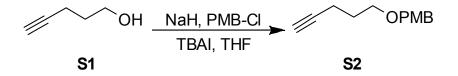
Supporting Information Enantioselective Total Synthesis Of (+)-Sieboldine A

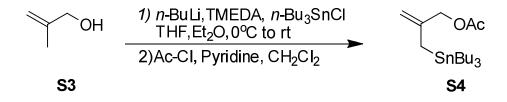
Mohammed K. Abd El-Gaber, Shigeo Yasuda, Eisuke Iida and Chisato Mukai

Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University; Kakuma-machi, Kanazawa 920–1192, Japan

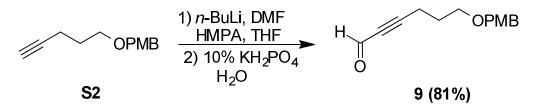

Table of Contents

General notes	S2
Synthetic procedures	S3-S22
Optimization of asymmetric allylation of aldehyde 9 (Table S1)	S23
Determination of the absolute configuration of (<i>R</i>)-10	S24-S25
Comparison of synthetic and natural (+)-sieboldine A spectral data	S26-S27
¹ H, ¹³ C NMR spectra & HPLC chromatograms	S28-S76

General notes:


All commercially obtained reagents and solvents were used as received unless additional purification is stated in the procedure. All glassware was oven-dried at 150 °C and cooled in desiccator immediately before use. Experiments were conducted under inert atmospheres of Nitrogen or Argon using standard syringe-septa techniques. Reactions performed at room temperature were at approximately 24 °C. Thin layer chromatography (TLC) was performed on Merck analytical glass plates pre-coated with silica gel 60 F254 (0.25 mm thick). Visualization was effected by exposure to UV light (254 nm) and staining with *p*-anisaldehyde or phosphomolybdic acid stains followed by a brief heating on a hot plate. Concentration under reduced pressure was performed by rotary evaporation (~30 mmHg) at 20-40 °C. Flash column chromatography was performed as described by W. C. Still et al. (J. Org. Chem.1978, 43, 2923.) using forced flow of the indicated solvent system on Kanto[®] Chemical silica gel 60N (spherical, neutral, 40-50 µm,). Melting points were determined on YANAGIMOTO micro melting point apparatus and were uncorrected. Infrared spectra were recorded on a ThermoFisher Nicolet iS5 spectrometer and are reported in terms of frequency of absorption (cm⁻¹). NMR spectra were recorded on JNM-ECS400 or JNM-ECA600 spectrometers. Chemical shift (δ) values are reported in parts per million relative to internal standard tetramethylsilane (δ 0.00 ppm) and residual CDCl₃ (δ 7.27 ppm) for proton spectra and to residual CDCl₃ (δ 77.23 ppm) for carbon spectra. Coupling constants are reported in Hertz. The following abbreviations were used for spin multiplicity: s, singlet; br s, broad singlet; d, doublet; t, triplet; q, quartet; dd, doublet of doublet; ddd, doublet of doublet; td, triplet of doublet; m, multiplet; br m, broad multiplet. High-resolution mass spectra were measured with JMS-T100TD (DART) mass spectrometer. Optical rotations were measured with a JASCO P-2200 polarimeter with a sodium lamp and reported as followed: $\left[\alpha\right]_{D}^{T}$ (concentration g/100 mL, solvent). Single-crystal X-ray diffraction was measured with R-AXIS RAPID II.

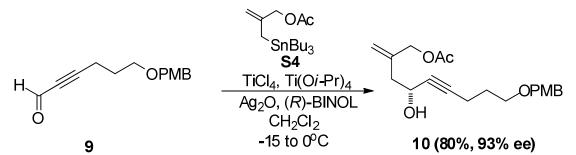
1-Methoxy-4-((pent-4-ynyloxy)methyl)benzene S2


1-Methoxy-4-((pent-4-ynyloxy)methyl)benzene **S2** was prepared from 4-pentyn-1-ol **S1** according to the method described by Chandrasekhar *et al.*¹

2-((Tributylstannyl)methyl)allyl acetate S4

2-((Tributylstannyl)methyl)allyl acetate **S4** was prepared from methallyl alcohol **S3** according to the procedure described by Trost and Bonk.²

