Supporting Information

Intriguing Indium-salen Complexes as Multicolor Luminophores

Seon Hee Lee, ${ }^{\dagger, \perp}$ Nara Shin, ${ }^{\ddagger, \perp}$ Sang Woo Kwak, ${ }^{\S}$ Kyunglim Hyun, ${ }^{\S}$ Won Hee Woo, ${ }^{\S}$ Ji Hye Lee, ${ }^{\ddagger}$ Hyonseok Hwang, ${ }^{\ddagger}$ Min Kim, ${ }^{\S}$ Junseong Lee, ${ }^{\|}$Youngjo Kim,,*§ Kang Mun Lee,*, ${ }^{\ddagger}$ and Myung Hwan Park** ${ }^{\dagger}$
${ }^{\dagger}$ Department of Chemistry Education, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
${ }^{\dagger}$ Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
${ }^{\S}$ Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
"Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea

Contents

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S2
Crystallographic data and parameters for compound 3, 4, and 5 S10
Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathbf{3 , 4}$, and 5 S11
UV/Vis absorption and PL spectra in cyclohexane for 1-7 S12
UV/Vis absorption and PL spectra in DMSO for 1-7 S12
PL spectra in solid state for 1-7 S12
Emission decay curve of 1-7 in THF solution S13
Cyclic voltammograms of $\mathbf{1 - 7}$ S14
Details of selected frontier orbitals of 1-7 at S_{0} or S_{1} state S15
Frontier molecular orbitals for 1-7 at their ground state (S_{0}) S29
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for InMe_{3} S30

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectra of 3 (top) and $\mathbf{4}$ (bottom) in THF-d ${ }^{8}$ and THF-d ${ }^{8} / \mathrm{D}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v}=4 / 1)$

$\stackrel{10}{i}$
$\stackrel{\circ}{i}$

$\stackrel{\text { N }}{\substack{0}}$
$\stackrel{8}{i}$

Figure S2. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ (bottom) NMR spectra of $\mathbf{1}$ ($*$ from residual CHCl_{3} in CDCl_{3}).

毋 ¢	¢ ¢ ¢ ¢ ¢
응	
T	¢「-

Figure S3. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ (bottom) NMR spectra of 2 (* from residual CHCl_{3} in CDCl_{3}).

$\stackrel{\square}{i}$
$\stackrel{\infty}{\infty}$

$\stackrel{m}{i}$

Figure S4. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ (bottom) NMR spectra of 3 (* from residual CHCl_{3} in CDCl_{3}).
ゥmмmmmmmm
$\stackrel{\sim}{\sim}$
N

Figure S5. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ (bottom) NMR spectra of 4 (* from residual CHCl_{3} in CDCl_{3}).

Figure S6. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ (bottom) NMR spectra of 5 (* from residual CHCl_{3} in CDCl_{3}).

Figure S7. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ (bottom) NMR spectra of 6 (* from residual CHCl_{3} in CDCl_{3}).

Figure S8. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ (bottom) NMR spectra of 7 (*from residual $\mathrm{CH}_{3} \mathrm{CN}$ and $\boldsymbol{\Delta}$ from residual $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{CD}_{3} \mathrm{CN}$).

