Supporting Information Enantioselective Total Synthesis Of (+)-Sieboldine A

Mohammed K. Abd El-Gaber, Shigeo Yasuda, Eisuke Iida and Chisato Mukai

Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University; Kakuma-machi, Kanazawa 920-1192, Japan

Table of Contents

General notes S2
Synthetic procedures S3-S22
Optimization of asymmetric allylation of aldehyde 9 (Table S1) S23
Determination of the absolute configuration of $(\boldsymbol{R}) \mathbf{- 1 0}$ S24-S25
Comparison of synthetic and natural (+)-sieboldine A spectral data S26-S27
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra \& HPLC chromatograms S28-S76

General notes:

All commercially obtained reagents and solvents were used as received unless additional purification is stated in the procedure. All glassware was oven-dried at 150 ${ }^{\circ} \mathrm{C}$ and cooled in desiccator immediately before use. Experiments were conducted under inert atmospheres of Nitrogen or Argon using standard syringe-septa techniques. Reactions performed at room temperature were at approximately $24^{\circ} \mathrm{C}$. Thin layer chromatography (TLC) was performed on Merck analytical glass plates pre-coated with silica gel 60 F254 (0.25 mm thick). Visualization was effected by exposure to UV light (254 nm) and staining with p-anisaldehyde or phosphomolybdic acid stains followed by a brief heating on a hot plate. Concentration under reduced pressure was performed by rotary evaporation $(\sim 30 \mathrm{mmHg})$ at $20-40{ }^{\circ} \mathrm{C}$. Flash column chromatography was performed as described by W. C. Still et al. (J. Org. Chem.1978, 43, 2923.) using forced flow of the indicated solvent system on Kanto ${ }^{\circledR}$ Chemical silica gel 60 N (spherical, neutral, $40-50 \mu \mathrm{~m}$,). Melting points were determined on YANAGIMOTO micro melting point apparatus and were uncorrected. Infrared spectra were recorded on a ThermoFisher Nicolet iS5 spectrometer and are reported in terms of frequency of absorption $\left(\mathrm{cm}^{-1}\right)$. NMR spectra were recorded on JNM-ECS400 or JNM-ECA600 spectrometers. Chemical shift (δ) values are reported in parts per million relative to internal standard tetramethylsilane ($\delta 0.00 \mathrm{ppm}$) and residual $\mathrm{CDCl}_{3}(\delta 7.27 \mathrm{ppm})$ for proton spectra and to residual $\mathrm{CDCl}_{3}(\delta 77.23 \mathrm{ppm})$ for carbon spectra. Coupling constants are reported in Hertz. The following abbreviations were used for spin multiplicity: s , singlet; br s, broad singlet; d, doublet; t , triplet; q , quartet; dd, doublet of doublet; ddd, doublet of doublet of doublet; td, triplet of doublet; m, multiplet; br m, broad multiplet. High-resolution mass spectra were measured with JMS-T100TD (DART) mass spectrometer. Optical rotations were measured with a JASCO P-2200 polarimeter with a sodium lamp and reported as followed: $[\alpha]^{T}{ }^{\mathrm{D}}$ (concentration $\mathrm{g} / 100 \mathrm{~mL}$, solvent). Single-crystal X-ray diffraction was measured with R-AXIS RAPID II.

1-Methoxy-4-((pent-4-ynyloxy)methyl)benzene S2

1-Methoxy-4-((pent-4-ynyloxy)methyl)benzene $\mathbf{S 2}$ was prepared from 4-pentyn-1-ol $\mathbf{S 1}$ according to the method described by Chandrasekhar et al. ${ }^{1}$

2-((Tributylstannyl)methyl)allyl acetate S4

S3

S4

2-((Tributylstannyl)methyl)allyl acetate $\mathbf{S 4}$ was prepared from methallyl alcohol S3 according to the procedure described by Trost and Bonk. ${ }^{2}$

6-((4-Methoxybenzyl)oxy)hex-2-ynal 9

To a solution of alkyne $\mathbf{S 3}(10 \mathrm{~g}, 49 \mathrm{mmol})$ and hexamethylphosphoramide HMPA $(21.5 \mathrm{~mL}, 122.5 \mathrm{mmol})$ in THF $(100 \mathrm{~mL})$ at $-45{ }^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(1.43 \mathrm{M}$ in hexane, $51.5 \mathrm{~mL}, 73.5 \mathrm{mmol}$). After stirring for 30 min at the same temperature, DMF $(15 \mathrm{~mL}, 196 \mathrm{mmol})$ was added at once and the reaction mixture was warmed up to room temperature over 1 h . The reaction was quenched with 10% aq $\mathrm{KH}_{2} \mathrm{PO}_{4}$ (270 mL) and the mixture was partitioned between EtOAc and brine. The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography using

[^0](hexanes/EtOAc, 6:1) as an eluent to afford aldehyde 9 as pale yellow oil ($9.2 \mathrm{~g}, 81 \%$ yield): ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 9.11$ (s, 1H), 7.24 (dd, $J=8.2,4.1,2 \mathrm{H}$), 6.86 (dd, $J=8.6,4.3,2 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{t}, J=6.0,2 \mathrm{H}), 2.51(\mathrm{td}, J=7.0$, $3.5,2 \mathrm{H}), 1.85-1.84(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 176.9,159.0,130.0$, $129.0,113.5,98.3,81.5,72.4,67.5,54.9,27.5,15.8$; IR (thin film, cm^{-1}) 2200,1664 , 1243, 1030; DART HRMS $m / z[M+H]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3}$ 233.1177, found 233.1190 .

(R)-4-Hydroxy-9-((4-methoxybenzyl)oxy)-2-methylenenon-5-yn-1-yl acetate 10

To a stirred solution of $\mathrm{TiCl}_{4}(22 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon was added $\mathrm{Ti}(\mathrm{O} i-\mathrm{Pr})_{4}(180 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$. The reaction mixture was allowed to warm to room temperature and stirred for 1 h . Silver(I) oxide $\mathrm{Ag}_{2} \mathrm{O}$ ($93 \mathrm{mg}, 0.4$ mmol) was added and the reaction mixture was stirred for 5 h at the same temperature under exclusion of direct light. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$, and (R)-BINOL ($229 \mathrm{mg}, 0.8 \mathrm{mmol}$) was added. After stirring for 2 h , the reaction mixture was cooled to $-15{ }^{\circ} \mathrm{C}$ and a solution of aldehyde $9(232 \mathrm{mg}, 1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ and a solution of allylstannane $\mathbf{S 4}(806 \mathrm{mg}, 2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5$ mL) were added sequentially via cannula. The reaction was allowed to warm to $0^{\circ} \mathrm{C}$ and stirred at the same temperature for 10 h . The reaction mixture was quenched with saturated aq NaHCO_{3} and the heterogeneous suspension was filtered through Celite. ${ }^{\circledR}$ The Celite ${ }^{\circledR}$ was washed thoroughly with $\mathrm{Et}_{2} \mathrm{O}$. The layers were separated and the aqueous layer was extracted three times with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography using (hexanes/EtOAc, 2:1) as an eluent to afford alcohol $\mathbf{1 0}$ as colorless oil ($277 \mathrm{mg}, 80 \%$ yield, 93% ee): $[\alpha]^{30}{ }_{\mathrm{D}}=+13.2\left(c 1.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 7.25(\mathrm{~d}, J=8.6,2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6,2 \mathrm{H}), 5.17(\mathrm{~d}, J=1.4,1 \mathrm{H})$,
$5.09(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 4.48-4.46(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{t}, J=$ $6.2,2 \mathrm{H}), 2.58(\mathrm{~d}, J=5.2,1 \mathrm{H}), 2.44(\mathrm{~d}, J=10.8,2 \mathrm{H}), 2.31(\mathrm{td}, J=7.1,1.8,2 \mathrm{H}), 2.08$ (s, 3H), 1.80-1.75 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 170.6,159.0,139.5$, $130.3,129.1,115.9,113.6,85.0,80.8,72.4,68.2,66.7,61.0,55.1,41.9,28.5,20.8$, 15.4; IR (thin film, cm^{-1}) $3414,1696,1511,1172$; DART HRMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{5}$ 347.1858, found 347.1857; HPLC: Daicel CHIRALPAK ${ }^{\circledR}$ OD-H column; $\lambda=254 \mathrm{~nm}$; eluent: hexane/isopropanol $=90 / 10$; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; major enantiomer $t_{R}=18.0 \mathrm{~min}$, minor enantiomer $\mathrm{t}_{\mathrm{R}}=20.2 \mathrm{~min} ;$ ee $=93 \%$.

