Supporting Information

Buta-1,3-diyne Based π -Conjugated Polymers for Organic Transistors and Solar Cells

Brian J. Eckstein,[§] Ferdinand S. Melkonyan,[§] Nanjia Zhou,[†] Eric F. Manley,^{§,Δ} Jeremy Smith,[§] Amod Timalsina,[§] Robert P. H Chang,[†] Lin X. Chen,^{§,Δ} Antonio Facchetti,^{*,§,#} and Tobin J. Marks^{*,§,†}

[§] Department of Chemistry and the Materials Research Center, the Argonne-Northwestern Solar Energy Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States

 [†] Department of Materials Science and Engineering and the Materials Research Center, the Argonne-Northwestern Solar Energy Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
 ^Δ Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States

[#] Polyera Corporation, 8045 Lamon Avenue, Skokie, Illinois 60077, United States

Table of Contents

Part I: Materials Synthesis	
Part II: NMR Spectra	S4
¹ H and ¹³ C NMR of 6a	S4
¹ H and ¹³ C NMR of 6b	S ₅
¹ H and ¹³ C NMR of 6c	S6
¹ H and ¹³ C NMR of 6d	S ₇
¹ H NMR of P3	S8
¹ H NMR of P4	S8
Part III: DFT Computation	S9
Part IV: Cyclic Voltammetry	S10
Part V: Thermal Characterization	S10
Part VI: OFET Characteristics	S11
Part VIII: OFET Films AFM	S12
Part IX: 2D GIWAXS	S12
GIWAXS Procedures	Sı2
2D GIWAXS of P3 and P4 OFET Films	S13
2D GIWAXS of P3 OPV Films	S14

2D GIWAXS of P4 OPV Films.	Sı5
Part X: References	

Materials Synthesis

The synthesis of 3-alkylthiophene compounds $\mathbf{1b-1d}^{1-3}$ by Kumada coupling of 3-bromothiophene with the corresponding alkylmagnesium bromides and synthesis of 3-alkyl-2-bromothiophene compounds $\mathbf{2b-d}^{4-6}$ by electrophilic bromination of $\mathbf{1b-d}$ with N-bromosuccinimide were carried out according to the literature procedures cited. The reagent 3-bromothiophene was purchased from Sigma-Aldrich and was used without further purification. All other commercially available reagents were used without further purification unless otherwise stated. Anhydrous THF was distilled from Na/benzophenone. Reactions were carried out under N_2 atmosphere using standard Schlenk technique unless otherwise noted.

General Procedure for the Sonogashira Coupling between 3-Alkyl-2-Bromothiophenes 2bd and (Trimethylsilyl)acetylene. Compounds 2b-d (1 equiv), $Pd(PPh_3)_2Cl_2$ (10 mol%), and CuI (10 mol%) were loaded into an oven-dried two-neck round bottom flask with stir bar and mounted with a condenser. Anhydrous toluene (0.3 M) and anhydrous piperidine (1.0M) were added, and the reaction solution was bubbled with N₂ for 15 min. (Trimethylsilyl)acetylene (1.50 equiv) was then added through a side neck, and the reaction was heated to 70 °C and stirred for 18 h. The crude product was next concentrated under reduced pressure, and the solids were filtered off and washed with hexanes. The hexane fractions were then concentrated under reduced pressure and purified by column chromatography on silica gel using hexanes as the eluent.

((3-Hexylthiophen-2-yl)ethynyl)trimethylsilane (**3b**). Yield = 3.34 g (12.6 mmol; 77.9 %) of the title compound as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.11 (d, *J* = 5.1 Hz, 1H), 6.83 (d, *J* = 5.2 Hz, 1H), 2.69 (d, *J* = 7.5 Hz, 2H), 1.62 (p, *J* = 7.4 Hz, 2H), 1.31 (m, 4H), 0.89 (t, *J* = 7.0 Hz, 3H), 0.25 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 148.97, 128.20, 126.00, 118.36, 100.81, 97.69, 31.73, 30.22, 29.58, 29.04, 22.75, 14.24, 0.14. HRMS (ESI-TOF-MS): m/z calcd for C₁₅H₂₄SSi [M+H]⁺ 265.1441, found 265.1441.

((*3*-Dodecylthiophen-2-yl)ethynyl)trimethylsilane (**3c**). Yield = 3.75 g (10.8 mmol; 88.6 %) of the title compound as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.11 (d, J = 5.2 Hz, 1H), 6.82 (d, J = 5.2 Hz, 1H), 2.68 (t, J = 7.5 Hz, 2H), 1.61 (p, J = 7.5 Hz, 2H), 1.26 (m, 18H), 0.89 (t, J = 7.0 Hz, 3H), 0.25 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 148.98, 128.20, 125.99, 118.35, 100.81, 97.69, 32.08, 30.27, 29.85, 29.82, 29.81, 29.77, 29.61, 29.55, 29.52, 29.41, 22.85, 14.28, 0.14. HRMS (ESI-TOF-MS): *m/z* calcd for $C_{21}H_{36}SSi [M+H]^+$ 349.2380, found 349.2373.

