62

\( g, 59%). 'H NMR (500 MHz, CDCl;) 67.48 (dd, J = 6.2 and 3.0 Hz,
2H), 7.41 (dd, J = 6.1 and 3.1 Hz, 2 H), 439 (t, J = 7.3 Hz, 4H),
1.93-1.87 (m, 4H), 1.36-1.24 (m, 20H), 0.86 (t, J = 6.5 Hz, 6H). >C NMR (125 MHz, CDCl;)

0133.797,124.13, 111.67, 49.77, 31.86, 30.50, 29.33, 29.23, 27.00, 22.73, 14.20.

AgBr

NHC-AgBr (4-b-AgBr). Ag,O (0.56 g, 2.4 mmol) was added to a solution of 4 (0.73 g, 2.0
mmol) in dried CH,Cl, (40 mL). The mixture was refluxed for 20 h, and
excess AgrO was filtered away. The filtrate was concentrated under
reduced pressure. After, the residue was recrystallized from

Cotis— N~N~cH; CH:Cly/pentane and dried under vacuum to yield a light grey solid (0.47

g, 50%). 'H NMR (500 MHz, CDCl;) 7.49 (dd, J = 6.5 and 3.4 Hz,

2H), 7.41 (dd, J = 6.2 and 3.4 Hz, 2 H), 439 (t, J = 7.3 Hz, 4H),

1.94-1.86 (m, 4H), 1.33-1.31 (m, 12H), 0.87 (t, J= 7.3 Hz, 6H). *C NMR (125 MHz, CDCl;)

0133.77, 124.14, 111.66, 49.76, 31.48, 30.45, 26.63, 22.60, 14.10.

AgBr

NHC-AgBr (5-b-AgBr). Ag,O (0.56 g, 2.4 mmol) was added to a solution of 5 (0.51 g, 2.0
mmol) in dried CH,Cl, (40 mL). The mixture was refluxed for 20 h, and
excess AgrO was filtered away. The filtrate was concentrated under
reduced pressure. After, the residue was recrystallized from

CoHe N N\C2H5 CH,Cly/pentane and dried under vacuum to yield a light grey solid (0.33

\( g, 46%). 'H NMR (500 MHz, CDCl3) 67.50 (dd, J = 6.1 and 3.1 Hz,
AgBr 2H), 7.42 (dd, J= 6.1 and 3.1 Hz, 2 H), 4.47 (q, J = 7.3 Hz, 4H), 1.53 (t,
J=17.3 Hz, 6H). PC NMR (125 MHz, CD,Cl,) 8 133.48, 124.24, 111.58, 44.74, 16.12.

NHC-AgBr (1-i-AgBr).” Imidazole (2.0 g, 30 mmol), KOH (3.3 g, 60 mmol), n-tetradecyl
[\ bromide (9.0 mL, 30 mmol) and CH3CN (17 mL) were added into a
C14H29/N\(N\C14H29 three-neck flask under nitrogen and stirred under reflux (~85 °C) for 20 h.
After the reaction was finished, CH;CN was removed under reduced

pressure. The solid was then dissolved in CH,Cl,, washed with water (2
x 100 mL) and brine (100 mL), and dried by Na,SO4. An orange oil was obtained after the liquid
was concentrated by vacuum. Subsequently, n-tetradecyl bromide (9.0 mL, 30 mmol) and
toluene (20 mL) were added to the product under nitrogen, and the mixture was stirred under
reflux for 48 h. The solvent was then evaporated to give a red oil (6). Ag,O (0.56 g, 2.4 mmol)
was added to a solution of 6 (1.2 g, 2.0 mmol) in dried CH,Cl, (40 mL). The mixture was
refluxed for 20 h before filtering off excess Ag,O. The CH,Cl, was then removed under reduced
pressure. An orange powder (1-i-AgBr, 0.26 g, 20%) was obtained after adding excess acetone
to the organic residue, and drying under vacuum. '"H NMR (500 MHz, CDCls) 8 6.95 (s, 2H),
4.07 (t, J = 7.3 Hz, 4H), 1.82-1.77 (m, 4H), 1.29-1.25 (m, 44H), 0.88 (t, J = 6.8 Hz, 6H). "°C

AgBr
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NMR (125 MHz, CDCls) 6 120.78, 52.28, 32.08, 31.63, 29.84, 29.81, 29.77, 29.68, 29.59, 29.51,
29.30, 26.63, 22.85, 14.28.