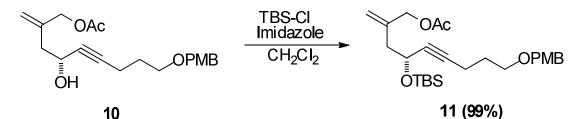
6-((4-Methoxybenzyl)oxy)hex-2-ynal 9


To a solution of alkyne **S3** (10 g, 49 mmol) and hexamethylphosphoramide HMPA (21.5 mL, 122.5 mmol) in THF (100 mL) at -45 °C was added *n*-BuLi (1.43 M in hexane, 51.5 mL, 73.5 mmol). After stirring for 30 min at the same temperature, DMF (15 mL, 196 mmol) was added at once and the reaction mixture was warmed up to room temperature over 1 h. The reaction was quenched with 10% aq KH_2PO_4 (270 mL) and the mixture was partitioned between EtOAc and brine. The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic extracts were dried over anhydrous Na_2SO_4 , filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography using

⁽¹⁾ Chandrasekhar, S; Rao, C. L.; Seenaiah, M.; Naresh, P.; Jagadeesh, B.; Manjeera, D.; Sarkar, A.; Bhadra, M. P. J. Org. Chem. 2009, 74, 401.

⁽²⁾ Trost, B. M.; Bonk, P. J. J. Am. Chem. Soc. 1985, 107, 1778.

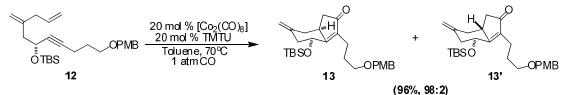
(hexanes/EtOAc, 6:1) as an eluent to afford aldehyde **9** as pale yellow oil (9.2 g, 81% yield): ¹H NMR (600 MHz, CDCl₃); δ 9.11 (s, 1H), 7.24 (dd, J = 8.2, 4.1, 2H), 6.86 (dd, J = 8.6, 4.3, 2H), 4.42 (s, 2H), 3.76 (s, 3H), 3.51 (t, J = 6.0, 2H), 2.51 (td, J = 7.0, 3.5, 2H), 1.85-1.84 (m, 2H); ¹³C NMR (151 MHz, CDCl₃); δ 176.9, 159.0, 130.0, 129.0, 113.5, 98.3, 81.5, 72.4, 67.5, 54.9, 27.5, 15.8; IR (thin film, cm⁻¹) 2200, 1664, 1243, 1030; DART HRMS m/z [M+H]⁺ calcd for C₁₄H₁₇O₃ 233.1177, found 233.1190.


(*R*)-4-Hydroxy-9-((4-methoxybenzyl)oxy)-2-methylenenon-5-yn-1-yl acetate 10

To a stirred solution of TiCl₄ (22 µL, 0.2 mmol) in CH₂Cl₂ (3 mL) at 0 °C under argon was added Ti(Oi-Pr)₄ (180 µL, 0.6 mmol). The reaction mixture was allowed to warm to room temperature and stirred for 1 h. Silver(I) oxide Ag₂O (93 mg, 0.4 mmol) was added and the reaction mixture was stirred for 5 h at the same temperature under exclusion of direct light. The reaction mixture was diluted with CH₂Cl₂ (8 mL), and (R)-BINOL (229 mg, 0.8 mmol) was added. After stirring for 2 h, the reaction mixture was cooled to -15 °C and a solution of aldehyde 9 (232 mg, 1 mmol) in CH₂Cl₂ (2.5 mL) and a solution of allylstannane S4 (806 mg, 2 mmol) in CH₂Cl₂ (2.5 mL) were added sequentially via cannula. The reaction was allowed to warm to 0 °C and stirred at the same temperature for 10 h. The reaction mixture was guenched with saturated aq NaHCO₃ and the heterogeneous suspension was filtered through Celite.[®] The Celite[®] was washed thoroughly with Et₂O. The layers were separated and the aqueous layer was extracted three times with Et₂O. The combined organic extracts were washed with water and brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography using (hexanes/EtOAc, 2:1) as an eluent to afford alcohol 10 as colorless oil (277 mg, 80% yield, 93% ee): $[\alpha]_{D}^{30} = +13.2$ (*c* 1.1, CHCl₃); ¹H NMR $(600 \text{ MHz}, \text{CDCl}_3); \delta 7.25 \text{ (d}, J = 8.6, 2\text{H}), 6.87 \text{ (d}, J = 8.6, 2\text{H}), 5.17 \text{ (d}, J = 1.4, 1\text{H}),$