(R)-4-((tert-Butyldimethylsilyl)oxy)-9-((4-methoxybenzyl)oxy)-2-methylenenon-5-yn-1-yl acetate 11

10
11 (99\%)
To a solution of alcohol $10(3.1 \mathrm{~g}, 8.95 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ were added imidazole ($1.8 \mathrm{~g}, 26.85 \mathrm{mmol}$) and TBS-Cl ($2.7 \mathrm{~g}, 17.9 \mathrm{mmol}$) at room temperature. After stirring for 4 h at the same temperature, the reaction mixture was quenched with water. The layers were separated and the aqueous layer was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was chromatographed using (hexanes/EtOAc, from 10:1) as an eluent to afford $\mathbf{1 1}$ as colorless oil ($4.06 \mathrm{~g}, 99 \%$ yield): $[\alpha]^{30}{ }_{\mathrm{D}}=+22.9\left(c 0.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) ; \delta 7.16(\mathrm{~d}, J=8.7,2 \mathrm{H}), 6.78(\mathrm{~d}, J=8.7,2 \mathrm{H}), 5.04(\mathrm{~d}, J=1.4,1 \mathrm{H}), 4.95(\mathrm{~s}$, $1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 4.39-4.36(\mathrm{~m}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{t}, J=6.4,2 \mathrm{H})$, $2.31(\mathrm{~d}, J=6.4,2 \mathrm{H}), 2.20(\mathrm{td}, J=7.3,1.8,2 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.69-1.68(\mathrm{~m}, 2 \mathrm{H}), 0.80$ (s, 9H), $0.02(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 170.5,159.1$, $139.9,130.5,129.1,115.5,113.7,84.5,81.3,72.6,68.5,67.0,62.4,55.1,42.7,28.7$, 25.7, 20.9, 18.1, 15.5, -4.5, -5.1; IR (thin film, cm^{-1}) 1733, 1514, 1249, 1078; DART HRMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{41} \mathrm{O}_{5} \mathrm{Si} 461.2723$, found 461.2730.

(R)-tert-Butyl((11-((4-methoxybenzyl)oxy)-4-methyleneundec-1-en-7-yn-6-yl)oxy)dimethylsilane 12

To a stirred solution of $\mathbf{1 1}(2.3 \mathrm{~g}, 5 \mathrm{mmol})$ in THF (18 mL) and dimethylsulfide $\mathrm{Me}_{2} \mathrm{~S}$ $(1.8 \mathrm{~mL})$ at room temperature under argon, was added $\mathrm{CuI}(190 \mathrm{mg}, 1.0 \mathrm{mmol})$. The reaction mixture was cooled to $-30^{\circ} \mathrm{C}$, and vinylmagnesium bromide $(10 \mathrm{~mL}, 10$ mmol, 1.0 M in THF) was added slowly over 20 min . After stirring for 30 min at the same temperature, the reaction was quenched with saturated aq NaHCO_{3} and diluted with $\mathrm{Et}_{2} \mathrm{O}$. The layers were separated and the aqueous layer was extracted three times with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography using (hexanes/EtOAc, 20:1) as an eluent to afford dienyne $\mathbf{1 2}$ as colorless oil $(1.82 \mathrm{~g}, 85 \%) .[\alpha]^{30}{ }_{\mathrm{D}}=+22.8(c 0.9$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 7.14(\mathrm{~d}, J=8.6,2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.6,2 \mathrm{H})$, 5.72-5.67 (m, 1H), 4.96-4.95 (m, 2H), 4.77-4.76 (m, 2H), 4.36-4.35 (m, 1H), 4.32 (s, $2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{t}, J=6.4,2 \mathrm{H}), 2.71(\mathrm{~d}, J=6.9,2 \mathrm{H}), 2.27-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.20$ $(\mathrm{td}, J=7.0,1.7,2 \mathrm{H}), 1.69-1.65(\mathrm{~m}, 2 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}); $\delta 159.0,143.7,136.0,130.4,129.0,116.1,113.5,113.3$, 84.0, 81.8, 72.5, 68.4, 62.3, 54.9, 45.1, 40.9, 28.7, 25.7, 18.1, 15.4, -4.6, -5.1; IR (thin film, cm^{-1}) 2952, 1513, 1248, 1079; DART HRMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{41} \mathrm{O}_{3} \mathrm{Si}$ 429.2825, found 429.2827.
(4R,7aS)-4-((tert-Butyldimethylsilyl)oxy)-3-(3-((4-methoxybenzyl)-oxy)propyl)-6-methylene-5,6,7,7a-tetrahydro- 1 H -inden-2(4H)-one 13 and (4R,7aR)-4-((tert-butyldimethylsilyl)oxy)-3-(3-((4-methoxybenz-yl)oxy)propyl)-6-methylene-5,6,7,7a-tetrahydro-1 H -inden-2(4H)-one 13'

(96\%, 98:2)
To a stirred solution of dienyne $12(4.8 \mathrm{~g}, 11.2 \mathrm{mmol})$ in toluene $(70 \mathrm{~mL})$ were added
$\mathrm{Co}_{2}(\mathrm{CO})_{8}(766 \mathrm{mg}, 20 \mathrm{~mol} \%)$ and tetramethulthiourea TMTU ($296 \mathrm{mg}, 20 \mathrm{~mol} \%$) at room temperature. The reaction was stirred for 4 h at $70^{\circ} \mathrm{C}$ under 1 atm CO . The black suspension was concentrated under reduced pressure. The residue was chromatographed with (hexanes/EtOAc, 9:1) eluting first $\mathbf{1 3}$ as colorless oil (4.8 g , 94%) followed by $\mathbf{1 3}^{\prime}$ as colorless oil ($0.1 \mathrm{~g}, 2 \%$).
(4R,7aS)-4-((tert-Butyldimethylsilyl)oxy)-3-(3-((4-methoxybenzyl)-oxy)propyl)-6-methylene-5,6,7,7a-tetrahydro- 1 H -inden-2(4H)-one 13

$[\alpha]^{30}{ }_{\mathrm{D}}=-62.1\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (600 $\mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 7.18(\mathrm{~d}, J=7.6,2 \mathrm{H}), 6.79(\mathrm{~d}, J=$ $7.6,2 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H})$, $3.72(\mathrm{~s}, 3 \mathrm{H}), 3.36-3.33(\mathrm{~m}, 2 \mathrm{H}), 2.98-2.96(\mathrm{~m}, 1 \mathrm{H})$, 2.65 (dd, $J=6.5,3.4,1 \mathrm{H}), 2.47$ (dd, $J=19.2,6.5$, $1 \mathrm{H}), 2.41(\mathrm{~d}, J=13.7,1 \mathrm{H}), 2.23-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.09$ (d, $J=13.7,1 \mathrm{H}), 1.88(\mathrm{~d}, J=19.2,1 \mathrm{H}) 1.71-1.70$ $(\mathrm{m}, 1 \mathrm{H}), 1.62-1.60(\mathrm{~m}, 2 \mathrm{H}), 0.78(\mathrm{~s}, 9 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}),-0.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 $\mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 209.1,173.9,159.0,141.8,136.1,130.5,129.0,113.6,112.5,72.3$, $69.1,65.0,55.1,43.4,43.3,41.1,36.6,28.4,25.5,19.5,17.9,-4.8,-4.9$; IR (thin film, cm^{-1}) 2928, 1702, 1247, 1071; DART HRMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{O}_{4} \mathrm{Si} 457.2774$, found 457.2770.
(4R,7aR)-4-((tert-Butyldimethylsilyl)oxy)-3-(3-((4-methoxy-benzyl)oxy)-propyl)-6-methylene-5,6,7,7a-tetrahydro-1H-inden-2(4H)-one 13'

