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1. Analytic theory on the edge-reflection of two-dimensional surface polaritons 

1-1 Coupled mode theory 

In order to describe the edge reflection of two-dimensional surface polaritons (2DSPs), we assume 

that there is a semi-infinite thin metal film of negative permittivity m , surrounded by a medium 

having positive permittivity s m   , as shown in Fig. S1(a). To simplify the problem, we 

assume that every permittivity is real so that the whole system is lossless. For the excitation of 

surface polaritons, we consider the transverse-magnetic field configuration (Ex, Ey, and Hz). It can 

be shown that the 2DSP propagating along x-direction is governed by the following eigenvalue 

equation1 
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Here, 0h   is the thickness of the thin metal. The solution of Eq. (1.1) can be approximately 

found as q
x
 2

s
/ h

m   . The z-component magnetic field Hz with this eigenvalue has an anti-

symmetric configuration such that its phase is anti-symmetric along y-direction1.  

When propagating 2DSPs meet the edge of the metal at x=0, one can naturally expect that 2DSPs 

get reflected because there is discontinuity in surface conductivity at the edge. However, we note 

that the origin of the reflection is actually the diffraction of 2DSPs. We can invoke Huygens-

Fresnel principle2 to describe a macroscopic procedure of the edge-reflection in the following three 

steps. First, 2DSPs that have arrived at the edge generate dipole light sources along the boundary 

(x=0, y), as shown in Fig. S1(b). After that, those dipole sources generate electromagnetic waves 

to both forward (directing to x<0) and backward (directing to x>0) directions. At last, as described 

in Fig. S3(c), the forward-directing waves couple out to the free-space, whereas the backward ones 



couple to both 2DSPs and unbounded diffracting waves. Here, we note that the diffracting waves 

in free-space (x<0) and thin metal (x>0) regions can be completely described in terms of linearly 

independent basis functions of respective regions. In the free-space region (x<0), the basis function 

is obviously a plane-wave so that the forward diffracting waves can be expanded in the plane-wave 

bases. For infinitesimally thin metal, one can find that the basis function for the unbounded waves 

is        1| | | |, / | | y yik y ik y

y y y y yB y k y y e k q k q e
       

 which satisfies the orthogonal condition 

such that  
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where 2 2
0y s xq k q  . Given basis functions, we can write the complete description of Hz field 

distribution of the system as the followings: 
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Here, 2 2
0x s yk k k  , R is the reflection coefficient of 2DSP, and  yk  and  yk  respectively 

are amplitudes of backward- and forward-diffracting wave components. We assumed that the metal 

film is infinitesimally thin so that we neglected the contribution from fields inside the metal. The 

electric fields can be easily obtained from Eq. (1.2) by using Maxwell’s equations: 
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   . Specifically, Ey field can be written as 
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where 0 0 0/Z    is the free-space impedance. Now we can readily apply boundary conditions. 

The continuity of tangential components of magnetic and electric fields (Hz and Ey) at x=0 gives 

the continuity conditions in real space: 
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We can project the boundary condition Eq. (1.4.1) onto the 2DSP eigenfucntion and the unbounded 

eigenfunctions of the thin metal region, and Eq. (1.4.2) on to the basis of the free-space region (i.e. 

plane waves), which yields the following set of integral equations:   
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with j a positive integer. From the first line of Eq. (1.5), we can see that the reflection coefficient 

R can be obtained when  yk  is fixed. The amplitudes of two diffracting wave components,  yk  



and  yk , can be obtained by solving the system of two coupled integral equations in the second 

and third lines of Eq. (1.5). In the following two subsections, we will deal with the integral equation 

in two different methods. 

 

1-2 Successive approximation method for the integral equation 

Note that Eq. (1.5) is a coupled Fredholm integral equation of the second kind. Depending on the 

kernel type, there could be a known exact solution. However, because the kernel of our case is not 

in a simple form, we will try the so-called successive approximation method (SAM)3. For instance, 

SAM allows us to approximate  yr k  through a recursive scheme such that  
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 saturates to the exact solution 

independently of the choice an initial trial function  0 yk  .  Let us approximate the second 

integral in Eq. (1.5) first. The 2nd SAM gives 
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Then, we can rewrite Eq. (1.5) as 
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 (1.6). 



The second line of Eq. (1.6) is an uncoupled integral equation for  yk  that can be rewritten in 

a simpler form, 
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  (1.7). 

Putting  n yk  into the third line of Eq. (1.6) gives n-th approximation of  yk  as well as an 

approximated reflection coefficient, Rn.   

