Electronic Supporting Information for:

Evaluating 1,1'-Bisphosphinoferrocene Ancillary Ligand Variants in the Nickel-Catalyzed C-N Cross-Coupling of (Hetero)aryl Chlorides

Jillian S. K. Clark, ${ }^{\text {a }}$ Christopher N. Voth, ${ }^{\text {a }}$ Michael J. Ferguson, ${ }^{\text {b }}$ and Mark Stradiotto*, ${ }^{*}$
${ }^{\text {a }}$ Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. 15000, Halifax, Nova Scotia B3H 4R2, Canada
${ }^{\mathrm{b}}$ X-Ray Crystallography Laboratory, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada

Table of Contents

Characterization Data for Isolated Cross-Coupling Products (S2)

NMR Spectra (S9)

SI References (S28)

Characterization Data for Isolated Cross-Coupling Products:

4-((furan-2-ylmethyl)amino)benzonitrile (1b)

The title compound was synthesized from the corresponding chloride according to GP1, conducted at $110^{\circ} \mathrm{C}$ using $5 \mathrm{~mol} \% 1,1^{\prime}$-bis(diisopropylphosphino)ferrocene, and purified according to Workup Method A. Purified by flash column chromatography on silica gel using 19:1 hexanes/ethyl acetate which afforded the title product in 82% isolated yield ($163 \mathrm{mg}, 0.82 \mathrm{mmol}$) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.39-7.35(\mathrm{~m}, 3 \mathrm{H}), 6.63-6.61(\mathrm{~m}, 2 \mathrm{H}), 6.32-6.31(\mathrm{~m}, 1 \mathrm{H}), 6.24(\mathrm{~m}, 1 \mathrm{H})$, 4.81 (br. s, 1H), 4.33-4.32 (d, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125.8 MHz; CDCl_{3}): $\delta 151.3,150.9$, $142.3,133.6,120.5,112.5,110.5,107.6,99.0,40.4$. $\mathrm{HRMS} m / z \mathrm{ESI}^{+}$found $221.0685[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{NaO} 221.0691$.
N-(furan-2-ylmethyl)-2-methylquinolin-4-amine (1e)

The title compound was synthesized from the corresponding chloride according to GP1, conducted at $25^{\circ} \mathrm{C}$ using $6.7 \mathrm{~mol} \% 1,1$ '-bis(diphenyl)phosphinoferrocene, and purified according to Workup Method A which afforded the title product in a 73% yield (175 mg) as a light brown powder. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.94-7.91(\mathrm{~m}, 1 \mathrm{H}), 7.72-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.45(\mathrm{~m}$, 2 H), $6.43(\mathrm{~s}, 1 \mathrm{H}), 6.38-6.32(\mathrm{~m}, 2 \mathrm{H}), 5.33(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.51-4.50(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125.8 MHz, CDCl_{3}): $\delta 159.7,151.2,149.4,148.4,142.7,129.4,129.3,124.3,119.4$, 117.6, 110.7, 108.0, 99.7, 40.8, 25.9. HRMS m/z ESI^{+}found $239.1179[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O} 239.1184$.
N-(furan-2-ylmethyl)-2,5-dimethylaniline (1f)

The title compound was synthesized from the corresponding chloride according to GP1, conducted at $110^{\circ} \mathrm{C}$ using $10 \mathrm{~mol} \%$ 1, 1^{\prime}-bis(diphenylphosphino)ferrocene, and purified according to Workup Method A. Purified by flash column chromatography on silica gel using a gradient of dichloromethane and hexanes which afforded the title product in a 47% isolated yield ($45 \mathrm{mg}, 0.22$ mmol) as a yellow oil. The loss of material due to handling/compound volatility was confirmed on the basis of calibrated NMR experiments: Following Workup Method C the title product was produced in a 68% calculated yield using $20 \mathrm{~mol} \%$ ferrocene as an internal standard. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.40-7.39(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.54-6.52(\mathrm{~m}, 2 \mathrm{H}), 6.35-6.34(\mathrm{~m}, 1 \mathrm{H}), 6.26-$ $6.25(\mathrm{~m}, 1 \mathrm{H}), 4.36(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{br}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125.8 MHz , CDCl_{3}): $\delta 152.9,145.5,141.9,136.7,130.0,119.4,118.2,111.1,110.4,106.9,41.6,21.5,17.0$. Spectral data are in agreement with literature. HRMS $m / z \mathrm{ESI}^{+}$found $224.1046[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NNaO} 224.1051$.