$[\alpha]^{25}{ }_{\mathrm{D}}=+21.0\left(c 3.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (600 $\mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 7.25-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6$, $2 \mathrm{H}), 4.83(\mathrm{~s}, 2 \mathrm{H}), 4.47(\mathrm{dd}, J=11.7,5.5,1 \mathrm{H}), 4.41$ (d, $J=11.6,1 \mathrm{H}), 4.39(\mathrm{~d}, J=11.6,1 \mathrm{H}), 3.79(\mathrm{~s}$, $3 \mathrm{H}), 3.42(\mathrm{t}, J=7.0,2 \mathrm{H}), 2.64-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.54-$ $2.52(\mathrm{~m}, 3 \mathrm{H}), 2.48-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{t}, J=11.9$, $1 \mathrm{H}), 1.96(\mathrm{~d}, J=17.2,1 \mathrm{H}), 1.77-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.64-$ $1.62(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 208.4,173.0,159.0,143.2,138.0,130.8,129.3,113.6,111.6,74.3,72.3,70.0$, $55.2,45.8,42.8,40.5,39.1,29.7,25.9,19.4,18.2,-4.6,-5.0$; IR (thin film, cm^{-1}) 2952, 1702, 1243, 1093; DART HRMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{O}_{4} \mathrm{Si} 457.2774$, found 457.2779.
(4R,7aS)-4-Hydroxy-3-(3-((4-methoxybenzyl)oxy)propyl)-6-methylene-5,6,7,7a-tetrahydro- 1 H -inden-2(4H)-one 14

To a solution of indenone $13(1.63 \mathrm{~g}, 3.6 \mathrm{mmol})$ in THF (36 mL) at room temperature was added tetrabutylammonium fluoride TBAF ($5.4 \mathrm{~mL}, 5.4 \mathrm{mmol}, 1.0$ M in THF). After stirring for 3 h at the same temperature, the reaction was quenched with saturated aq $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted by addition of EtOAc. The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic extracts were washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was chromatographed with (hexanes/EtOAc, 2:1) as an eluent. The crude eluted fractions were evaporated and the remaining solid residue was recrystallized from (EtOAc/hexanes) to give $\mathbf{1 4}$ as colorless needles $\left(1.1 \mathrm{~g}, 90 \%, 99 \%\right.$ ee): $[\alpha]^{30}{ }_{\mathrm{D}}=-$ 117.7 (c $1.0, \mathrm{CHCl}_{3}$); $\mathrm{mp}=68-69{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 7.23(\mathrm{~d}, J=$ $8.6,2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6,2 \mathrm{H}), 4.98$ (brs, 1H), 4.91-4.90 (m, 2H), 4.40 (d, $J=11.3$, $1 \mathrm{H}), 4.38(\mathrm{~d}, J=11.3,1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{t}, J=6.2,2 \mathrm{H}), 3.04-3.00(\mathrm{~m}, 1 \mathrm{H})$, $2.79(\mathrm{~d}, J=4.8,1 \mathrm{H}), 2.73(\mathrm{dd}, J=12.7,4.5,1 \mathrm{H}), 2.60-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.30(\mathrm{~m}$, $3 \mathrm{H}), 1.97(\mathrm{dd}, J=18.7,1.9,1 \mathrm{H}) 1.77-1.72(\mathrm{~m}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta$ 208.7, 172.8, 159.0, 141.6, 137.6, 130.1, 129.2, 113.7, 113.5, 72.0, 68.7, 64.2, 55.1, $42.5,42.0,41.0,36.7,27.7,19.2$; IR (thin film, cm^{-1}) $3411,1697,1512,1247,1036$; DART HRMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{4} 343.1909$, found 343.1906; HPLC: Daicel CHIRALPAK ${ }^{\circledR}$ OD-H column; $\lambda=254 \mathrm{~nm}$; eluent: hexane/isopropanol $=$ $94 / 6$; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; major enantiomer $\mathrm{t}_{\mathrm{R}}=32.9 \mathrm{~min}$; ee $=99 \%$.

(4R,6R,7aS)-4-Hydroxy-3-(3-((4-methoxybenzyl)oxy)propyl)-6-methyl-5,6,7,7a-tetrahydro-1 H -inden-2(4H)-one 15

To a stirred solution of $\mathbf{1 4}(5.5 \mathrm{~g}, 16 \mathrm{mmol})$ in benzene $(60 \mathrm{~mL})$ at room temperature was added $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}(740 \mathrm{mg}, 5 \mathrm{~mol} \%)$. The reaction was stirred for 6 h at room temperature under 1 atm H_{2}. The brown mixture was concentrated under reduced pressure and the residue was chromatographed with (hexanes/EtOAc, 1:1) as an eluent to give $\mathbf{1 5}$ as colorless oil ($5.4 \mathrm{~g}, 98 \%$): $[\alpha]^{25}{ }_{\mathrm{D}}=-80.4\left(c 2.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 7.22$ (d, $J=8.6,2 \mathrm{H}$), 6.87 (d, $J=8.6,2 \mathrm{H}$), 4.83 (brs, $1 \mathrm{H}), 4.40(\mathrm{~d}, J=11.7,1 \mathrm{H}), 4.36(\mathrm{~d}, J=11.7,1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{t}, J=5.3$, 2H), 3.17-3.14 (m, 1H), 3.07 (s, 1H), 2.57 (dd, $J=18.9,6.5,1 \mathrm{H}$), 2.31 (dd, $J=6.8$, $6.5,2 H), 2.01-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.78-1.71(\mathrm{~m}, 3 \mathrm{H}), 1.28-1.27(\mathrm{~m}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 209.6,175.1,159.2,137.4,129.9,129.3$, 113.7, 71.8, 68.4, 64.2, 55.2, 41.5, 40.2, 37.9, 31.0, 27.0, 26.9, 20.5, 19.1; IR (thin film, $\left.\mathrm{cm}^{-1}\right) 3426,1701,1512,1174$; DART HRMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{4}$ 345.2065, found 345.2064.

(3aS,4R,6aS,8R,9aR)-2-Ethoxy-4-(3-((4-methoxybenzyl)oxy)propyl)-8-methyloctahydroindeno[4,3a-b]furan-5(4H)-one 16

15

1) $\mathrm{Br}-\mathrm{CH}=\mathrm{CH}-\mathrm{OEt}$
 Toluene,Reflux

16 (91 \%)

Pyridinium p-toluenesulfonate PPTS ($263 \mathrm{mg}, 1.05 \mathrm{mmol}$) and camphorsulfonic acid CSA ($244 \mathrm{mg}, 1.05 \mathrm{mmol}$) were added to a solution of alcohol $15(1.8 \mathrm{~g}, 5.23$ $\mathrm{mmol})$ and (Z / E)-2-bromovinyl ethyl ether ${ }^{3}(3.15 \mathrm{~g}, 20.9 \mathrm{mmol})$ at room temperature. After stirring for 2 h , the reaction was diluted by $\mathrm{Et}_{2} \mathrm{O}$ and quenched with saturated aq NaHCO_{3} at $0{ }^{\circ} \mathrm{C}$. The layers were separated and the aqueous layer was extracted three times with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was passed through a short pad of silica gel using (hexanes/EtOAc, from $10: 1$ to $3: 1$) as an eluent. The crude eluted fractions were evaporated and dissolved in toluene. Tributyltin hydride $n-\mathrm{Bu}_{3} \mathrm{SnH}(7.0 \mathrm{~mL}, 26.15$ mmol) and Azobisisobutyronitrile AIBN were added ($0.43 \mathrm{~g}, 2.62 \mathrm{mmol}$) at room
(3) (Z/E)-2-Bromovinyl ethyl ether was freshly prepared as described by Stalick, W. M.; Khorrami, A.; Hatton, K. S. J. Org. Chem. 1986, 51, 3577.
temperature. The reaction was heated under reflux for 4 h . The solvent was evaporated under reduced pressure and the residue was chromatographed with (hexanes/EtOAc, from 6:1 to 2:1) to afford cyclic acetal $\mathbf{1 6}$ as colorless oil (1.97 g , 91%, two diastereomers, 3:1): $[\alpha]^{25}{ }_{\mathrm{D}}=+3.4\left(c 1.9, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, CDCl_{3}, major isomer); $\delta 7.25-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6,2 \mathrm{H}), 5.12(\mathrm{dd}, J=5.7$, $2.6,1 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{t}, J=5.3,1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.46-$ 3.41 (m, 3H), 2.44 (dd, $J=19.2,8.9,1 \mathrm{H}), 2.36-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{dd}, J=9.3,4.8$, $1 \mathrm{H}), 2.00-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.64(\mathrm{~m}, 1 \mathrm{H})$, $1.53-1.45(\mathrm{br} \mathrm{m}, 3 \mathrm{H}), 1.39-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{t}, J=7.0,3 \mathrm{H})$, 1.07 (d, $J=6.9,3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3,}$ major isomer); $\delta 219.4,159.1$, 130.6, 129.2, 113.7, 102.0, 78.7, 72.4, 69.9, 62.9, 55.2, 52.3, 50.0, 42.1, 38.0, 33.8, $33.6,33.4,27.8,24.9,23.2,20.7,15.3$; IR (thin film, cm^{-1}) 2924, 1736, 1513, 1247, 1098; DART HRMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{O}_{5} 417.2641$, found 417.2639.