NHC-AgBr (2-i-AgBr). 4,5-diphenylimidazole (3.3 g, 15 mmol), KOH (1.7 g, 30 mmol), n-
Ph Ph tetradecyl bromide (4.5 mL, 15 mmol) and CH3CN (9 mL) were added
>=< into a three-neck flask under nitrogen and stirred under reflux (~85 °C)
CiaHae NN ~CHys for 20 h. After the reaction was finished, CH;CN was removed under
\( reduced pressure. The solid was then dissolved in CH,Cl,, washed with
water (2 x 100 mL) and brine (100 mL), and dried by Na,SO4. A white
solid was obtained after the liquid was concentrated by vacuum. Subsequently, n-tetradecyl
bromide (4.5 mL, 15 mmol) and toluene (10 mL) were added to the product under nitrogen, and
the mixture was stirred under reflux for 48 h. The solvent was then evaporated to give a white
solid (7). Ag,O (0.56 g, 2.4 mmol) was added to a solution of 7 (1.4 g, 2.0 mmol) in dried
CH,ClI; (40 mL). The mixture was refluxed for 20 h before filtering excess Ag,O. The CH,Cl,
was then removed under reduced pressure. A white solid (2-i-AgBr, 0.78 g, 49%) was obtained
after adding excess acetone to the organic residue, and drying under vacuum. '"H NMR (500
MHz, CDCl3) 6 7.36-7.31 (m, 6H), 7.18-7.16 (m, 4H), 4.07-4.04 (t, 4H), 1.62-1.57 (m, 4H),
1.31-1.12 (m, 44H), 0.87 (t, J = 6.9 Hz, 6H). °C NMR (125 MHz, CDCls) 6 131.89, 130.55,
129.26, 128.89, 128.23, 50.01, 32.07, 31.77, 29.83, 29.80, 29.74, 29.62, 29.51, 29.44, 29.03,
26.53,22.84, 14.27.

AgBr

NHC-AgBr (3-i-AgBr). 4,5-dichloroimidazole (2.0 g, 15 mmol), KOH (1.7 g, 30 mmol), n-
cl Cl tetradecyl bromide (4.5 mL, 15 mmol) and CH3CN (9 mL) were added
>=< into a three-neck flask under nitrogen and stirred under reflux (~85 °C)
CiaHag NN ~CHy for 20 h. After the reaction was finished, CH;CN was removed under
\( reduced pressure. The solid was then dissolved in CH,Cl,, washed with
water (2 x 100 mL) and brine (100 mL), and dried by Na,SO4. An
orange oil was obtained after the liquid was concentrated by vacuum. Subsequently, n-tetradecyl
bromide (4.5 mL, 15 mmol) and toluene (10 mL) were added to the product under nitrogen, and
the mixture was stirred under reflux for 48 h. The solvent was then evaporated to give a red oil
(8). Ag,0 (0.56 g, 2.4 mmol) was added to a solution of 8 (1.2 g, 2.0 mmol) in dried CH,Cl, (40
mL). The mixture was refluxed for 20 h before filtering off excess Ag>O. The CH,Cl, was then
removed under reduced pressure. A pale grey powder (3-i-AgBr, 0.28 g, 20%) was obtained
after adding excess acetone to the organic residue, and drying under vacuum. '"H NMR (600
MHz, CDCls) 64.13 (t, 4H), 1.82-1.77 (m, 4H), 1.32-1.25 (m, 44H), 0.88 (t, /= 7.1 Hz, 6H).
C NMR (150 MHz, CDCl3) 8 117.17, 51.43, 32.07, 30.98, 29.83, 29.80, 29.76, 29.68, 29.56,
29.51,29.27,26.57,22.84, 14.27.

AgBr

NHC-CuBr (1-b-CuBr).> Cu,O (0.34 g, 2.4 mmol) was added to a solution of 1 (1.2 g, 2.0
mmol) in dried 1,4-dioxane (40 mL). The mixture was refluxed for 20 h,
and excess Cu,O was then filtered off. The filtrate was concentrated
under reduced pressure. The solid was isolated by filtration, and washed

C14H29/N N\C14H29

CuBr S6



with hexanes. After drying under vacuum, the title compound was obtained as a brown solid
(0.9 g, 74%). 'H NMR (500 MHz, CD,Cl,) 6 7.48 (dd, J = 6.0 and 3.0 Hz, 2H), 7.40 (dd, J = 6.0
and 3.0 Hz, 2 H), 4.62 (t, J = 7.2 Hz, 4H), 2.10-1.9 (m, 4H), 1.4-1.1 (m, 44H), 0.87 (t, J = 6.8
Hz, 6H). "“C NMR (125 MHz, CD,Cl,) 8 124.25, 111.94, 49.49, 32.50, 30.82, 30.26, 30.23,
30.20, 30.12, 30.04, 29.93, 29.78, 27.38, 23.27, 14.45.