Table S1. Crystallographic data and parameters for compound 3, 4, and 5

Compound	3	$\left(4 \cdot \mathrm{O}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right)_{2}$	5
Formula	$\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{Br}_{2} \mathrm{In}_{1} \mathrm{~N}_{2} \mathrm{O}_{2}$	$\mathrm{C}_{78} \mathrm{H}_{86} \mathrm{In}_{2} \mathrm{~N}_{4} \mathrm{O}_{5}$	$\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{In}_{1} \mathrm{~N}_{2} \mathrm{O}_{4}$
Fomula weight	666.16	1389.14	568.40
Crystal system	Trigonal	Monoclinic	Orthorhombic
Space group	R_{-3}	P2 ${ }_{1} / n$	Pbca
$a(\AA)$	40.4131(5)	15.8881(10)	8.7418(13)
$b(\AA)$	40.4131(5)	28.3612(17)	24.418(4)
$c(\AA)$	9.8061(2)	18.5279(12)	25.523(4)
$\alpha\left({ }^{\circ}\right)$	90	90	90
$\beta\left({ }^{\circ}\right)$	90	107.547(4)	90
$\gamma\left({ }^{\circ}\right)$	120	90	90
$V\left(\AA^{3}\right)$	13869.8(5)	7960.3(9)	5448.1(15)
Z	18	4	8
$\rho_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.436	1.159	1.386
$\mu\left(\mathrm{mm}^{-1}\right)$	3.380	0.626	0.901
$F(000)$	5940	2880	2352
T (K)	100	296	100
Scan mode	multi	multi	multi
	$-45 \rightarrow+45$,	$-18 \rightarrow+19$,	$-10 \rightarrow+10$,
$h k l$ range	$-48 \rightarrow+48$,	$-34 \rightarrow+34$,	$-29 \rightarrow+29,$
	$-11 \rightarrow+11$	$-22 \rightarrow+22$	$-30 \rightarrow+30$
Measd reflns	30805	66682	63588
Unique reflns [$R_{\text {int }}$]	5666 [0.0736]	9726 [0.1087]	4979 [0.0573]
Reflns used for refinement	5666	9726	4979
Refined parameters	296	863	316
$\mathrm{R}_{1}{ }^{\text {a }}$ ($\mathrm{I}>2 \sigma(\mathrm{I})$)	0.0402	0.0811	0.0444
$\mathrm{wR}_{2}{ }^{\text {b }}$ all data	0.1016	0.2434	0.1163
GOF on F^{2}	1.014	1.024	1.021
$\rho_{\text {fin }}(\mathrm{max} / \mathrm{min})\left(\mathrm{e} \AA^{-3}\right)$	0.909, -1.602	1.106, -1.677	1.142, -0.737
${ }^{a} \mathrm{R}_{1}=\sum\| \| F \mathrm{o}\|-\|F \mathrm{c}\|\| \sum\|F \mathrm{o}\| .{ }^{b} w \mathrm{R}_{2}=\left\{\left[\sum w\left(\mathrm{Fo}^{2}-F^{2}\right)^{2}\right] /\left[\sum w\left(F \mathrm{o}^{2}\right)^{2}\right]\right\}^{1 / 2}$.			

Table S2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 3, 4, and 5

Compound	3	4	5
lengths			
In-N1	2.242(3)	2.242(6)	2.250(4)
In-N2	2.236 (3)	2.239(6)	2.255(4)
In-O1	2.102(3)	$2.105(5)$	2.084(3)
In-O2	2.100(2)	2.067(5)	2.093(3)
In-C25	2.129(4)	-	-
In-C27	-	-	2.134(6)
In-C37	-	2.142(8)	
Angles			
N1-In-N2	72.87(11)	73.7(2)	72.15(15
N1-In-O1	81.23(11)	81.40(2)	81.39(13)
O1-In-O2	88.65(9)	85.40(19)	88.25(12)
N2-In-O2	81.00(10)	81.90(2)	78.94(13)
N1-In-O2	120.20(11)	126.1(2)	126.62(14)
N2-In-O1	141.80(12)	137.0(2)	134.04(14)
N1-In-C25	125.30(14)	-	-
N2-In-C25	107.21(17)	-	-
O1-In-C25	110.63(16)	-	-
O2-In-C25	113.47(14)	-	-
N1-In-C27	-	-	115.6(2)
N2-In-C27	-	-	112.1(2)
O1-In-C27	-	-	113.1(2)
O2-In-C27	-	-	116.7(2)
N1-In-C37	-	113.3(3)	-
N2-In-C37	-	109.1(3)	-
O1-In-C37	-	112.8(3)	-
O2-In-C37	-	120.0(3)	-

Figure S9. (a) UV/Vis absorption and (b) PL spectra in cyclohexane $\left(1.0 \times 10^{-5} \mathrm{M}\right)$ for $\mathbf{1 - 7}$.