(3aS,6aS,8R,9aR)-2-Ethoxy-4-(3-((4-methoxybenzyl)oxy)propyl)-8-methyl-2,3,6,6a,7,8,9,9a-octahydroindeno[4,3a-b]furan-5-yl acetate 17

Dimethylaminopyridine DMAP ($410.5 \mathrm{mg}, 3.36 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(11.6 \mathrm{~mL}, 84$ $\mathrm{mmol})$ were added to a solution of $\mathbf{1 6}(3.5 \mathrm{~g}, 8.4 \mathrm{mmol})$ and acetic anhydride ${ }^{4}(23.8$ $\mathrm{mL}, 252 \mathrm{mmol}$) at room temperature. The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 48 h . The color changed from pale yellow to dark brown during the course of the reaction. The reaction was diluted by EtOAc at $0{ }^{\circ} \mathrm{C}$ and quenched with saturated aq NaHCO_{3}. The heterogeneous mixture was filtered through Celite ${ }^{\circledR}$ and the Celite ${ }^{\circledR}$ was washed thoroughly with EtOAc. The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic layers were washed with saturated aq copper(II) sulfate and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$,
filtered and concentrated under reduced pressure. The residue was purified by column chromatography using (hexanes/EtOAc, from 9:1 to $6: 1$) as an eluent to afford vinyl acetate derivative $\mathbf{1 7}$ as pale yellow oil ($3.54 \mathrm{~g}, 92 \%$, two diastereomers, 3:1): $[\alpha]^{24}{ }_{\mathrm{D}}=-13.1\left(c 1.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer); δ 7.26 (d, $J=8.6,2 \mathrm{H}), 6.87$ (d, $J=8.6,2 \mathrm{H}), 5.11$ (dd, $J=6.0,3.3,1 \mathrm{H}), 4.41$ (s, 2H), $4.05(\mathrm{t}, J=4.6,1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.40(\mathrm{~m}, 3 \mathrm{H}), 2.57(\mathrm{dd}, J$ $=15.1,7.9,1 \mathrm{H}), 2.18-2.13(\mathrm{br} \mathrm{m}, 5 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{dd}, J=13.9,3.3,1 \mathrm{H})$, $1.77-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{t}$, $J=7.0,3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.9,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer); δ $168.7,159.0,146.1,130.7,129.1,128.4,113.7,102.2,78.0,72.3,69.8,63.1,55.2$, $54.1,44.0,39.0,35.3,33.7,32.7,28.5,23.9,21.7,20.8,20.5,15.3$; IR (thin film, $\left.\mathrm{cm}^{-1}\right) 3292,1754,1512,1246,1100$; DART HRMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{O}_{6}$ 459.2747, found 459.2749.

(3aR,4R,6aS,8R,9aR)-2-Ethoxy-4-hydroxy-4-(3-((4-methoxybenzyl)-oxy)propyl)-8-methyloctahydroindeno[4,3a-b]furan-5(4H)-one 18

17

18 (96\%)

To a solution of $\mathbf{1 7}(2.0 \mathrm{~g}, 4.36 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ was added a solution of $m-\mathrm{CPBA}^{5}(2.26 \mathrm{~g}, 13.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$. The reaction mixture was gradually warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 2 h at the same temperature. The reaction was quenched with saturated aq NaHCO_{3} and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The layers were separated and the aqueous layer was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was dissolved in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ ($15 \mathrm{~mL}: 1.5 \mathrm{~mL}$). Potassium carbonate $\mathrm{K}_{2} \mathrm{CO}_{3}(241 \mathrm{mg}$, 1.74 mmol) was added and the reaction mixture was stirred for 4 h at room temperature. The reaction mixture was partitioned between EtOAc and brine. The
(5) m-CPBA was purified and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as described by Traylor, T. G.; Miksztal, A. R. J. Am. Chem. Soc. 1987, 109, 2770.
layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography using (hexanes/EtOAc, $4: 1$) as an eluent to give α-hydroxy ketone 18 as colorless oil ($1.8 \mathrm{~g}, 96 \%$ yield, two diastereomers, $3: 1$): $[\alpha]^{24}{ }_{\mathrm{D}}=+42.5(c 0.5$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer); $\delta 7.23$ (d, $J=8.7,2 \mathrm{H}$), 6.87 (d, $J=8.7,2 \mathrm{H}), 5.05(\mathrm{dd}, J=6.4,4.6,1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 4.49$ (d, $J=11.4,1 \mathrm{H}), 4.42$ (d, $J=11.4,1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.77-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.45-3.42(\mathrm{~m}$, $2 \mathrm{H}), 2.83-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=14.7,6.4,1 \mathrm{H}), 2.63(\mathrm{dd}, J=19.5,10.3,1 \mathrm{H})$, $2.15-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.84(\mathrm{~m}, 4 \mathrm{H}), 1.51-1.44(\mathrm{~m}, 4 \mathrm{H}), 1.35-$ $1.31(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{t}, J=7.1,3 \mathrm{H}), 0.92(\mathrm{~d}, J=5.5,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(151 \mathrm{MHz}$, $\mathrm{CDCl}_{3,}$ major isomer); $\delta 215.8,159.3,129.6,129.5,113.8,104.5,80.4,77.4,72.7$, $70.8,63.5,56.0,55.2,39.5,39.2,34.8,33.6,32.9,28.3,24.0,22.9,21.9,15.4$; IR (thin film, cm^{-1}) 3357, 1741, 1246, 1090; DART HRMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{O}_{6} 433.25901$, found 433.25905 .

(3aR,4R,5R,6aS,8R,9aR)-2-Ethoxy-4-(3-((4-methoxybenzyl)oxy)-propyl)-8-methyldecahydroindeno[4,3a-b]furan-4,5-diol 19

18

19 (86\%)

K-Selectride ($5.5 \mathrm{~mL}, 5.5 \mathrm{mmol}, 1.0 \mathrm{M}$ solution in THF) was added dropwise to a solution of $\mathbf{1 8}(1.8 \mathrm{~g}, 4.16 \mathrm{mmol})$ in THF $(40 \mathrm{~mL})$ at $-45{ }^{\circ} \mathrm{C}$ under argon. After stirring for 6 h at the same temperature, the reaction was quenched with 3 M aq NaOH and $30 \% \mathrm{aq} \mathrm{H}_{2} \mathrm{O}_{2}$. The mixture was diluted with EtOAc and the layers were separated. The aqueous layer was extracted three times with EtOAc. The combined organic extracts were washed with saturated aq $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography using (hexanes/EtOAc, from 2:1 to 1:1) as an eluent to give trans-diol 19 as colorless oil ($1.54 \mathrm{~g}, 86 \%$ yield, two diastereomers, 3:1): $[\alpha]^{24}{ }_{\mathrm{D}}=-9.3\left(c \quad 0.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta$
7.24-7.23 (m, 2H), 6.88-6.87 (m, 2H), 5.12-5.04 (m, 1H), 4.49-4.45 (m, 3H) 4.00$3.98(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=10.0,3 \mathrm{H}), 3.77-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.43(\mathrm{~m}, 3 \mathrm{H}), 2.63-$ $2.62(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.76$ (m, 4H), 1.61-1.59 (m, 1H), 1.46-1.44 (m, 1H), 1.34-1.29 (m, 4H), 1.21-1.18 (m, 3 H), 0.91-0.89 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 159.2,129.6,129.5,129.4$, $113.8,103.9,102.4,86.0,85.6,77.9,77.4,77.2,72.9,72.8,70.6,70.3,63.4,63.3$, $57.3,55.2,54.8,40.0,39.6,38.4,37.8,37.4,36.8,36.2,34.1,34.0,28.8,27.5,24.3$, 23.9, 23.8, 22.1, 22.0, 15.4; IR (thin film, cm^{-1}) 3430, 1512, 1301, 1091; DART HRMS $m / z[M+H]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{O}_{6} 435.2746$, found 435.2742.