4-(naphthalen-1-yl)morpholine (2a)

The title compound was synthesized from the corresponding chloride according to GP2, conducted at $100{ }^{\circ} \mathrm{C}$ using $5 \mathrm{~mol} \% 1,1^{\prime}$-bis(diphenyl)phosphinoferrocene, and purified according to Workup Method A. Purified by flash column chromatography on silica gel using (19:1) hexanes/ethyl acetate which afforded the title product in 85% isolated yield ($181 \mathrm{mg}, 0.85 \mathrm{mmol}$) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.25-8.23(\mathrm{~m}, 1 \mathrm{H}), 7.86-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.58(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.47$ $(\mathrm{m}, 2 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.10(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.99(\mathrm{~m}, 4 \mathrm{H}), 3.14-3.12(\mathrm{~m}$, $4 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.6,135.0$ (2 signals), 129.0, 128.7, 126.1, 125.7, $124.0,123.6,114.9,67.7,53.7$. Spectral data are in agreement with literature. ${ }^{\mathrm{S} 1}$

4-(3-methoxyphenyl)morpholine (2c)

The title compound was synthesized from the corresponding chloride according to GP2, conducted at $100^{\circ} \mathrm{C}$ using $5 \mathrm{~mol} \% 1,1^{\prime}$-bis(diphenyl)phosphinoferrocene, and purified according to Workup Method A. Purified by flash column chromatography on silica gel using (9:1) hexanes/ethyl acetate which afforded the title product in 84% isolated yield ($162 \mathrm{mg}, 0.84 \mathrm{mmol}$) as a pale brown oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.22-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.55-6.52(\mathrm{~m}, 1 \mathrm{H}), 6.46-6.43(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.84(\mathrm{~m}$, 4 H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.17-3.14(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.7,152.7,129.9$, $108.5,104.8,102.3,66.9,55.2,49.3$. Spectral data are in agreement with literature. ${ }^{\mathrm{S} 2}$

4-(2-methylquinolin-4-yl)morpholine (2e)

The title compound was synthesized from the corresponding chloride according to GP2, conducted at $25^{\circ} \mathrm{C}$ using $6.7 \mathrm{~mol} \% 1,1^{\prime}$-bis(diphenyl)phosphinoferrocene, and purified according to Workup Method A. Purified by flash column chromatography on silica gel using (1:4) hexanes/ethyl acetate which afforded the title product in 91% isolated yield ($207 \mathrm{mg}, 0.91 \mathrm{mmol}$) as a light brown solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.99-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H})$, 3.99-3.96 (m, 4H), 3.22-3.19 (m, 4H), 2.68 (s, 3H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.5$, 156.7, 149.3, 129.3, 129.1, 124.7, 123.2, 121.7, 109.3, 67.0, 52.6, 25.7. Spectral data are consistent with literature. ${ }^{\mathrm{S3}}$

4-(4-(tert-butyl)phenyl)morpholine (2f)

The title compound was synthesized from the corresponding bromide according to GP2, conducted at $100{ }^{\circ} \mathrm{C}$ using $5 \mathrm{~mol} \% 1,1^{\prime}$-bis(diphenyl)phosphinoferrocene, and purified according to Workup Method A. Purified by flash column chromatography on silica gel using (19:1) hexanes/ethyl acetate which afforded the title product in 82% isolated yield ($179 \mathrm{mg}, 0.82 \mathrm{mmol}$) as an off-white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33-7.31(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.89-6.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.88-3.86$ $(\mathrm{m}, 4 \mathrm{H}), 3.16-3.14(\mathrm{~m}, 4 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125.8 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 149.1,143.0,126.2$, $115.6,67.2,49.8,34.2,31.7$. Spectral data are consistent with literature. ${ }^{\mathrm{S} 4}$

4-(2,5-dimethylphenyl)morpholine (2g)