((*3*-(*2*-*Ethylhexyl*)*thiophen-2-yl*)*ethynyl*)*trimethylsilane* (**3d**). Yield = 1.54 g (5.3 mmol; 66.8 %) of the title compound as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.11 (d, *J* = 5.1 Hz, 1H), 6.80 (d, *J* = 5.1 Hz, 1H), 2.63 (d, *J* = 7.1 Hz, 2H), 1.64 (m, 1H), 1.28 (m, 8H), 0.89 (m, 6H), 0.24 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 148.08, 128.89, 125.78, 118.92, 100.73, 97.92, 40.63, 33.76, 32.74, 28.97, 25.80, 23.22, 14.27, 10.89, 0.12. HRMS (ESI-TOF-MS): *m/z* calcd for C₁₇H₂₈SSi [M+H]⁺ 293.1754, found 293.1756.

General Procedure for the Deprotection of 3b-d with K_2CO_3 . Compounds 3b-d (1 equiv) and K_2CO_3 (5 equiv) were loaded into a single-neck round bottom flask with stir bar. Dichloromethane (0.33 M) and methanol (0.33 M) were added, and the reaction was stirred for 18 h at room temperature. Solids were removed by filtration and the organic phase was then washed with water and dried over MgSO₄. The organic phase was then collected by filtration, concentrated under reduced pressure, and purified by column chromatography on silica gel with hexanes as the eluent.

2-Ethynyl-3-hexylthiophene (**4b**). Yield = 1.63 g (8.5 mmol; 94.2%) of the title compound as a yellow-brown oil. ¹H NMR (400 MHz, CDCl₃): δ 7.15 (d, *J* = 5.2 Hz, 1H), 6.85 (d, *J* = 5.1 Hz, 1H), 3.43 (s, 1H), 2.71 (t, *J* = 7.5 Hz, 2H), 1.62 (p, *J* = 7.5 Hz, 2H), 1.32 (m, 6H), 0.89 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 149.20, 128.17, 126.29, 117.13, 83.26, 31.76, 30.31, 29.53, 29.06, 22.74, 14.23. HRMS (ESI-TOF-MS): *m*/*z* calcd for C₁₂H₁₆S [M+H]⁺ 193.1045, found 193.1058.

3-Dodecyl-2-ethynylthiophene (**4c**). Yield = 1.47 g (5.3 mmol; 93.6%) of the title compound as a yellow-brown oil. ¹H NMR (400 MHz, CDCl₃): δ 7.15 (d, *J* = 5.1 Hz, 1H), 6.85 (d, *J* = 5.2 Hz, 1H), 3.43 (s, 1H), 2.70 (t, *J* = 7.5 Hz, 2H), 1.61 (p, *J* = 7.4 Hz, 2H), 1.28 (m, 18H), 0.88 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 149.04, 128.00, 126.11, 116.94, 83.08, 76.98, 31.90, 30.17, 29.65, 29.63, 29.62, 29.55, 29.38, 29.35, 29.33, 29.22, 22.67, 14.10. HRMS (ESI-TOF-MS): *m*/*z* calcd for C₁₈H₂₈S [M+H]⁺ 277.1984, found 277.1964.

3-(2-*Ethylhexyl*)-2-*ethynylthiophene* (**4d**). Yield = 1.01 g (4.6 mmol; 91.0%) of the title compound as a yellow-brown oil. ¹H NMR (400 MHz, CDCl₃): δ 7.15 (d, *J* = 5.1 Hz, 1H), 6.82 (d, *J* = 5.2 Hz, 1H), 3.42 (s, 1H), 2.64 (d, *J* = 7.1 Hz, 2H), 1.63 (m, 1H), 1.29 (m, 8H), 0.88 (m, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 148.38, 128.73, 126.11, 117.73, 83.24, 77.12, 40.58, 33.74, 32.69, 28.94, 25.87, 23.18, 14.27, 10.96. HRMS (ESI-TOF-MS): *m/z* calcd for C₁₄H₂₀S [M+H]⁺ 221.1028, found 221.1056.

Figure S1. ¹H NMR spectrum of compound 6a

Figure S2. ¹³C NMR spectrum of compound 6a

Figure S₃. ¹H NMR spectrum of compound 6b

Figure S4. ¹³C NMR spectrum of compound 6b

Figure S5. ¹H NMR spectrum of compound 6c

Figure S6. ¹³C NMR spectrum of compound 6c

Figure S₇. ¹H NMR spectrum of compound 6d

Figure S8. ¹³C NMR spectrum of compound 6d

Figure S9. ¹H NMR spectrum of polymer **P3** (100 ^oC in 1,1,2,2-tetrachloroethane-d₂)

Figure S10. ¹H NMR spectrum of P4 (100 ^oC in 1,1,2,2-tetrachloroethane-d₂)

DFT Computation

Geometry and electronic structure optimization of DTB monomer analogues were performed at the B3LYP/6-31G** level of theory using Q-Chem 4.2.