Figure S10. (a) UV/Vis absorption and (b) PL spectra in $\operatorname{DMSO}\left(1.0 \times 10^{-5} \mathrm{M}\right)$ for $\mathbf{1 - 7}$.

Figure S11. PL spectra in solid state for 1-7.

Figure S12. Emission decay curves of 1-7 in THF solution $\left(1.0 \times 10^{-5} \mathrm{M}\right)$ at 298 K and their exponential fitting curves (red-line, single or double exponential curve fitting).

Figure S13. Cyclic voltammograms (CV) of 1-7 showing oxidation $\left(5 \times 10^{-4} \mathrm{M}\right.$ in DMSO, scan rate $=$ $100 \mathrm{mV} / \mathrm{s}$ for oxidation).

Figure S14. The selected frontier orbitals of 1 from B3LYP calculations (Isovalue $=0.04$ a.u.) at the ground state $\left(\mathrm{S}_{0}\right)$ and first singlet excited state $\left(\mathrm{S}_{1}\right)$ optimized geometries in toluene.

Table S3. Computed absorption wavelengths ($\lambda_{\text {calc }}$ in nm) and oscillator strengths ($f_{\text {calc. }}$) for $\mathbf{1}$ from TDB3LYP calculations using the B3LYP geometries at the ground state (S_{0}) and first singlet excited state $\left(\mathrm{S}_{1}\right)$ optimized geometries in toluene

state	$\lambda_{\text {calc }}(/ \mathrm{nm})$	$f_{\text {calc }}$	Major contribution	
S_{0}				
1	375.38	0.0398	HOMO	\rightarrow LUMO (95.4\%)
2	366.47	0.0825	HOMO-1	\rightarrow LUMO (96.6\%)
3	339.58	0.0011	HOMO-1	\rightarrow LUMO+1 (47.8\%)
			HOMO	\rightarrow LUMO+1 (48.7\%)
S_{1}				
1	991.73	0.0014	HOMO	\rightarrow LUMO (99.8\%)
2	610.28	0.0027	HOMO	\rightarrow LUMO+1 (99.7\%)
3	438.73	0.0154	HOMO-1	\rightarrow LUMO (99.1\%)

Table S4. Molecular orbital energies (in eV) and molecular orbital distributions (in \%) of $\mathbf{1}$ at the ground state $\left(\mathrm{S}_{0}\right)$ and first singlet excited state $\left(\mathrm{S}_{1}\right)$ optimized geometries in toluene

	$\mathrm{E}(\mathrm{eV})$	Imine bridge	Phenyl rings	$\mathrm{In}-\mathrm{CH}_{3}$
		$\mathrm{~S}_{0}$		
LUMO+2	0.30	1.7	96.8	1.5
LUMO+1	-1.34	52.5	47.4	0.1
LUMO	-1.63	56.2	42.7	1.1
HOMO	-5.49	7.3	90.4	2.3
HOMO-1	-5.54	5.9	89.6	4.5
HOMO-2	-6.54	18.8	80.6	0.6
		$\mathrm{~S}_{1}$		
LUMO+2	0.07	2.0	96.4	1.7
LUMO+1	-1.44	53.8	45.6	0.5
LUMO	-2.28	55.7	43.7	0.6
HOMO	-4.21	4.0	12.0	84.0
HOMO-1	-5.60	6.6	90.8	2.6
HOMO-2	-6.05	4.3	89.2	6.4

Figure S15. The selected frontier orbitals of 2 from B3LYP calculations (Isovalue $=0.04 \mathrm{a} . \mathrm{u}$.) at the ground state $\left(\mathrm{S}_{0}\right)$ and first singlet excited state $\left(\mathrm{S}_{1}\right)$ optimized geometries in toluene.