(1R,2R,3aS,5R,7R,7aR)-7a-Allyl-1-(3-((4-methoxybenzyl)oxy)-propyl)-5-methyloctahydro-1 H -indene-1,2,7-triol 20

19

 THF, $0^{\circ} \mathrm{C}$ to rt

20 (55\%)

PPTS ($123 \mathrm{mg}, 0.49 \mathrm{mmol}$) was added to a solution of $19(1.06 \mathrm{~g}, 2.44 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ ($10 \mathrm{~mL}: 2 \mathrm{~mL}$) at room temperature. The reaction mixture was heated under reflux for 4 h . The reaction was quenched with saturated aq NaHCO_{3} and the mixture was partitioned between EtOAc and brine. The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was passed through a short pad of silica gel using (hexanes/EtOAc, 1:2) as an eluent. The crude eluted fractions were evaporated, dissolved in THF (10 mL) and cooled at $0^{\circ} \mathrm{C}$. In a previously prepared second flask, methyltriphenylphosphonium bromide $\mathrm{PPh}_{3} \mathrm{MeBr}(6.1 \mathrm{~g}, 17.08 \mathrm{mmol})$ was dried at $80^{\circ} \mathrm{C}$ under vacuum for 3 hours. After the salt has cooled THF (24 mL) was added and the slurry was cooled to $0{ }^{\circ} \mathrm{C}$ under argon. Potassium bis(trimehtylsilyl)amide KHMDS ($16.8 \mathrm{~mL}, 16.8 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF) was added dropwise at the same temperature resulting in a bright yellow color. After stirring for 30 min at the same temperature, the bright yellow ylide slurry was cannulated to the first reaction flask at $0^{\circ} \mathrm{C}$ under argon. The reaction mixture was stirred at the same temperature for 2 h then warmed gradually to room temperature and stirred overnight. The reaction was
quenched with saturated aq $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture was diluted with EtOAc . The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic extracts were washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography with (hexanes/EtOAc, 2:1) as eluent to afford triol 20 as colorless oil ($0.54 \mathrm{~g}, 55 \%$ yield $)$: $[\alpha]^{24}{ }_{\mathrm{D}}=-13.4\left(c 0.8, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 7.26-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=9.3,2 \mathrm{H}), 6.22-6.15$ (m, 1H), 5.14 (dd, $J=17.2,1.7,1 H$), 5.03 (dd, $J=10.0,1.7,1 \mathrm{H}), 4.49(\mathrm{~d}, J=11.7$, $1 \mathrm{H}), 4.46(\mathrm{~d}, J=11.7,1 \mathrm{H}), 4.31-4.27(\mathrm{~m}, 1 \mathrm{H}), 3.94-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $3.57-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{td}, J=8.5,3.9,1 \mathrm{H}), 3.33(\mathrm{~d}, J=2.7,1 \mathrm{H}) 2.53-2.49(\mathrm{~m}$, $2 \mathrm{H}), 2.35-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 1 \mathrm{H}), 2.15-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.93-$ $1.88(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.44$ (m, 2H), 1.19-1.16 (m, 2H), 1.12-1.09 (m, 1H), $0.92(\mathrm{~d}, J=6.5,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta 159.3,139.1,129.8,129.5,116.5,113.8,89.3,77.8,72.8,70.1$, $69.2,55.2,53.0,41.3,39.7,36.0,32.5,32.1,29.4,25.6,24.0,22.1$; IR (thin film, cm^{-1}) 3424, 1513, 1247, 1035; DART HRMS m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{O}_{5}$ 405.2641, found 405.2640.

($2 R, 3 R, 3 a R, 4 R, 6 R, 7 a S)$-3a-Allyl-3-hydroxy-3-(3-((4-methoxybenzyl)-oxy)propyl)-6-methyloctahydro-1 H -indene-2,4-diyl bis(2,2-dimethylpropanoate) 21

DMAP ($35.5 \mathrm{mg}, 0.29 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(8 \mathrm{~mL}, 58 \mathrm{mmol})$ were added to a solution of triol $20(235 \mathrm{mg}, 0.58 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at room temperature. The reaction was cooled to $0{ }^{\circ} \mathrm{C}$ and pivaloyl chloride ($7.1 \mathrm{~mL}, 58 \mathrm{mmol}$) was added dropwise. After the addition, the reaction was stirred at $0^{\circ} \mathrm{C}$ for 1 h and then warmed to $40^{\circ} \mathrm{C}$ and stirred for 48 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ and quenched with saturated aq NaHCO_{3}. The layers were separated and the aqueous layer was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were
washed with saturated aq copper(II) sulfate and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using (hexanes/EtOAc, from 18:1 to 6:1) as an eluent to afford 21 as colorless oil ($234.5 \mathrm{mg}, 71 \%$ yield) $):[\alpha]^{25}{ }_{\mathrm{D}}=-17.8\left(c \quad 3.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(600$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta 7.22(\mathrm{~d}, J=8.6,2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6,2 \mathrm{H}), 6.19-6.15(\mathrm{~m}, 1 \mathrm{H}), 5.22$ (dd, $J=11.5,4.6,1 \mathrm{H}), 5.12$ (dd, $J=17.0,1.5,1 \mathrm{H}), 5.03$ (dd, $J=10.1,1.5,1 \mathrm{H}), 4.80$ (dd, $J=8.2,3.1,1 \mathrm{H}), 4.42(\mathrm{~d}, J=11.3,1 \mathrm{H}), 4.39(\mathrm{~d}, J=11.3,1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.48-$ $3.44(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.34-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=$ $15.1,7.2,1 \mathrm{H}), 2.50-2.45(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.61$ (m, 1H), 1.46-1.43 (m, 2H), 1.35-1.31 (m, 2H), 1.21 (s, 9H), 1.17 (s, 9H), 1.11-1.06 $(\mathrm{m}, 1 \mathrm{H}), 0.90(\mathrm{~d}, J=6.5,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 177.4,177.2,159.2$, 138.3, 130.0, 129.3, 116.4, 113.7, 88.1, 79.0, 72.7, 72.4, 70.5, 55.2, 51.8, 40.1, 38.8, $36.5,35.5,33.2,32.6,30.3,27.1,27.0,26.8,25.2,24.0,21.9$; IR (thin film, cm^{-1}) 3443, 2924, 1721, 1158; DART HRMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{34} \mathrm{H}_{53} \mathrm{O}_{7}$ 573.3791, found 573.3794.

($2 R, 3 R, 3 \mathrm{a} R, 4 R, 6 R, 7 \mathrm{aS})$-3-Hydroxy-3a-(3-hydroxypropyl)-3-(3-((4-methoxybenzyl)oxy)propyl)-6-methyloctahydro-1 H -indene-2,4-diyl bis(2,2-dimethylpropanoate) 22

Borane dimethyl sulfide complex $\mathrm{BH}_{3} . \mathrm{SMe}_{2}(0.5 \mathrm{~mL}, 4.95 \mathrm{mmol})$ was added to a solution of allyl derivative $21(566 \mathrm{mg}, 0.99 \mathrm{mmol})$ in THF (10 mL) at $0{ }^{\circ} \mathrm{C}$ under argon. After stirring for 2 h at the same temperature, water $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and $\mathrm{NaBO}_{3} .4 \mathrm{H}_{2} \mathrm{O}(762 \mathrm{mg}, 4.95 \mathrm{mmol})$ were added. The reaction was warmed to room temperature and stirred for 4 h . The reaction mixture was partitioned between EtOAc and brine and the layers were separated. The aqueous layer was extracted three times with EtOAc. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was chromatographed
using (hexanes/EtOAc, from 2:1 to $1: 1$) as an eluent to afford primary alcohol 22 as colorless oil ($480 \mathrm{mg}, 82 \%$ yield): $[\alpha]^{25}{ }_{\mathrm{D}}=-19.8\left(c 3.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) ; \delta 7.23(\mathrm{~d}, J=8.2,2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.2,2 \mathrm{H}), 5.21(\mathrm{dd}, J=11.5,4.6,1 \mathrm{H})$, 4.81 (dd, $J=8.9,3.4,1 \mathrm{H}), 4.43$ (d, $J=11.5,1 \mathrm{H}), 4.39(\mathrm{~d}, J=11.5,1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, 3.64-3.63 (m, 2H), 3.50-3.47 (m, 2H), 3.33-3.31 (m, 1H), 2.65-2.62 (m, 1H), 2.51$2.45(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.61(\mathrm{~m}, 5 \mathrm{H}), 1.50-1.48(\mathrm{~m}$, $2 \mathrm{H}), 1.32-1.26(\mathrm{~m}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~d}, J=6.5,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}); $\delta 177.4,177.3,159.3,129.8,129.4,113.8,87.9,79.5,72.8,72.7$, $70.5,64.3,55.3,50.9,40.4,38.8,38.5,36.6,35.6,33.5,30.2,29.2,27.1,26.8,25.2$, 24.6, 24.1, 21.9; IR (thin film, cm^{-1}) 3426, 1721, 1284, 1156; DART HRMS m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{34} \mathrm{H}_{55} \mathrm{O}_{8}$ 591.3897, found 591.3890.