5.09 (s, 1H), 4.58 (s, 2H), 4.48-4.46 (m, 1H), 4.43 (s, 2H), 3.79 (s, 3H), 3.50 (t, J = 6.2, 2H), 2.58 (d, J = 5.2, 1H), 2.44 (d, J = 10.8, 2H), 2.31 (td, J = 7.1, 1.8, 2H), 2.08 (s, 3H), 1.80-1.75 (m, 2H); ¹³C NMR (151 MHz, CDCl₃); δ 170.6, 159.0, 139.5, 130.3, 129.1, 115.9, 113.6, 85.0, 80.8, 72.4, 68.2, 66.7, 61.0, 55.1, 41.9, 28.5, 20.8, 15.4; IR (thin film, cm⁻¹) 3414, 1696, 1511, 1172; DART HRMS *m/z* [M+H]⁺ calcd for C₂₀H₂₇O₅ 347.1858, found 347.1857; HPLC: Daicel CHIRALPAK[®] OD-H column; $\lambda = 254$ nm; eluent: hexane/isopropanol = 90/10; flow rate: 1.0 mL/min; major enantiomer t_R = 18.0 min, minor enantiomer t_R = 20.2 min; ee = 93%.

(*R*)-4-((*tert*-Butyldimethylsilyl)oxy)-9-((4-methoxybenzyl)oxy)-2methylenenon-5-yn-1-yl acetate 11


To a solution of alcohol **10** (3.1 g, 8.95 mmol) in CH₂Cl₂ (30 mL) were added imidazole (1.8 g, 26.85 mmol) and TBS-Cl (2.7 g, 17.9 mmol) at room temperature. After stirring for 4 h at the same temperature, the reaction mixture was quenched with water. The layers were separated and the aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was chromatographed using (hexanes/EtOAc, from 10:1) as an eluent to afford **11** as colorless oil (4.06 g, 99% yield): $[\alpha]^{30}_{D} = +22.9$ (*c* 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃); δ 7.16 (d, *J* = 8.7, 2H), 6.78 (d, *J* = 8.7, 2H), 5.04 (d, *J* = 1.4, 1H), 4.95 (s, 1H), 4.48 (s, 2H), 4.39-4.36 (m, 1H), 4.33 (s, 2H), 3.70 (s, 3H), 3.42 (t, *J* = 6.4, 2H), 2.31 (d, *J* = 6.4, 2H), 2.20 (td, *J* = 7.3, 1.8, 2H), 1.99 (s, 3H), 1.69-1.68 (m, 2H), 0.80 (s, 9H), 0.02 (s, 3H), 0.00 (s, 3H); ¹³C NMR (101 MHz, CDCl₃); δ 170.5, 159.1, 139.9, 130.5, 129.1, 115.5, 113.7, 84.5, 81.3, 72.6, 68.5, 67.0, 62.4, 55.1, 42.7, 28.7, 25.7, 20.9, 18.1, 15.5, -4.5, -5.1; IR (thin film, cm⁻¹) 1733, 1514, 1249, 1078; DART HRMS *m*/z [M+H]⁺ calcd for C₂₆H₄₁O₅Si 461.2723, found 461.2730.

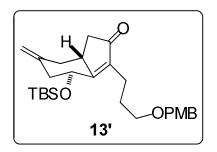
(*R*)-*tert*-Butyl((11-((4-methoxybenzyl)oxy)-4-methyleneundec-1-en-7yn-6-yl)oxy)dimethylsilane 12

To a stirred solution of 11 (2.3 g, 5 mmol) in THF (18 mL) and dimethylsulfide Me₂S (1.8 mL) at room temperature under argon, was added CuI (190 mg, 1.0 mmol). The reaction mixture was cooled to -30 °C, and vinylmagnesium bromide (10 mL, 10 mmol, 1.0 M in THF) was added slowly over 20 min. After stirring for 30 min at the same temperature, the reaction was quenched with saturated aq NaHCO₃ and diluted with Et₂O. The layers were separated and the aqueous layer was extracted three times with Et₂O. The combined organic extracts were washed with water and brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography using (hexanes/EtOAc, 20:1) as an eluent to afford dienvne 12 as colorless oil (1.82 g, 85%). $\left[\alpha\right]_{D}^{30} = +22.8$ (c 0.9, CHCl₃); ¹H NMR (600 MHz, CDCl₃); δ 7.14 (d, J = 8.6, 2H), 6.76 (d, J = 8.6, 2H), 5.72-5.67 (m, 1H), 4.96-4.95 (m, 2H), 4.77-4.76 (m, 2H), 4.36-4.35 (m, 1H), 4.32 (s, 2H), 3.66 (s, 3H), 3.41 (t, J = 6.4, 2H), 2.71 (d, J = 6.9, 2H), 2.27-2.26 (m, 2H), 2.20 $(td, J = 7.0, 1.7, 2H), 1.69-1.65 (m, 2H), 0.81 (s, 9H), 0.03 (s, 3H), 0.00 (s, 3H); {}^{13}C$ NMR (151 MHz, CDCl₃); δ 159.0, 143.7, 136.0, 130.4, 129.0, 116.1, 113.5, 113.3, 84.0, 81.8, 72.5, 68.4, 62.3, 54.9, 45.1, 40.9, 28.7, 25.7, 18.1, 15.4, -4.6, -5.1; IR (thin film, cm⁻¹) 2952, 1513, 1248, 1079; DART HRMS $m/z [M+H]^+$ calcd for C₂₆H₄₁O₃Si 429.2825, found 429.2827.

