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Emulsion Photographs

Figures S1 and S2 show photographs of montmorillonite stabilised hexadecane emulsions

suspensions at a range of NaCl and Na4P2O7 concentrations after storing for 30 days. Ini-

tial concentrations were 40% wt. hexadecane and 3% wt. montmorillonite in the continuous

phase. Volumes were then increased by 5% to result in the desired NaCl or Na4P2O7 con-

centrations.
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Figure S1: Photographs of montmorillonite stabilised hexadecane emulsions suspensions at
0.01 M NaCl (left), 0.1 M NaCl (middle) and 40 µmol g−1 (right) after 30 days.

Figure S2: Photographs of montmorillonite stabilised hexadecane emulsions suspensions at
0.01 M NaCl (left), 0.1 M NaCl (middle) and 40 µmol g−1 (right) with excess particles
removed from the aqueous phase after 30 days.
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Oscillatory Rheology

Figures S3, S4 and S5 show oscillatory amplitude sweeps of montmorillonite stabilised hex-

adecane emulsions and montmorillionite suspensions prepared as noted above and in the

main report. These were used to calculate G′0 and σy in the main report.
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Figure S3: Rheological amplitude sweeps for montmorillonite stabilised emulsions with a
continuous phase montmorillonite concentration of 2.5% wt. (left) and 3% wt. (right) at a
variety of hexadecane weight fractions: 0% wt. (squares), 15% wt. (circles), 20% wt. (up
triangles), 25% wt. (down triangles), 30% wt. (diamonds), 35% wt. (left triangles) and 40%
wt. (pentagons).
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Figure S4: Rheological amplitude sweeps for montmorillonite stabilised emulsions (left) and
corresponding montmorillonite suspensions (right) at a variety of NaCl concentrations: 0.01
M (squares), 0.025 M (circles), 0.05 M (up triangles), 0.075 M (down triangles) and 0.1 M
(diamonds).
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Figure S5: Rheological amplitude sweeps for montmorillonite stabilised emulsions (left) and
corresponding montmorillonite suspensions (right) at a variety of Na4P2O7 concentrations:
0 µmol g−1 (squares), 1 µmol g−1 (circles), 5 µmol g−1 (up triangles), 10 µmol g−1 (down
triangles), 20 µmol g−1 (diamonds) and 40 µmol g−1 (hexagons).
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Montmorillonite Suspensions without Berol R648

Figure S6 shows oscillatory amplitude sweeps of montmorillionite suspensions prepared as

noted in the main report but without Berol R648.
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Figure S6: Rheological amplitude sweeps for montmorillonite suspensions at 0.01 M NaCl
(squares), 0.1 M NaCl (triangles) and 40 µmol g−1 (circles).

Comparing figure S6 to figures S4 and S5 shows that the addition of Berol R648 to

aqueous suspensions of montmorillonite at 3% wt. slightly increases G′0 at 0.1 M NaCl and

has little effect at 0.01 M NaCl and 40 µmol g−1.
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