To start SAM for Eq. (1.7), let us choose the initial function  0 0yr k   . Physically, this 

corresponds to the single mode approximation of coupled mode theory as it is effectively same 

with considering that only bounded 2DSP is coupled from the edge reflection.  0 0yr k   gives 

rise to 
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We note that results in Eq. (1.8) are exactly same with those from earlier works in which single 

mode approximation is considered4,5. A deeper physical meaning of R0 can be found if we rewrite 

it in the notion of effective impedance, 
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Here,  0 0/sp x sZ Z q k   is the wave impedance of 2DSP, and Z0eff is the initial effective 

impedance of the evanescent wave of 2DSP in the free-space defined by 
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where A(ky) and  0 0/pw x sZ Z k k  respectively are amplitude and impedance of a plane-wave 

component of Fourier-transformed 2DSP.  

The first approximation for  yr k  is naturally    1 y yr k f k  which gives rise to 
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We can see that, for strongly confined 2DSP, the phase of reflection coefficient has been 

significantly modified from the initial value, whereas its amplitude remains unchanged. It is 

interesting to see that the limiting value of R1 for 0x sq k  is in the same form with R0 except 

for the correction term coming from the presence of backward diffracting waves. This allows us 

to rewrite R1 as 
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with Z1eff the corrected effective impedance 
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To see the saturating behaviour of the phase, we can go one more step. The second approximation 

gives  2 yk ,  2 yk , and R2 in more complicated forms, but one can obtain the phase shift as 

  0 2 2For ,     | | 1,  arg 0.257x sq k R R      (1.12) 

which is slightly changed from R1, and shows a saturating behaviour. As we discuss in the next 

subsection, R1 has only about 3% difference in the phase compared to a more accurate result, 

arg(R)≈0.250π. We also note that both backward- and forward-diffracting waves are nearly pure-

evanescent waves as the amplitude of R is shown to be very close to 1. This means that such 

anomalous phase shift is related to the phase delay due to the temporal storing of EM energy of 

2DSPs in the evanescent waves, which is well known as the Goos-Hänchen phase shift in total in

ternal reflection. 

 

1-3. Super-lattice approximation 

Another approach to approximate the integral equations in Eqs (1.6) and (1.7) is to quantize the 

diffracting waves by considering that the system is periodic in y-direction with a sufficiently large 

periodicity. For an easier treatment, let us assume that the thin metal system is embedded in 

between two parallel perfect electric conductor (PEC) plates that are located at y = ±d and infinitely 

large in x-direction. Note that this configuration makes the system infinitely periodic in y-direction 

through the image systems. By considering the PEC boundary condition,  



 | 0y z y dH   ,  

we can rewrite Eq. (1.2) in a quantized form: 
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We assumed that d is much larger than the 2DSP wavelength, so that we kept the 2DSP 

configuration unchanged. A quantized momentum of backward-diffracting wave ,y n  is defined 

by the following eigenvalue equation, 
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that is obtained from PEC boundary condition at y = ±d and orthogonal condition of backward 

diffracting waves and 2DSP, and 2 2
, 0 ,x n s y nk    . Then, we can apply the boundary conditions 

at x=0. After the same projection procedure used in the previous subsection, we arrive at the 

following coupled equations: 
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  (1.14). 

By truncating the number of quantized modes, Eq. (1.14) can be treated as a matrix algebra. 

Specifically, the second and third lines of Eq. (1.14) can be rewritten as 
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with three column vectors ρ, τ , and c,  and two N N  matrices Q and S defined as 
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where N is number of considered diffracting modes. Equation (1.15) gives the solution for τ  as 

    1
1 R I SQ

  τ c   (1.16), 

where I is an identity matrix. Combing Eq. (1.16) and the first line of Eq. (1.14), we have the 

reflection coefficient R as 
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  (1.17). 

For 0x sq k , one can find that Eq. (1.17) gives the phase shift as 

  arg 0.250R    (1.18). 

Shown in Fig. S2 is a comparison of even-odd peak oscillations calculated from two methods we 

discussed so far. It is worth noting that, compared to results from the super-lattice method, the 

second approximation of SAM already gives reasonably accurate field profiles, and that the 

reflection coefficient from the first approximation of SAM shown in Eq. (1.10) has only about 3% 

difference in phase.  

 

 

 



1-4. Surface polaritons in 2D hyperbolic media 

Hexagonal Boron Nitride (hBN) is a prime example of a uniaxial material supporting hyperbolic 

phonon polariton (PhP) modes. In such hyperbolic media, the allowed SP modes can be different 

from those in simple metals slabs. Specifically, for a free-standing hyperbolic material, the 

dispersion relation of surface polariton is given by 
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where εin and εout are in-plane and out-of-plane permittivities of the hyperbolic material, 

respectively. In principle, if we consider PhPs in hBN, we have to take into account higher order 

of both in-plane (odd) and out-of-plane (even) PhP modes to have accurate description of the 

propagation of PhPs, especially when the thickness of hBN is comparable to the PhP wavelength. 