Table S5. Computed absorption wavelengths ($\lambda_{\text {calc }}$ in nm) and oscillator strengths ($f_{\text {calc. }}$) for $\mathbf{2}$ from TDB3LYP calculations using the B3LYP geometries at the ground state (S_{0}) and first singlet excited state $\left(\mathrm{S}_{1}\right)$ optimized geometries in toluene

state	$\lambda_{\text {calc }}(/ \mathrm{nm})$	$f_{\text {calc }}$	Major contribution	
S_{0}				
1	383.44	0.0357	HOMO	\rightarrow LUMO (96.5\%)
2	374.15	0.0832	HOMO-1	\rightarrow LUMO (97.9\%)
3	346.23	0.0040	HOMO-1	\rightarrow LUMO+1 (49.3\%)
			HOMO	\rightarrow LUMO+1 (48.0\%)
S_{1}				
1	972.20	0.0015	HOMO	\rightarrow LUMO (99.8\%)
2	604.19	0.0030	HOMO	\rightarrow LUMO+1 (99.7\%)
3	451.33	0.0180	HOMO-1	\rightarrow LUMO (99.3\%)

Table S6. Molecular orbital energies (in eV) and molecular orbital distributions (in \%) of 2 at the ground state $\left(\mathrm{S}_{0}\right)$ and first singlet excited state $\left(\mathrm{S}_{1}\right)$ optimized geometries in toluene

	$\mathrm{E}(\mathrm{eV})$	Imine bridge	Phenyl rings	In- CH_{3}
		$\mathrm{~S}_{0}$		
LUMO+2	0.38	1.9	96.7	1.5
LUMO+1	-1.30	51.9	48.0	0.1
LUMO	-1.59	55.7	43.3	1.1
HOMO	-5.36	7.5	90.9	1.5
HOMO-1	-5.41	6.1	89.3	4.5
HOMO-2	-6.48	17.5	82.1	0.4
		$\mathrm{~S}_{1}$		
LUMO+2	0.15	2.1	96.2	1.7
LUMO+1	-1.39	53.3	46.1	0.5
LUMO	-2.23	55.3	44.2	0.6
HOMO	-4.18	4.1	12.7	83.2
HOMO-1	-5.46	6.8	90.1	3.1
HOMO-2	-5.92	5.0	88.3	6.7

S_{0}	
S_{1}	

Figure S16. The selected frontier orbitals of 3 from B3LYP calculations (Isovalue $=0.04 \mathrm{a} . \mathrm{u}$.) at the ground state $\left(\mathrm{S}_{0}\right)$ and first singlet excited state $\left(\mathrm{S}_{1}\right)$ optimized geometries in toluene.

Table S7. Computed absorption wavelengths ($\lambda_{\text {calc }}$ in nm) and oscillator strengths ($f_{\text {calc. }}$) for $\mathbf{3}$ from TDB3LYP calculations using the B3LYP geometries at the ground state (S_{0}) and first singlet excited state $\left(\mathrm{S}_{1}\right)$ optimized geometries in toluene

state	$\lambda_{\text {calc }}(/ \mathrm{nm})$	$f_{\text {calc }}$	Major contribution	
S_{0}				
1	385.37	0.0399	HOMO	\rightarrow LUMO (95.6\%)
2	376.54	0.0845	HOMO-1	\rightarrow LUMO (97.1\%)
3	348.95	0.0007	HOMO-1	\rightarrow LUMO+1 (57.3\%)
			HOMO	\rightarrow LUMO+1 (39.1\%)
S_{1}				
1	1054.54	0.0015	HOMO	\rightarrow LUMO (99.8\%)
2	630.62	0.0025	HOMO	\rightarrow LUMO+1 (99.7\%)
3	454.46	0.0174	HOMO-1	\rightarrow LUMO (99.2\%)

Table S8. Molecular orbital energies (in eV) and molecular orbital distributions (in \%) of 3 at the ground state $\left(\mathrm{S}_{0}\right)$ and first singlet excited state $\left(\mathrm{S}_{1}\right)$ optimized geometries in toluene