(TBDMS),Se.* 0.62 g (27 mmol) Na, 1.07 g (13.0 mmol) Se powder, and 0.10 g (0.78 mmol)
CioHs were weighed into a three-neck Schlenk flask. 60 mL of dried THF was added. The
solution was refluxed under a nitrogen atmosphere for 4 h, followed by cooling to room
temperature. The dark solution was further cooled to 0 °C by an ice bath. 4.07 g (27.0 mmol)
(‘BuMe;Si),C1 was added to the solution at 0 °C. The reaction mixture was allowed to stir with
warming to room temperature overnight, and residual solids were filtered away. The filtrate was
concentrated under reduced pressure and dried under vacuum. A reddish solid product was then
obtained (3 g, 75%). 'H NMR (400 MHz, C¢Dg) 6 1.01 (s, 9H), 0.37 (s, 6H). °C NMR (125
MHz, C¢Dg) 626.47, 19.40, 0.38.

Control experiment #1: Synthesis of Ag>S ODs using oleate ligands under ambient conditions.
Ag(oleate) was prepared by dissolving Ag,O (115 mg, 0.500 mmol) with excess oleic acid (5
mL) at 100 °C for 2 h. A clear Ag(oleate) solution was obtained and subsequently diluted with 15
mL of CH,Cl; to give a 50 mM Ag(oleate) stock solution. 0.5 mL of (TMS),S/ODE (0.1 M) was
injected rapidly into 2 mL of the Ag(oleate) stock solution. The reaction mixture was allowed to
stir at room temperature for 1 h before precipitation from excess acetone and redispersion in
toluene.

Control experiment #2: Synthesis of Ag»S nanocrystals using oleylamine under ambient
conditions. AgBr(oleylamine) was prepared by dissolving AgBr (190 mg, 1.00 mmol) with
excess oleylamine (5 mL) at 120 °C for 3 h. A clear AgBr(oleylamine) solution was obtained and
subsequently diluted with 15 mL of toluene to give a 50 mM AgBr(oleylamine) stock solution.
0.5 mL of (TMS),S/ODE (0.1 M) was injected rapidly into 2 mL of the AgBr(oleylamine) stock
solution. The reaction mixture was allowed to stir at room temperature for 1 h before
precipitation from excess acetone and redispersion in toluene.
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S3. Reaction kinetics monitored by UV-vis-NIR absorption and TEM analysis
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Figure S1. (a,b): UV-vis-NIR absorption spectra of in-situ reaction of Ag,S QDs (from 1-b-
AgBr) and Cu,.,S (from 1-b-CuBr), respectively. (c—e) TEM micrographs of Ag,S QDs at
various time points. Size analysis reveals d = 7.8 = 0.8 nm (5 min), to 8.2 + 0.7 nm (30 min), and
10.3 = 0.6 nm (60 min) (300 counts for each). (f~h) TEM micrographs of Cu,_S QDs at different
time points. Size analysis presents d = 6.8 = 1.0 nm (5 min), to 8.4 = 1.2 nm (30 min), and 8.8 =
0.8 nm (60 min) (300 counts for each).
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S4. TEM micrographs of Ag,S QDs prepared from oleate and oleylamine ligands

Figure S2. (a,b) TEM micrographs of AgS QDs prepared from Ag(oleate), and
AgBr(oleylamine) under ambient conditions, respectively.
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S5. XRD data of Ag,S from various NHC-AgBr complexes
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Figure S3. XRD patterns of the purified products prepared from different benzimidazole-based
NHC-AgBr complexes (j-b-AgBr, j = 1-5) (a), and imidazole-based NHC-AgBr complexes (j-i-
AgBr, j = 1-3) (b). All of the products are phase-pure monoclinic Ag,S (PDF#00-014-0072).