The title compound was synthesized from the corresponding chloride according to GP2, conducted at $100{ }^{\circ} \mathrm{C}$ using $5 \mathrm{~mol} \% 1,1^{\prime}$-bis(diphenyl)phosphinoferrocene, and purified according to Workup Method A. Purified by flash column chromatography on silica gel using $24: 1$ hexanes/ethyl acetate which afforded the title product in a 16% yield $(45 \mathrm{mg})$ as a light brown oil. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right): \delta 7.09-7.06(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.81(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.84(\mathrm{~m}, 4 \mathrm{H}), 2.92-2.89(\mathrm{~m}, 4 \mathrm{H})$, $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 151.4,136.4,131.2,129.5,124.2$, $119.9,67.7,52.5,21.4$, 17.7. Spectral data are consistent with literature. ${ }^{\text {S5 }}$

4-(4-methoxyphenyl)morpholine (2h)

The title compound was synthesized from the corresponding chloride according to GP2, conducted at $100^{\circ} \mathrm{C}$ using $6.7 \mathrm{~mol} \% 1,1^{\prime}$-bis(diphenyl)phosphinoferrocene, and purified according to Workup Method A. Purified by flash column chromatography on silica gel using (9:1) hexanes/ethyl acetate which afforded the title product in 65% isolated yield ($126 \mathrm{mg}, 0.65 \mathrm{mmol}$) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.91-6.83(\mathrm{~m}, 4 \mathrm{H}), 3.87-3.84(\mathrm{~m}, 4 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.07-3.04(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.0,145.7,117.8,114.5,67.0,55.6,50.8$. Spectral data are in agreement with literature values. ${ }^{\text {S1 }}$

1-(naphthalen-1-yl)-1H-indole (3a)

The title compound was synthesized from the corresponding chloride according to GP3, conducted at $110^{\circ} \mathrm{C}$ using $5 \mathrm{~mol} \% 1,1^{\prime}$-bis(di(bis-3,5-trifluoromethyl)phenyl)phosphinoferrocene, and purified according to Workup Method A. Purified by flash column chromatography on silica gel using (19:1) hexanes/ethyl acetate which afforded the title product in an 80% isolated yield ($117 \mathrm{mg}, 0.48 \mathrm{mmol}$) as an off-white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.99-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.75(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.61-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.13$ $(\mathrm{m}, 2 \mathrm{H}), 7.05-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.79-6.78(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $138.2,136.3,134.7,130.8,130.0,128.7,128.5,127.2,126.9,125.7,125.4,123.6,122.4,121.1,120.3$, 111.1, 103.1. Spectral data are in agreement with literature. ${ }^{\text {S6 }}$

4-(1H-indol-1-yl)benzonitrile (3b)

The title compound was synthesized from the corresponding chloride according to GP3, conducted
at $110^{\circ} \mathrm{C}$ using $5 \mathrm{~mol} \% 1,1$ '-bis(diphenyl)phosphinoferrocene, and purified according to Workup Method A. Purified by flash column chromatography on silica gel using a gradient of 100:0 to 19:1 hexanes/ethyl acetate which afforded the title product in a quantitative isolated yield ($213 \mathrm{mg}, 0.98$ mmol) as a light brown oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz ; CDCl3): $\delta 7.82-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.70(\mathrm{~m}, 1 \mathrm{H})$, $7.65-7.61(\mathrm{~m}, 3 \mathrm{H}) 7.35(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125.8 MHz; CDCl_{3}): δ 143.8, 135.4, 134.0, 130.2, 127.3, 124.1, 123.4, 121.8, 121.6, 118.6, 110.6, 109.6, 106.0. Spectral data are consistent with literature. ${ }^{\text {S7 }}$

1-(benzo[b]thiophen-5-yl)-1H-indole (3d)

The title compound was synthesized from the corresponding chloride according to GP3, conducted at $110^{\circ} \mathrm{C}$ using using $5 \mathrm{~mol} \% 1,1^{\prime}$-bis(diphenyl)phosphinoferrocene, and purified according to Workup Method A. Purified by flash column chromatography on silica gel using hexanes which afforded the title product in 92% isolated yield $(229 \mathrm{mg}, 0.92 \mathrm{mmol})$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.06-8.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~m}, 1 \mathrm{H}), 7.81-7.79(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.62$ (m, 2H), 7.58-7.55 (dd, $J=8.5 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.80-6.79(\mathrm{~d}$, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 140.9,138.3,137.1,136.7,129.7,128.8$, 124.3, 123.9, 122.8, 121.9, 121.6, 120.8, 119.7, 110.9, 103.9. HRMS $m / z \mathrm{ESI}^{+}$found $272.0504[\mathrm{M}+$ $\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NNaS} 272.0510$.