($2 R, 3 R, 3 a R, 4 R, 6 R, 7 a S)$-3-Hydroxy-3-(3-((4-methoxybenzyl)-oxy)propyl)-3a-(3-(N-(methoxymethoxy)-2-nitrophenylsulfonamido)-propyl)-6-methyloctahydro-1H-indene-2,4-diyl bis(2,2-dimethylpropanoate) 23

N-(Methoxymethoxy)-2-nitrobenzenesulfonamide ${ }^{6}$ S5 Ns-NH-OMOM ($47 \mathrm{mg}, 0.18$ mmol) and triphenylphosphine ($168 \mathrm{mg}, 0.64 \mathrm{mmol}$) were added to a solution of primary alcohol 22 ($94 \mathrm{mg}, 0.16 \mathrm{mmol}$) in toluene (3 mL) at $-20^{\circ} \mathrm{C}$. Diethyl azodicarboxylate DEAD ($348 \mu \mathrm{~L}, 0.8 \mathrm{mmol}, 40 \%$ in toluene) was added dropwise to the reaction mixture at the same temperature. The yellow suspension was warmed gradually to room temperature and stirred for 1 h . The orange suspension was concentrated under reduced pressure and the residue was chromatographed with (hexanes $/ \mathrm{Et}_{2} \mathrm{O}$, from 1:1 to 1:2) to afford 23 as pale yellow oil (114 mg, 88%): $[\alpha]^{25}{ }_{\mathrm{D}}$
$=-39.2\left(c 1.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 8.04(\mathrm{dd}, J=7.9,1.0,1 \mathrm{H})$, 7.79-7.72 (m, 2H), 7.59 (dd, $J=7.7,1.2,1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.6,2 \mathrm{H}), 6.86$ (d, $J=8.6$, $2 \mathrm{H}), 5.19$ (dd, $J=11.5,4.6,1 \mathrm{H}), 5.02(\mathrm{~d}, J=8.3,1 \mathrm{H}), 4.99(\mathrm{~d}, J=8.3,1 \mathrm{H}), 4.79(\mathrm{dd}$, $J=8.6,3.1,1 \mathrm{H}), 4.40(\mathrm{~d}, J=11.0,1 \mathrm{H}), 4.38(\mathrm{~d}, J=11.0,1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.49-3.44$ $(\mathrm{m}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.33-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.23(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.49-$ $2.45(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.63-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.49-1.43(\mathrm{~m}$, $2 \mathrm{H}), 1.29-1.26(\mathrm{~m}, 4 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H}), 1.10-1.06(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~d}, J=6.5$, 3 H); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 177.4,177.3,159.2,149.8,134.8,132.3,130.9$, $130.0,129.2,126.6,123.8,113.7,102.7,87.9,79.3,72.7,72.6,70.5,57.6,55.3,54.5$, $51.0,39.8,38.8,36.5,35.5,33.3,30.2,29.7,27.1,26.8,25.5,25.2,24.2,23.2,21.8 ;$ IR (thin film, cm^{-1}) 3372, 2923, 1722, 1178; DART HRMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{42} \mathrm{H}_{63} \mathrm{~N}_{2} \mathrm{O}_{13} \mathrm{~S}$ 835.4051, found 835.4050.

(2R,3R,3aR,4R,6R,7aS)-3-Hydroxy-3-(3-hydroxypropyl)-3a-(3-(N-(methoxymethoxy)-2-nitrophenylsulfonamido)propyl)-6-methyloctahydro-1H-indene-2,4-diyl bis(2,2-dimethylpropanoate) 24

2,3-Dichloro-5,6-dicyano-1,4-benzoquinone DDQ ($102 \mathrm{mg}, 0.45 \mathrm{mmol}$) was added to a solution of $23(250 \mathrm{mg}, 0.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL}: 1 \mathrm{~mL})$ at room temperature. After stirring for 4 h at the same temperature, the reaction was quenched with saturated aq NaHCO_{3}. The layers were separated and the aqueous layer was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using (hexane/EtOAc, from 1:1 to 1:2) as an eluent to afford diol $\mathbf{2 4}$ as pale yellow oil ($182 \mathrm{mg}, 85 \%$ yield) : $[\alpha]^{25}{ }_{\mathrm{D}}=-12.2\left(c 0.22, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 8.05(\mathrm{dd}, J=7.9,2.1$,
$1 \mathrm{H}), 7.82-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.77-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.9,1 \mathrm{H}), 5.21(\mathrm{dd}, J=11.5$, $4.6,1 \mathrm{H}), 5.06(\mathrm{~d}, J=7.9,1 \mathrm{H}), 5.01(\mathrm{~d}, J=7.9,1 \mathrm{H}), 4.82(\mathrm{dd}, J=8.1,2.9,1 \mathrm{H}), 3.70-$ $3.68(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.28-3.21(\mathrm{~m}, 3 \mathrm{H}), 2.62-2.59(\mathrm{~m}, 1 \mathrm{H})$, $2.50-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.75(\mathrm{~m}, 5 \mathrm{H}), 1.64-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.50-$ $1.44(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.25(\mathrm{~m}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}), 1.11-1.09(\mathrm{~m}, 2 \mathrm{H}), 0.90$ (d, $J=6.5,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 177.5,177.3,149.8,134.9,132.3$, $131.0,126.6,123.8,102.7,87.9,79.2,72.6,63.3,57.7,54.5,51.0,39.9,38.9,38.6$, $36.5,35.5,33.3,29.8,27.1,26.8,25.4,25.2,23.1,21.8,14.2$; IR (thin film, cm^{-1}) 3476, 1721, 1711, 1156; DART HRMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{34} \mathrm{H}_{55} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{~S}$ 715.3476, found 715.3472.
($\left.1^{\prime} R, 2^{\prime} R, 3 a^{\prime} S, 5^{\prime} R, 7{ }^{\prime} R, 7 a^{\prime} R\right)$-5-Hydroxy-7a'-(3-(N-(methoxymethoxy)-2-nitrophenylsulfonamido)propyl)-5'-methyldecahydro-3H-spiro[furan-2,1'-indene]-2',7'-diyl bis(2,2-dimethylpropanoate) $\mathbf{2 5}$

2-Iodoxybenzoic acid $\mathrm{IBX}^{7}(29 \mathrm{mg}, 0.105 \mathrm{mmol})$ was added to a solution of diol 24 $(49 \mathrm{mg}, 0.07 \mathrm{mmol})$ in THF/DMSO $(1.0 \mathrm{~mL}: 1.0 \mathrm{~mL})$ at room temperature. After stirring for 6 h at the same temperature, the reaction was quenched with saturated aq NaHCO_{3} and partitioned between EtOAc and brine. The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using (hexanes/EtOAc, 1:1) as an eluent to afford spirolactol 25 as colorless oil (41.5 mg , 83% yield, two diastereomers, 3:1): $[\alpha]^{24}{ }_{\mathrm{D}}=-8.8\left(c \quad 0.24, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta 8.08-8.05(\mathrm{~m}, 1 \mathrm{H}), 7.79-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.60(\mathrm{~m}, 1 \mathrm{H}), 5.46-5.41$