However, in the 2D-limit where the thickness of hBN goes to deep sub-polariton-wavelength 

regime, we note that only the fundamental in-plane mode can be mainly observable in experimental 

studies. For εin<0, εout>0, one can find from the above equation that the momentum of first-excited 

in-plane modes in the 2D-limit can be approximately written as 

 1
, ,

2
.st fund out

x in x in
in

q q
h

 


     

where ,
fund
x inq  is the momentum of fundamental in-plane mode. Excitation of all higher modes will 

be strongly suppressed due to extraordinarily large polariton momenta yielding extremely low 

photon-phonon coupling efficiency, and this trend becomes stronger as the thickness gets thinner. 

Also, one can find that the fundamental out-of-plane PhP mode is mostly confined inside the hBN 



layer. Therefore, compared to that of the in-plane case, the PhP-tip coupling of our-of-plane case 

is very weak6. The propagation property of fundamental in-plane PhP mode is exactly same with 

that of two-dimensional surface plasmons such as graphene plasmons, exhibiting anti-symmetric 

configuration of the normal-component of electric field in the proximity of material’s surfaces. 

This nature of PhP is discussed in detail in the previous work6, and is the reason that our main 

theoretical predictions, anomalous phase shift and even-odd peak oscillations in the edge-

reflection, are also observed in thin hBN flakes in earlier experimental studies6,7. 

 

2. Phase extraction from experimental measurements 

To measure the reflection phase shift experimentally, the tip-scattered near field signal EN is 

homodyne interfered with the reference Eref  of a Michelson interferometer with beam-splitter. To 

suppress the signal from the interference between the near field and the uncontrollable background 

Ebg (mainly from the tip and substrate), we used a strong reference beam8. The measured near field 

signal at distance x  away from the edge is due to the interference between the tip launched 

polariton field and edge reflected polariton field. 

 1 cos(2 )inc
measured ref N x RI E E R q x      (2.1). 

Where 
inc
NE  is the amplitude of tip launched wave, R is the reflection coefficient and R   is the 

reflection phase. The peak positions of the measured signal obtained in near field image will be 

determined in terms of xq x   and R . This means that all required parameters to obtain the phase 

shift R   are the wavelength of 2DSPs, and the distance between the edge and a peak. The position 

of the edge of the graphene is identified from the topography image which is simultaneously 



obtained during the scanning. The wavelength of 2DSPs can be fixed by measuring the distance 

between two neighboring peaks. Because our theory predicts that the position of the first peak can 

be strongly disturbed by the back-scattering diffraction of 2DSPs, second and third peaks are used 

to determine the wavelength, and the third peak is used to measure the distance from the edge. 

Then, the phase shift can be calculated from the following equation: 
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  (2.2), 

where xe, x2, and x3 respectively are positions of the edge, second peak, and third peak. Fig. S3(a) 

shows an exemplary near-field image of graphene at gate voltage -100V with incident light 10.6 

μm. Fig. S3(b) is a cross-cut profile of the inference pattern taken along the line in Fig. S3(a). 

Positions for the second/third peaks, and the edge are indicated in the image. 

  



 
 
Figure S1. Macroscopic procedure of edge-reflection of 2DSPs. a. A schematic of the system. 
2DSPs is incident from right. b. Dipole sources coupled from the incident 2DSPs. Diffracting 
waves are in the form of outgoing waves generated from the dipole sources. c. Coupling of 2DSPs 
from the diffracting waves that results in the edge-reflection of 2DSPs.  



 
 

Figure S2. A comparison between SAM and super-lattice approximation. In order to see the 
accuracy of backward diffracting waves calculated by SAM, even-odd peak oscillations at y = λsp 

are considered. For the super-lattice approximation, we truncated the mode number as N = 7,500 
and set d = 50λsp. In every calculation, we set qx = 50k0 and εs=1. 

 
 
 

  



 
 
Figure S3. Phase extraction from experimental results. a, Near-field image of graphene at gate 
voltage -100 V with incident light 10.6 μm. b, Cross-cut profile of the inference pattern taken 
along the line in a. 
  



 

Figure S4. Even-odd peak oscillations with material loss. a, The peak oscillations with different 

damping rate γ at y = 0.75 λsp. For a given damping rate, the decay of 2DSP can be calculated by 

exp(2qxrγx) where qxr is the real part of qx. One can find that γ is equivalent to qxi/qxr of which qxi 

the imaginary part of qx. We can clearly see that the even-odd peak oscillations become more 

pronounced with a higher material loss. b, Height-dependent peak oscillation with γ=0.04. 

  



 

Figure S5. Separations between the 1st-2nd peaks and 2nd-3rd peaks. In both analytic and 

experimental results, it is clearly shown that 1-2 separation is larger than 2-3 separation. Note that 

the origin of this different peak separation is the interference of 2DSPs with back-diffracting 

evanescent waves. 
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