4-(1H-indol-1-yl)-2-methylquinoline (3e)

The title compound was synthesized from the corresponding chloride according to GP3, conducted at $110^{\circ} \mathrm{C}$ using $5 \mathrm{~mol} \% 1,1^{\prime}$-bis(diphenyl)phosphinoferrocene, and purified according to Workup Method A. Purified by flash column chromatography on silica gel using a gradient of 19:1 to 5.7:1 hexanes/ethyl acetate which afforded the title product in a 96% isolated yield ($247 \mathrm{mg}, 0.96 \mathrm{mmol}$) as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.19-8.18(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.72(\mathrm{~m}, 2 \mathrm{H})$, 7.69-7.67 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.36$ (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ (s, 1H), 7.24$7.18(\mathrm{~m}, 3 \mathrm{H}), 6.82-6.81(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $159.7,149.8,144.5,137.2,130.3,129.4,129.1,126.5,123.6,122.9,121.4,121.0,119.2,111.0,104.7$, 25.6. HRMS $m / z \mathrm{ESI}^{+}$found $259.1230[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{2}$ 259.1235.

1-(4-(tert-butyl)phenyl)-1H-indole (3f)

The title compound was synthesized from the corresponding bromide according to GP3, conducted at $110^{\circ} \mathrm{C}$ using using $5 \mathrm{~mol} \% 1,1^{\prime}$-bis(diphenyl)phosphinoferrocene, and purified according to Workup Method A. Purified by flash column chromatography on silica gel using a gradient of 99:1 to 49:1 hexanes/ethyl acetate which afforded the title product in a 64% isolated yield ($160 \mathrm{mg}, 0.64$ mmol) as a white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.83-7.82(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.70(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.43(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.28(\mathrm{~m}$, $2 \mathrm{H}), 6.80-6.79(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 149.6,137.4$, $136.2,129.4,128.2,126.6,124.2,122.4,121.3,120.4,111.8,103.4,34.8,31.6$. Spectral data are consistent with literature. ${ }^{\text {S4 }}$

1-(2,5-dimethylphenyl)-1H-indole (3g) ${ }^{\text {S8 }}$

The title compound was synthesized from the corresponding bromide according to GP3, conducted at $110^{\circ} \mathrm{C}$ using using $10 \mathrm{~mol} \% 1,1^{\prime}$-bis(3,5-(bis-trifluoromethyl)phenyl)phosphinoferrocene, and purified according to Workup Method A. Purified by flash column chromatography on silica gel using 99:1 hexanes/ethyl acetate which afforded the title product in 67% isolated yield ($89 \mathrm{mg}, 0.40 \mathrm{mmol}$) as a light brown oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.79-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.31(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.24-7.19 (m, 5H), 7.13-7.11 (m, 1H), 6.73-6.72 (m, 1H), 2.43 (s, 3H), 2.09 (s, 3H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 138.3, 137.2, 136.8, 132.7, 131.2, 129.1, 128.9, 128.8, 128.5, 122.2, 121.0, $120.0,110.8,102.6,21.0,17.4$. See footnote in the main text. ${ }^{24}$

1-(4-methoxyphenyl)-1H-indole (3h)

The title compound was synthesized from the corresponding chloride according to GP3, conducted
at $110^{\circ} \mathrm{C}$ using using $5 \mathrm{~mol} \% 1,1^{\prime}$-bis(3,5-(bis-trifluoromethyl)phenyl)phosphinoferrocene, and purified according to Workup Method A. Purified by flash column chromatography on silica gel using 49:1 hexanes/ethyl acetate which afforded the title product in 91% isolated yield ($203 \mathrm{mg}, 0.91 \mathrm{mmol}$) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.79-7.77(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.55(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.50-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{~d}$, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 158.6,136.5,133.0,129.2,128.5$, $126.2,122.3,121.2,120.3,114.9,110.6,103.1,55.8$. Spectral data are in agreement with literature. ${ }^{\text {S }}$