	$\mathrm{E}(\mathrm{eV})$	Imine bridge	Phenyl rings	In- CH_{3}
		$\mathrm{~S}_{0}$		
LUMO+2	-0.04	1.6	97.0	1.4
LUMO+1	-1.57	50.7	49.2	0.1
LUMO	-1.85	54.9	44.1	1.1
HOMO	-5.61	6.9	91.2	1.9
HOMO-1	-5.65	5.7	90.1	4.2
HOMO-2	-6.83	19.4	78.8	1.8
		$\mathrm{~S}_{1}$		
LUMO+2	-0.25	1.9	97.1	1.0
LUMO+1	-1.67	52.2	47.3	0.5
LUMO	-2.50	54.2	45.2	0.6
HOMO	-4.37	4.0	12.0	84.0
HOMO-1	-5.70	6.2	91.2	2.6
HOMO-2	-6.14	4.9	88.9	6.2

Figure S17. The selected frontier orbitals of 4 from B3LYP calculations (Isovalue $=0.04 \mathrm{a} . \mathrm{u}$.) at the ground state $\left(\mathrm{S}_{0}\right)$ and first singlet excited state $\left(\mathrm{S}_{1}\right)$ optimized geometries in toluene.

Table S9. Computed absorption wavelengths ($\lambda_{\text {calc }}$ in nm) and oscillator strengths ($f_{\text {calc. }}$) for $\mathbf{4}$ from TDB3LYP calculations using the B3LYP geometries at the ground state (S_{0}) and first singlet excited state $\left(\mathrm{S}_{1}\right)$ optimized geometries in toluene

state	$\lambda_{\text {calc }}(/ \mathrm{nm})$	$f_{\text {calc }}$	Major contribution	
S_{0}				
1	398.07	0.0412	HOMO	\rightarrow LUMO (96.2\%)
2	387.91	0.0773	HOMO-1	\rightarrow LUMO (97.4\%)
3	357.61	0.0521	HOMO-1	\rightarrow LUMO+1 (88.0\%)
S_{1}				
1	611.35	0.0023	HOMO	\rightarrow LUMO (99.7\%)
2	463.85	0.0685	HOMO-1	\rightarrow LUMO (97.8\%)

Table S10. Molecular orbital energies (in eV) and molecular orbital distributions (in \%) of 4 at the ground state $\left(\mathrm{S}_{0}\right)$ and first singlet excited state $\left(\mathrm{S}_{1}\right)$ optimized geometries in toluene

	$\mathrm{E}(\mathrm{eV})$	Imine bridge	Phenyl rings	In- CH_{3}
		$\mathrm{~S}_{0}$		
LUMO+2	-0.55	0.4	98.9	0.7
LUMO+1	-1.41	52.0	47.9	0.1
LUMO	-1.70	56.0	43.0	1.1
HOMO	-5.33	5.8	93.1	1.1
HOMO-1	-5.38	4.8	91.7	3.4
HOMO-2	-6.62	16.8	82.4	0.7
		$\mathrm{~S}_{1}$		
LUMO+2	-0.72	0.4	99.2	0.4
LUMO+1	-1.11	54.7	45.0	0.3
LUMO	-2.35	55.7	43.3	1.1
HOMO	-4.82	5.0	93.9	1.1
HOMO-1	-5.66	6.3	90.3	3.3
HOMO-2	-6.46	14.1	85.6	0.3

Figure S18. The selected frontier orbitals of 5 from B3LYP calculations (Isovalue $=0.04 \mathrm{a} . \mathrm{u}$.) at the ground state $\left(\mathrm{S}_{0}\right)$ and first singlet excited state $\left(\mathrm{S}_{1}\right)$ optimized geometries in toluene.