[^1] Chem. 1999, 64, 4537.
$(\mathrm{m}, 1 \mathrm{H}), 5.13-5.10(\mathrm{~m}, 1 \mathrm{H}), 5.02-4.97(\mathrm{~m}, 2 \mathrm{H}), 4.80-4.78(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=11.0$, $3 H), 3.28-3.23(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.17(\mathrm{~m}, 1 \mathrm{H})$, 2.11-2.03 (m, 1H), 1.81-1.77 (m, 4H), 1.70-1.65 (m, 4H), 1.54-1.50 (m, 2H), 1.44$1.32(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~d}, J=5.5,9 \mathrm{H}), 1.17(\mathrm{~d}, J=1.8,9 \mathrm{H}), 1.08-1.05(\mathrm{~m}, 1 \mathrm{H}), 0.91-0.89$ $(\mathrm{m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 177.7,177.3,158.4,145.4,134.8,132.3$, $132.0,131.1,123.9,123.8,102.3,100.0,99.3,97.0,78.1,72.3,72.1,57.8,55.0,48.8$, 39.3, 38.8, 38.6, 36.1, 34.6, 33.2, 32.9, 31.8, 27.2, 27.1, 26.9, 25.0, 24.3, 23.9, 23.4, 21.9; IR (thin film, cm^{-1}) 3492, 1719, 1283, 1158; DART HRMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{34} \mathrm{H}_{53} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{~S}$ 713.3319, found 713.3313.
(1'R,2' $\left.R, 3 a^{\prime} S, 5{ }^{\prime} R, 77^{\prime} R, 7 a^{\prime} R\right)$-5-Hydroxy-7a'-(3-((methoxymethoxy)-amino)propyl)-5'-methyldecahydro-3 H -spiro[furan-2,1'-indene]-2',7'-diyl bis(2,2-dimethylpropanoate) 26

$\mathrm{K}_{2} \mathrm{CO}_{3}(29.0 \mathrm{mg}, 0.21 \mathrm{mmol})$ and thiophenol $\mathrm{PhSH}(140 \mu \mathrm{~L}, 0.14 \mathrm{mmol}, 1.0 \mathrm{M}$ in $\left.\mathrm{CH}_{3} \mathrm{CN}\right)$ were added to a solution of $25(50 \mathrm{mg}, 0.07 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$ at room temperature. After stirring for 6 h at the same temperature, the mixture was partitioned between EtOAc and brine. The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using (hexanes/EtOAc, from 1:1 to 1:2) as an eluent to afford aminolactol $\mathbf{2 6}$ as colorless oil ($33.2 \mathrm{mg}, 90 \%$ yield, two diastereomers, 3:1): $[\alpha]^{24}{ }_{\mathrm{D}}=-6.5\left(c 0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 5.44-5.43(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.09(\mathrm{~m}, 1 \mathrm{H}), 4.82-4.80(\mathrm{~m}, 1 \mathrm{H}), 4.76$ (d, $J=2.4,2 \mathrm{H}$), $3.42(\mathrm{~s}, 3 \mathrm{H}), 3.18-3.16(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.54(\mathrm{~m}$, $1 \mathrm{H}), 2.43-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.75(\mathrm{~m}, 5 \mathrm{H})$, $1.70-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.27-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~d}$,
$J=7.2,9 \mathrm{H}), 1.17(\mathrm{~d}, J=9.3,9 \mathrm{H}), 1.12-1.08(\mathrm{~m}, 2 \mathrm{H}), 0.90-0.89(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}); $\delta 177.6,177.3,100.2,99.2,98.9,97.0,78.3,72.4,55.9,53.1$, $48.7,40.0,39.3,38.9,38.6,36.4,34.7,33.3,33.2,27.2,27.1,26.9,25.0,24.5,23.9$, 23.0, 21.9; IR (thin film, cm^{-1}) 3733, 1723, 1151; DART HRMS $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{50} \mathrm{NO}_{8} 528.3536$, found 528.3544 .

(5S,7aR,8R,9aS,11R,13R,13aR)-4-(Methoxymethoxy)-11-methyltetradecahydro-5,7a-epoxyindeno[1,7a-e]azonine-8,13-diyl bis(2,2-dimethylpropanoate) 27

1,8-Diazabicyclo[5.4.0]undec-7-ene DBU ($550 \mu \mathrm{~L}, 1.32 \mathrm{mmol}, 2.4 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added dropwise to a solution of aminolactol $26(32.0 \mathrm{mg}, 0.06 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0$ mL) at $0{ }^{\circ} \mathrm{C}$ under argon. Trichloroacetonitrile ($660 \mu \mathrm{~L}, 3.3 \mathrm{mmol}, 5.0 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added dropwise to the reaction mixture at the same temperature. After stirring at $0{ }^{\circ} \mathrm{C}$ for 2 h , the reaction mixture was gradually warmed to room temperature and stirred for 36 h . The color changed from pale yellow to dark brown during the course of the reaction. The dark brown solution was concentrated under reduced pressure and the residue was purified by flash chromatography using (hexanes/acetone, 40:3) as an eluent to afford tetracyclic derivative 27 as a colorless film: ($19.4 \mathrm{mg}, 63 \%$ yield). $[\alpha]^{24}{ }_{\mathrm{D}}=+85.5\left(c 0.33, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta 5.19(\mathrm{dd}, J=11.5$, $4.6,1 \mathrm{H}), 5.09(\mathrm{t}, J=5.7,1 \mathrm{H}), 4.90(\mathrm{dd}, J=8.9,3.6,1 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H})$, 3.34-3.31 (m, 1H), 3.14-3.12 (m, 1H), 2.73-2.68 (m, 1H), 2.47-2.41 (m, 1H), 2.37$2.33(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.96(\mathrm{~m}, 4 \mathrm{H}), 1.77-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.55-1.52(\mathrm{~m}$, $1 \mathrm{H}), 1.48-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}), 1.16-1.15(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~d}, J=6.2$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 177.8,177.0,98.8,96.5,95.6,80.5,72.1,56.1$, 54.2, 49.5, 38.9, 38.6, 38.4, 35.2, 34.2, 31.3, 29.0, 27.1, 26.9, 26.5, 25.2, 25.0, 21.9, 19.3; IR (thin film, cm^{-1}) 2956, 1723, 1153; DART HRMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{48} \mathrm{NO}_{7} 510.3431$, found 510.3432 .

(+)-Sieboldine A (1)

Lithium aluminium hydride LAH ($57 \mathrm{mg}, 1.5 \mathrm{mmol}$) was added to a solution of $\mathbf{2 7}$ $(11 \mathrm{mg}, 0.021 \mathrm{mmol})$ in THF $(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under argon. After stirring for 2 h at the same temperature, the reaction mixture was gradually warmed to room temperature and stirred for 18 h . The reaction was diluted with EtOAc at $0^{\circ} \mathrm{C}$ and a saturated aq solution of Rochelle's salt was added. The mixture was allowed to warm to room temperature and stirred for 2 h . The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure.

The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL}) . \mathrm{NaHCO}_{3}(13 \mathrm{mg}, 0.15 \mathrm{mmol})$ and Dess martin periodinane DMP ($0.5 \mathrm{~mL}, 0.15 \mathrm{mmol}, 0.3 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) were added to the reaction mixture at room temperature under argon. After stirring for 2 h , the reaction was quenched with saturated aq NaHCO_{3}. The layers were separated and the aqueous layer was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure.

The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and cooled to $-78{ }^{\circ} \mathrm{C}$ under argon. Boron tribromide $\mathrm{BBr}_{3}\left(105 \mu \mathrm{~L}, 0.105 \mathrm{mmol}, 1.0 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was added dropwise to the reaction mixture at the same temperature. The reaction mixture was gradually warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 2 h and was then warmed to room temperature and stirred for 18h. The reaction was quenched with saturated aq NaHCO_{3}. The layers were separated and the aqueous layer was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography using (hexanes/acetone, 1:1) as an eluent to afford (+)sieboldine A (1) as a colorless powder ($3.3 \mathrm{mg}, 53 \%$ yield): $[\alpha]^{25}{ }_{\mathrm{D}}=+140.0(c 0.33$, $\left.\mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$); $\delta ; 4.89-4.87(\mathrm{~m}, 1 \mathrm{H}), 3.27-3.22(\mathrm{~m}, 1 \mathrm{H})$,
3.20-3.18 (m, 1H), $2.90(\mathrm{ddd}, J=14.8,7.4,3.7,1 \mathrm{H}), 2.57-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=$ $12.9,12.5,1 \mathrm{H}), 2.47-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=21.3,10.7,1 \mathrm{H}), 2.40-2.38(\mathrm{~m}, 1 \mathrm{H})$, 2.11-2.10 (m, 1H), 2.08-2.07 (m, 1H), 2.05-2.04 (m, 1H), 2.03-2.01 (m, 1H), 1.98$1.96(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{dd}, J=19.6,10.7,1 \mathrm{H}), 1.79-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.75(\mathrm{~m}, 1 \mathrm{H})$, 1.62-1.60 (m, 1H), $1.05(\mathrm{~d}, J=6.2,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$); $\delta 216.5$, $212.7,98.5,92.8,62.3,54.5,47.6,38.7,37.2,32.5,31.8,31.4,28.3,26.1,22.5,19.4 ;$ IR (thin film, cm^{-1}) 3400, 1754, 1698; DART HRMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{4}$ 294.1705, found 294.1701.