NMR Spectra

Figure S1. ${ }^{1} \mathrm{H}$ NMR Spectrum of 4-((furan-2-ylmethyl)amino)benzonitrile (1b), $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure S2. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of 4-((furan-2-ylmethyl)amino)benzonitrile (1b), $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right)$

Figure S3. ${ }^{1} \mathrm{H}$ NMR Spectrum of N-(furan-2-ylmethyl)-2-methylquinolin-4-amine (1e), $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure S4. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR N-(furan-2-ylmethyl)-2-methylquinolin-4-amine ($\mathbf{(1 e) , (\mathrm { CDCl } _ { 3 } , 1 2 5 . 8 \mathrm { MHz }) ~}$

Figure S5. ${ }^{1} \mathrm{H}$ NMR Spectrum of N-(furan-2-ylmethyl)-2,5-dimethylaniline (1f) $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

Figure S6. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of N -(furan-2-ylmethyl)-2,5-dimethylaniline (1f), $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right)$

Figure S7. ${ }^{1} \mathrm{H}$ NMR Spectrum of 4-(naphthalen-1-yl)morpholine (2a), (CDCl3, 500 MHz)

Figure S8. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of 4-(naphthalen-1-yl)morpholine (2a), $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure S9. ${ }^{1} \mathrm{H}$ NMR Spectrum 4-(3-methoxyphenyl)morpholine (2c), ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$)

Figure S10. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum 4-(3-methoxyphenyl)morpholine (2c), $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right.$)

Figure S11. ${ }^{1} \mathrm{H}$ NMR Spectrum of 4-(2-methylquinolin-4-yl)morpholine (2e), ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$)

Figure S12. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of 4-(2-methylquinolin-4-yl)morpholine (2e), $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right)$

Figure S13. ${ }^{1} \mathrm{H}$ NMR Spectrum of 4-(4-(tert-butyl)phenyl)morpholine (2f), ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure S14. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of 4-(4-(tert-butyl)phenyl)morpholine (2f), $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right)$

Figure S15. ${ }^{1} \mathrm{H}$ NMR Spectrum of 4-(2,5-dimethylphenyl)morpholine (2g), ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

Figure S16. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of 4-(2,5-dimethylphenyl)morpholine ($\mathbf{2 g}$), $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right)$

Figure S17. ${ }^{1} \mathrm{H}$ NMR Spectrum of 4-(4-methoxyphenyl)morpholine (2h), ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$)

Figure S18. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of 4-(4-methoxyphenyl)morpholine (2h), $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right)$

Figure S19. ${ }^{1} \mathrm{H}$ NMR Spectrum of 1-(naphthalen-1-yl)-1H-indole (3a), $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure S20. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of 1-(naphthalen-1-yl)-1H-indole (3a), $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right)$

Figure S21．${ }^{1} \mathrm{H}$ NMR Spectrum of 4－（ 1 H －indol－1－yl）benzonitrile（3b），（ $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$ ）

Figure S22．${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of 4－（ 1 H －indol－1－yl）benzonitrile（3b），$\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right.$ ）

$$
\begin{aligned}
& \text { のサウヒゥ }
\end{aligned}
$$

Figure S23. ${ }^{1} \mathrm{H}$ NMR Spectrum of 1-(benzo[b]thiophen-5-yl)-1H-indole (3d), ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure S24. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of 1-(benzo[b]thiophen-5-yl)-1H-indole (3d), $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right)$

Figure S25. ${ }^{1} \mathrm{H}$ NMR Spectrum of 4-(1H-indol-1-yl)-2-methylquinoline (3e), ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure S26. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of 4-(1H-indol-1-yl)-2-methylquinoline $(\mathbf{3 e}),\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right)$

$$
\begin{aligned}
& \text { e } \\
& \stackrel{n}{n} \\
& \stackrel{n}{n} \\
& i
\end{aligned}
$$