Table S11. Computed absorption wavelengths ($\lambda_{\text {calc }}$ in nm) and oscillator strengths ($f_{\text {calc. }}$.) for 5 from TDB3LYP calculations using the B3LYP geometries at the ground state (S_{0}) and first singlet excited state $\left(\mathrm{S}_{1}\right)$ optimized geometries in toluene

state	$\lambda_{\text {calc }}(/ \mathrm{nm})$	$f_{\text {calc }}$	Major contribution	
S_{0}				
1	393.43	0.0326	HOMO	\rightarrow LUMO (96.4\%)
2	384.07	0.0895	HOMO-1	\rightarrow LUMO (97.8\%)
3	355.37	0.0062	HOMO-1	\rightarrow LUMO+1 (46.7\%)
			HOMO	\rightarrow LUMO+1 (50.9\%)
S_{1}				
1	919.35	0.0025	HOMO	\rightarrow LUMO (99.5\%)
2	575.78	0.0051	HOMO	\rightarrow LUMO+1 (99.4\%)
3	513.97	0.0170	HOMO-1	\rightarrow LUMO (99.4\%)

Table S12. Molecular orbital energies (in eV) and molecular orbital distributions (in \%) of 5 at the ground state $\left(\mathrm{S}_{0}\right)$ and first singlet excited state $\left(\mathrm{S}_{1}\right)$ optimized geometries in toluene

	$\mathrm{E}(\mathrm{eV})$	Imine bridge	Phenyl rings	In- CH_{3}
		$\mathrm{~S}_{0}$		
LUMO+2	0.29	3.3	95.3	1.3
LUMO+1	-1.40	51.4	48.5	0.1
LUMO	-1.68	55.3	43.6	1.1
HOMO	-5.37	7.2	91.3	1.5
HOMO-1	-5.41	5.9	89.8	4.3
HOMO-2	-6.61	18.0	81.2	0.8
		$\mathrm{~S}_{1}$		
LUMO+2	0.14	7.5	92.2	0.3
LUMO+1	-1.44	52.6	47.0	0.4
LUMO	-2.30	55.7	43.7	0.6
HOMO	-4.31	4.3	18.7	76.9
HOMO-1	-5.18	6.3	89.1	4.6
HOMO-2	-5.60	3.9	85.7	10.3

Figure S19. The selected frontier orbitals of 6 from B3LYP calculations (Isovalue $=0.04$ a.u.) at the ground state $\left(\mathrm{S}_{0}\right)$ and first singlet excited state $\left(\mathrm{S}_{1}\right)$ optimized geometries in toluene.

Table S13. Computed absorption wavelengths ($\lambda_{\text {calc }}$ in nm) and oscillator strengths ($f_{\text {calc. }}$.) for $\mathbf{6}$ from TDB3LYP calculations using the B3LYP geometries at the ground state (S_{0}) and first singlet excited state $\left(\mathrm{S}_{1}\right)$ optimized geometries in toluene

state	$\lambda_{\text {calc }}(/ \mathrm{nm})$	$f_{\text {calc }}$	Major contribution	
S_{0}				
1	447.85	0.0320	HOMO	\rightarrow LUMO (97.1\%)
2	434.59	0.0787	HOMO-1	\rightarrow LUMO (98.1\%)
3	398.79	0.0611	HOMO-1	\rightarrow LUMO+1 (33.8\%)
			HOMO	\rightarrow LUMO+1 (63.5\%)
S_{1}				
1	935.59	0.0032	HOMO	\rightarrow LUMO (99.8\%)
2	530.41	0.0647	HOMO-1	\rightarrow LUMO (10.3\%)
			HOMO	\rightarrow LUMO+1 (89.4\%)

Table S14. Molecular orbital energies (in eV) and molecular orbital distributions (in \%) of $\mathbf{6}$ at the ground state $\left(\mathrm{S}_{0}\right)$ and first singlet excited state $\left(\mathrm{S}_{1}\right)$ optimized geometries in toluene