Optimization of asymmetric allylation of aldehyde 9 (Table S1):

Table S1. Asymmetric allylation of aldehyde 9
$\left.\begin{array}{cccccccc}\text { Asymmetric } \\ \text { ally lation }\end{array}\right]$
a) ee was determined by HPLC analysis (Daicel CHIRALPAK ${ }^{\circledR}$ OD-H)

Determination of the absolute configuration of (R)-10 (Scheme S1):

Scheme S1.

10a, 75\%

10b, 61\%

(R)-MTPA ester of (\boldsymbol{R})-10 (10a)

To a solution of $(\boldsymbol{R}) \mathbf{- 1 0}(14 \mathrm{mg}, 0.040 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.40 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(50$ $\mu \mathrm{L}, 0.36 \mathrm{mmol})$, DMAP $\left(1.0 \mathrm{mg}, 8.0 \times 10^{-3}\right.$ $\mathrm{mmol})$ and (S)-MTPA-Cl $\left(15 \mathrm{mg}, 6.0 \times 10^{-2}\right.$ mmol) at room temperature. After stirring for 1.5 h at the same temperature, the reaction was quenched with saturated aq $\mathrm{NH}_{4} \mathrm{Cl}$. The layers were separated and the aqueous layer was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash column
chromatography using (hexanes/EtOAc, 6:1) as an eluent to afford $\mathbf{1 0 a}$ ($17 \mathrm{mg}, 75 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 7.55-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.36(\mathrm{~m}$, $3 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.86(\mathrm{~m}, 2 \mathrm{H}), 5.71-5.68(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~s}$, $1 \mathrm{H}), 4.46-4.45(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{t}, J=6.2,2 \mathrm{H})$, 2.58-2.49 (m, 2H), 2.33 (td, $J=7.1,1.8,2 \mathrm{H}), 2.07$ (s, 3H), 1.81-1.74 (m, 2H).

(S)-MTPA ester of (R)-10 (10b)

In the same manner as that described for preparation of $\mathbf{1 0 a},(\boldsymbol{R}) \mathbf{- 1 0}(14 \mathrm{mg}, 0.040$ $\mathrm{mmol})$ with (R)-MTPA-Cl $\left(15 \mathrm{mg}, 6.0 \times 10^{-2}\right.$ mmol) afforded 10b ($14 \mathrm{mg}, 61 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$); δ 7.53-7.51 (m, 2H), 7.40-7.35 (m, 3H), 7.26-7.23 (m, 2H), 6.89-6.85 (m, 2H), 5.70$5.65(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.53$ (s, 3H), 3.48 (t, $J=6.2,2 \mathrm{H}$), 2.65-2.53 (m, 2H), 2.30 (td, $J=7.1,1.8,2 \mathrm{H}), 2.07$ (s, 3H), 1.78-1.72 (m, 2H).
(+)-Sieboldine $\mathbf{A}^{13} \mathbf{C}$ spectra comparison:

(+)-Sieboldine A

Position	${ }^{13}$ C NMR (δ) Natural isolate (CD $\mathrm{D}_{3} \mathrm{OD}$)	$\begin{gathered} { }^{13} \mathrm{C} \text { NMR (}(\mathbf{)} \\ \text { Synthetic sample } \\ \left(151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \end{gathered}$
1	98.5	98.5
2	31.4	31.4
3	26.1	26.1
4	92.8	92.8
5	212.6	212.7
6	37.2	37.2
7	38.7	38.7
8	31.8	31.8
9	54.5	54.5
10	19.4	19.4
11	28.3	28.3
12	62.3	62.3
13	216.5	216.5
14	47.4	47.6
15	32.5	32.5
16	22.5	22.5

(+)-Sieboldine $\mathbf{A}^{\mathbf{1}} \mathbf{H}$ spectra comparison:

(+)-Sieboldine A

Position	${ }^{1}$ H NMR (δ) Natural isolate (CD ${ }_{3} \mathrm{OD}$)	${ }^{1} \mathrm{H}$ NMR (δ) Synthetic sample $\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$
1	4.89 (m, 1H)	4.89-4.87 (m, 1H)
2 a	1.98 (m, 1H)	1.98-1.96 (m, 1H)
2b	2.12 (m, 1H)	2.11-2.10 (m, 1H)
3a	2.08 (m, 1H)	2.08-2.07 (m, 1H)
3b	2.40 (m, 1H)	2.40-2.38 (m, 1H)
6 a	1.93 (dd, $J=19.6,10.9,1 \mathrm{H})$	1.92 (dd, $J=19.6,10.7,1 \mathrm{H})$
6b	2.45 (dd, $J=19.6,9.2,1 \mathrm{H})$	2.43 (dd, $J=21.3,10.7,1 \mathrm{H})$
7	3.25 (m, 1H)	3.27-3.22 (m, 1H)
8a	1.76 (m, 1H)	1.76-1.75 (m, 1H)
8b	1.77 (m, 1H)	1.79-1.77 (m, 1H)
9 a	2.91 (ddd, $J=14.8,8.0,3.7,1 \mathrm{H})$	2.90 (ddd, $J=14.8,7.4,3.7,1 \mathrm{H})$
9b	3.19 (m, 1H)	3.20-3.18 (m, 1H)
10a	1.63 (m, 1H)	1.62-1.60 (m, 1H)
10b	2.57 (m, 1H)	2.57-2.55 (m, 1H)
11a	1.77 (m, 1H)	1.79-1.77 (m, 1H)
11b	2.46 (m, 1H)	2.47-2.45 (m, 1H)
14a	2.03 (m, 1H)	2.03-2.01 (m, 1H)
14b	2.54 (dd, $J=12.7,12.7,1 \mathrm{H})$	2.51 (dd, $J=12.9,12.5,1 \mathrm{H})$
15	2.06 (m, 1H)	2.05-2.04 (m, 1H)
16	1.06 (d, $J=6.2,3 \mathrm{H})$	1.05 (d, $J=6.2,3 \mathrm{H})$

t98\＆G1
†L9LOZ
GZEG 87
9098＇レ
L91 $\angle 99$
661289
tGLEZL
t68L9
0000%
901ZしL 801808
89 $\angle 678$

866 GLL
816 GLI
\square

CHROMATOPAC C－R7A CH＝1 REPORT No．$=7 \quad$ クロマト＝1：©CHRM1．C00 \quad 13／07／05 $04: 13: 56$

＊＊定量計算結果＊＊

CH PKNO	TIME	AREA	HEIGHT	MK			
1	1	17.968	370236	9462		IDNO	CONC

＊＊定量計算結果 $* *$							
CH PKNO	TIME	AREA	HEIGHT	MK	IDNO	CONC	NAME
1	1	29.21	456676	6245		49.9458	
	2	32.958	457667	5681		50.0542	
				914343	11926		100

CHROMATOPAC C－R7A CH＝1 REPORT No．$=2 \quad$ クロマト＝1：＠CHPM1．C00 \quad 13／07／04 $08: 57: 06$

＊＊定量計算結果＊＊

CH PKNO	TIME	AREA	HEIGHT	MK	IDNO	CONC	NANE	
1	1	32.857	951164	11653		100		
				951164	11653			100

\qquad

[^0]: (1) Chandrasekhar, S; Rao, C. L.; Seenaiah, M.; Naresh, P.; Jagadeesh, B.; Manjeera, D.; Sarkar, A.; Bhadra, M. P. J. Org. Chem. 2009, 74, 401.
 (2) Trost, B. M.; Bonk, P. J. J. Am. Chem. Soc. 1985, 107, 1778.

[^1]: (7) IBX was freshly prepared as described by Frigerio, M.; Santagostino, M.; Sputore, S. J. Org.