Figure S27. ${ }^{1} \mathrm{H}$ NMR Spectrum of 1-(4-(tert-butyl)phenyl)-1H-indole (3f), ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

Figure S28. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of 1-(4-(tert-butyl)phenyl)-1H-indole (3f), $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right)$

Figure S29. ${ }^{1} \mathrm{H}$ NMR Spectrum of 1-(2,5-dimethylphenyl)-1H-indole (3g), ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure S30. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of 1-(2,5-dimethylphenyl)-1H-indole (3g), $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right)$

Figure S31. ${ }^{1} \mathrm{H}$ NMR of Spectrum 1-(4-methoxyphenyl)-1H-indole (3h), ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure S32. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of 1-(4-methoxyphenyl)-1H-indole (3h), $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right)$

Figure S33. ${ }^{1} \mathrm{H}$ NMR Spectrum of 1,1'-(bis(di-(3,5-dimethyl-4-methoxyphenyl))phosphino)ferrocene $\left(\mathbf{L}^{\mathbf{O M e}}\right)$ $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure S34. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of 1,1'-(bis(di-(3,5-dimethyl-4-methoxyphenyl))phosphino)ferrocene $\left(\mathbf{L}^{\mathbf{O M e}}\right)\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right)$

Figure S35. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of 1,1'-(bis(di-(3,5-dimethyl-4-methoxyphenyl))phosphino)ferrocene $\left(\mathbf{L}^{\mathbf{O M e}}\right)\left(\mathrm{CDCl}_{3}, 202.5 \mathrm{MHz}\right)$

Figure S36. ${ }^{1} \mathrm{H}$ NMR Spectrum of 1,1 ' (bis(3,5-dimethylphenyl)phosphino)ferrocene $\left(\mathbf{L}^{\mathrm{Me}}\right)\left(\mathrm{CDCl}_{3}, 500\right.$ MHz)

Figure S37. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of 1,1’-(bis(3,5-dimethylphenyl)phosphino)ferrocene $\left(\mathbf{L}^{\mathrm{Me}}\right)\left(\mathrm{CDCl}_{3}\right.$, 125.8 MHz)

Figure S38. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of 1,1'-(bis(3,5-dimethylphenyl)phosphino)ferrocene $\left(\mathbf{L}^{\mathrm{Me}}\right)\left(\mathrm{CDCl}_{3}\right.$, 202.5 MHz)

SI References

[S1] M. A. Topchiy, P. B. Dzhevakov, M. S. Rubina, O. S. Morozov, A. F. Asachenko, M. S. Nechaev. Chem. Eur. J. 2016, 22, 1908-1914.
[S2] S. Zhou, Z. Yang, X. Chen, Y. Li, L. Zhang, H. Fang, W. Wang, X. Zhu, S. Wang. J. Org. Chem., 2015, 80, 6323-6328.
[S3] L. Strekowski, S. E. Patterson, L. Janda, R. L. Wydra, D. B. Harden, M. Lipowska, M. T. Cegla. J. Org. Chem., 1992, 57, 196-201.
[S4] C. M. So, Z. Zhou, C. P. Lau, F. Y. Kwong. Angew. Chem. Int. Ed., 2008, 47, 6402-6406.
[S5] S. Doherty, J. G. Knight, A. M. Ferguson, N. A. B. Ward, R. W. Harrington, W. Clegg. Adv. Synth. Cat. 2010, 352, 201-211.
[S6] S. M. Crawford, C. B. Lavery, M. Stradiotto. Chem. Eur. J. 2013, 19, 16760-16771.
[S7] B. S. Lane, D. Sames. Org. Lett. 2004, 6, 2897-2900.
[S8] Old, D. W., Harris, M. C., Buchwald, S. L. Org. Lett., 2000, 2, 1403-1406.
[S9] C. M. Lavoie, P. M. MacQueen, N. L. Rotta-Loria, R. S. Sawatzky, A. Borzenko, A. J. Chisholm, B. K. V. Hargreaves, R. McDonald, M. J. Ferguson, M. Stradiotto. Nat. Comтии. 2016, 7, 11073.