Figure S11. The HOMO/LUMO surfaces and pi-plane profile are shown (A) and (B) for the DTB core with no side-chains, (C) and (D) for the DTB core with propyl (linear) side-chains, and (E) and (F) for the DTB core with 2-methylpropyl (branched) side-chains, respectively. The torsional angles between thiophene planes are also indicated.

Figure S12. Cyclic voltammograms of **P3** and **P4** films on a glassy carbon electrodes. The measurements were performed in 0.1 M TBA-PF6 in acetonitrile at a scanning rate of 100 mV/sec. Linear extrapolation used to estimate onset potentials included.

(B) (A) P3 P3 Normalized Weight 1.00 **P4 P4** Heat Flow (mW 0.98 2 mV 0.96 0.94 0.92 2 mW 0.90 50 100 150 200 250 300 350 400 100 150 200 250 300 50 0 Temperature (°C) Temperature (°C)

Thermal Characterization

Figure S13. Thermal characterization of **P3** and **P4**. (A) Thermogravimetric analysis (TGA) scanned at 10 $^{\circ}$ C per minute. The circle and square crosshairs indicate 1 % and 5 % mass loss, respectively. (B) Differential scanning calorimetry (DSC) spectrum showing the second heating scans, scanned at 10 $^{\circ}$ C per min.

Figure S14. Representative transfer plots of unannealed OFETs of (A) **P3** and (B) **P4**, output plots with $V_G = o$ to -60 V in 10 V increments of unannealed OFETs of (C) **P3** and (D) **P4**, and output plots with $V_G = o$ to -60 V in 10 V increments of 180 °C annealed OFETs of (E) **P3** and (F) **P4**.

OFET Films AFM

Figure S15. AFM images of films processed according to OFET fabrication. (A) **P3** unannealed, (B) **P3** annealed at 180 °C, (C) **P4** unannealed, and (D) **P4** annealed at 180 °C.

Figure S16. Two-dimensional (2D) GIWAXS images of (A) **P3** unannealed, (B) **P4** unannealed, (C) **P3** annealed at 180 °C, and **P4** annealed at 180 °C. Films were deposited on OTS treated *p*-doped Si/SiO₂ substrates and annealed according to OFET fabrication procedure.

Figure S17. 2D GIWAXS images of (A) neat **P3** film processed from CF, (B) neat **P3** film processed from CF/CN = 95:5 (v/v), (C) Blend **P3**:PC₇₁BM = 1:2 (w/w) film processed from CF, and (D) blend **P3**:PC₇₁BM = 1:2 (w/w) film processed from CF:CN = 95:5 (v/v). The films were deposited on Si substrates following the OSC fabrication procedure.

Figure S18. 2D GIWAXS images of (A) neat **P4** film processed from CF, (B) neat **P4** film processed from CF/CN = 95:5 (v/v), (C) Blend **P4**:PC₇₁BM = 1:2 (w/w) film processed from CF, and (D) blend **P4**:PC₇₁BM = 1:2 (w/w) film processed from CF:CN = 95:5 (v/v). The films were deposited on Si substrates following the OSC fabrication procedure.

REFERENCES

(1) Klimavicz, J. S.; Mike, J. F.; Bhuwalka, A.; Tomlinson, A. L.; Jeffries-El, M. Synthesis of benzobisoxazole-based D- π -A- π -D organic chromophores with variable optical and electronic properties. *Pure Appl Chem* **2012**, *84*, 991-1004.

(2) Zhou, J.; Xie, S.; Amond, E. F.; Becker, M. L. Tuning Energy Levels of Low Bandgap Semi-Random Two Acceptor Copolymers. *Macromolecules* **2013**, *46*, 3391-3394.

(3) Speros, J. C.; Martinez, H.; Paulsen, B. D.; White, S. P.; Bonifas, A. D.; Goff, P. C.; Frisbie, C. D.; Hillmyer, M. A. Effects of Olefin Content and Alkyl Chain Placement on Optoelectronic and Morphological Properties in Poly(thienylene vinylenes). *Macromolecules* 2013, *46*, 5184-5194.
(4) Wright, I. A.; Skabara, P. J.; Forgie, J. C.; Kanibolotsky, A. L.; González, B.; Coles, S. J.; Gambino, S.; Samuel, I. D. W. Electronic, redox and charge transport properties of an unusual hybrid structure: a bis(septithiophene) bridged by a fused tetrathiafulvalene (TTF). *J. Mater. Chem.* 2011, *21*, 1462-1469.
(5) Ng, M.-K.; Wang, L.; Yu, L. Photorefractive Effects and Structure/Property Correlation of Oligothiophenes Functionalized with Nonlinear Optical Chromophores. *Chem. Mater.* 2000, *12*, 2988-2995.

(6) Usta, H.; Risko, C.; Wang, Z.; Huang, H.; Deliomeroglu, M. K.; Zhukhovitskiy, A.; Facchetti, A.; Marks, T. J. Design, Synthesis, and Characterization of Ladder-Type Molecules and Polymers. Air-Stable, Solution-Processablen-Channel and Ambipolar Semiconductors for Thin-Film Transistors via Experiment and Theory. *J. Am. Chem. Soc.* **2009**, *131*, 5586-5608.