	$\mathrm{E}(\mathrm{eV})$	Imine bridge	Phenyl rings	$\mathrm{In}-\mathrm{CH}_{3}$
		$\mathrm{~S}_{0}$		
LUMO+2	0.47	4.0	94.8	1.2
LUMO+1	-1.30	51.3	48.6	0.1
LUMO	-1.58	55.0	44.0	1.0
HOMO	-4.84	5.6	93.8	0.6
HOMO-1	-4.89	4.9	92.8	2.3
HOMO-2	-6.41	2.8	88.8	8.4
		$\mathrm{~S}_{1}$		
LUMO+2	0.23	4.4	95.2	0.3
LUMO+1	-1.00	55.9	42.9	1.1
LUMO	-2.18	53.4	46.0	0.5
HOMO	-3.92	5.5	93.4	1.1
HOMO-1	-5.26	5.7	93.0	1.3
HOMO-2	-6.11	12.8	84.4	2.8

Figure S20. The selected frontier orbitals of 7 from B3LYP calculations (Isovalue $=0.04 \mathrm{a} . \mathrm{u}$.) at the ground state $\left(\mathrm{S}_{0}\right)$ and first singlet excited state $\left(\mathrm{S}_{1}\right)$ optimized geometries in toluene.

Table S15. Computed absorption wavelengths ($\lambda_{\text {calc }}$ in nm) and oscillator strengths ($f_{\text {calc. }}$.) for 7 from TDB3LYP calculations using the B3LYP geometries at the ground state (S_{0}) and first singlet excited state $\left(\mathrm{S}_{1}\right)$ optimized geometries in toluene

state	$\lambda_{\text {calc }}(/ \mathrm{nm})$	$f_{\text {calc }}$	Major contribution	
S_{0}				
1	359.55	0.0632	HOMO-1	\rightarrow LUMO (3.7\%)
			HOMO	\rightarrow LUMO (92.5\%)
2	352.02	0.0712	HOMO-1	\rightarrow LUMO (93.0\%)
			HOMO	\rightarrow LUMO (4.2\%)
S_{1}				
1	418.75	0.0882	HOMO	\rightarrow LUMO (98.0\%)
2	380.12	0.0164	HOMO-1	\rightarrow LUMO (98.5\%)
3	357.84	0.0050	HOMO	\rightarrow LUMO+1 (97.3\%)

Table S16. Molecular orbital energies (in eV) and molecular orbital distributions (in \%) of 7 at the ground state $\left(\mathrm{S}_{0}\right)$ and first singlet excited state $\left(\mathrm{S}_{1}\right)$ optimized geometries in toluene

	$\mathrm{E}(\mathrm{eV})$	Imine bridge	Phenyl rings	$\mathrm{In}-\mathrm{CH}_{3}$
		$\mathrm{~S}_{0}$		
LUMO+2	-0.98	0.5	98.3	1.3
LUMO+1	-2.34	47.5	52.4	0.1
LUMO	-2.61	52.5	46.5	1.0
HOMO	-6.61	8.6	85.3	6.2
HOMO-1	-6.66	7.5	88.6	3.9
HOMO-2	-7.64	21.3	74.0	4.7
		$\mathrm{~S}_{1}$		
LUMO+2	-0.98	0.6	98.5	0.9
LUMO+1	-2.46	49.4	50.5	0.1
LUMO	-2.89	56.7	42.1	1.3
HOMO	-6.42	6.9	87.1	6.0
HOMO-1	-6.68	7.4	87.6	5.1
HOMO-2	-7.59	15.2	72.5	12.2

Figure S21. Frontier molecular orbitals for 1-7 at their ground state $\left(\mathrm{S}_{0}\right)$ with their relative energies from DFT calculation (isovalue $=0.04$). The transition energy (in nm) was calculated using the TDB3LYP method with $6-31 \mathrm{G}(\mathrm{d})$ basis sets.
InMe_{3}

InMe_{3}

Figure S22. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ (bottom) NMR spectra of $\mathbf{I n M e}_{3}$ (* from residual CHCl_{3} in CDCl_{3}).