S6. TEM micrographs of Ag,S QDs prepared from various benzimidazole-based NHC-
AgBr

Figure S4. (a—d) TEM micrographs of Ag,S QDs prepared from 1-b-AgBr (10.3 + 0.6 nm), 2-b-
AgBr (9.7 = 0.6 nm), 3-b-AgBr (9.2 = 1.0 nm), and 4-b-AgBr (9.6 = 1.0 nm) complex,
respectively. The insets on the upper right corner of each micrograph are photos of each solution
mixture after a 1 h reaction. No precipitates were observed in the reaction using 1-b-AgBr
complex, while black solids were observed from solutions using 2-b-AgBr, 3-b-AgBr, and 4-b-
AgBr complex. More aggregates were observed as the length of N-alkyl chains decrease (from
2-b-AgBr, 3-b-AgBr, to 4-b-AgBr). The insets on the upper left corner of (c) and (d) were
representative TEM images of corresponding Ag,S QDs, showing aggregates upon synthesized.
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S7. High-resolution XPS spectra of NHC-AgBr, NHC-Ag,S and NHC-Cu, .S QDs
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Figure S5. High-resolution XPS spectra of NHC-AgBr (1-b-AgBr, a—c), NHC-Ag,S QDs (d-g),
and NHC-Cu,_,S QDs (h-k). The absence of the strong Cu”" satellite peaks (at 942 eV and 962
eV) in (h) proves that the oxidation state of Cu,_S NCs is mostly Cu’.
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S8. FT-IR spectra and TGA traces of NHCAgBr, NHC-Ag,S, and NHC-Cu,_.S QDs
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Figure S6. (a) FT-IR spectra and (b) TGA traces of NHC-AgBr (1-b-AgBr), NHC-Ag,S, and
NHC-Cu,,S QDs.
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S9. Calculations of NHC ligands on the surface of Ag,S QDs

The number of NHC ligands per QD can be calculated based on the mass loss from TGA and the
mean radius of QDs obtained from TEM analysis. The calculations are performed below:

NHC molecular weight (1 minus proton and bromine): myrc = 510.49 g/mol
Mug2s = 247.7 g/mol; Density pag2s = 7.23 g/em’

dAgQS =10 nm

Assuming each ligand is binding to X number of Ag,S units, we can solve for the ratio of

NHC:Ag,S. Define X=II\\;N—HC where N is the number of atoms.
Ag2S

For Ag,S QDs, since the mass percentage of NHC ligands is 10%, we have:

0.073 = — X*MNHC

(X*mygc + Magas )

X = INHE _ () 038

Nagzs
# of NHC ligands per Ag,S QD = V*density*(Avogardro’s number) *(ratio NHC:Ag,S)/mags =

‘3—‘*Pi*r3*7.23*6.02*1023*0.038
2477

=346 NHC/1-Ag,S QD

Here we assume a smooth, spherical Ag,S QD.
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$10. "H NMR and “C NMR spectra of the benzimidazolium salt, NHC-AgBr, NHC-CuBr
complexes and (TBDMS),Se
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Figure S7. "H NMR spectrum of 1 in CDCl.
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Figure S16. °C NMR spectrum of 5 in CDCls.
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Figure S19. 'H NMR spectrum of 2-b-AgBr in CDCl;.
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Figure S30. °C NMR spectrum of 2-i-AgBr in CDCl;.
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Figure S33. 'H NMR spectrum of 1-b-CuBr in CD,Cl,.
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Figure S34. °C NMR spectrum of 1-b-CuBr in CD,Cl,.
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Figure S36. °C NMR spectrum of (TBDMS),Se in C¢De.

References

1. Ling, X.; Roland, S.; Pileni, M.-P., Supracrystals of N-Heterocyclic Carbene-Coated Au
Nanocrystals. Chem. Mater. 2015, 27, 414-423.

2. Chun, J.; Lee, H. S.; Jung, I. G.; Lee, S. W.; Kim, H. J.; Son, S. U., Cu20: A Versatile Reagent

for Base-Free Direct Synthesis of NHC-Copper Complexes and Decoration of 3D-MOF with
Coordinatively Unsaturated NHC-Copper Species. Organometallics 2010, 29, 1518-1521.

3. Mebrouk, K.; Camerel, F.; Jeannin, O.; Heinrich, B.; Donnio, B.; Fourmigué, M., High
Photothermal Activity within Neutral Nickel Dithiolene Complexes Derived from Imidazolium-Based
Ionic Liquids. /norg. Chem. 2016, 55, 1296-1303.

4, Hatanpai, T.; Pore, V.; Ritala, M.; Leskeld, M., Alkylsilyl Compounds of Selenium and
Tellurium: New Precursors for ALD. ECS Trans. 2009, 25, 609-616.

S43