(4*R*,7a*S*)-4-((*tert*-Butyldimethylsilyl)oxy)-3-(3-((4-methoxybenzyl)oxy)propyl)-6-methylene-5,6,7,7a-tetrahydro-1*H*-inden-2(4*H*)-one 13 and (4*R*,7a*R*)-4-((*tert*-butyldimethylsilyl)oxy)-3-(3-((4-methoxybenzyl)oxy)propyl)-6-methylene-5,6,7,7a-tetrahydro-1*H*-inden-2(4*H*)-one 13'

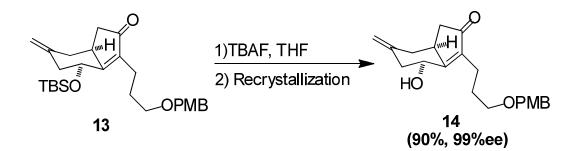
To a stirred solution of dienyne 12 (4.8 g, 11.2 mmol) in toluene (70 mL) were added

 $Co_2(CO)_8$ (766 mg, 20 mol %) and tetramethulthiourea TMTU (296 mg, 20 mol %) at room temperature. The reaction was stirred for 4 h at 70 °C under 1 atm CO. The black suspension was concentrated under reduced pressure. The residue was chromatographed with (hexanes/EtOAc, 9:1) eluting first **13** as colorless oil (4.8 g, 94%) followed by **13'** as colorless oil (0.1 g, 2%).

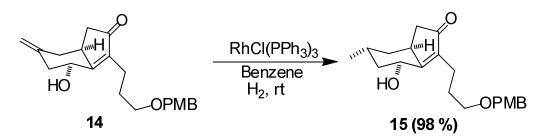

(4*R*,7a*S*)-4-((*tert*-Butyldimethylsilyl)oxy)-3-(3-((4-methoxybenzyl)oxy)propyl)-6-methylene-5,6,7,7a-tetrahydro-1*H*-inden-2(4*H*)-one 13

 $[\alpha]^{30}{}_{D} = -62.1 \ (c \ 1.0 \ , \ CHCl_3);$ ¹H NMR (600 MHz, CDCl_3); δ 7.18 (d, J = 7.6, 2H), 6.79 (d, J = 7.6, 2H), 4.82 (s, 2H), 4.71 (s, 1H), 4.34 (s, 2H), 3.72 (s, 3H), 3.36-3.33 (m, 2H), 2.98-2.96 (m, 1H), 2.65 (dd, J = 6.5, 3.4, 1H), 2.47 (dd, J = 19.2, 6.5, 1H), 2.41 (d, J = 13.7, 1H), 2.23-2.22 (m, 2H), 2.09 (d, J = 13.7, 1H), 1.88 (d, J = 19.2, 1H) 1.71-1.70

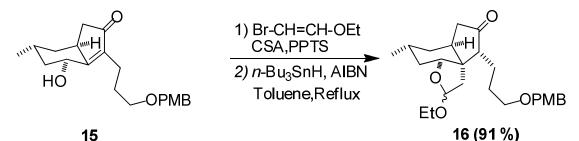
(m, 1H), 1.62-1.60 (m, 2H), 0.78 (s, 9H), 0.00 (s, 3H), -0.11 (s, 3H); ¹³C NMR (151 MHz, CDCl₃); δ 209.1, 173.9, 159.0, 141.8, 136.1, 130.5, 129.0, 113.6, 112.5, 72.3, 69.1, 65.0, 55.1, 43.4, 43.3, 41.1, 36.6, 28.4, 25.5, 19.5, 17.9, -4.8, -4.9; IR (thin film, cm⁻¹) 2928, 1702, 1247, 1071; DART HRMS *m*/*z* [M+H]⁺ calcd for C₂₇H₄₁O₄Si 457.2774, found 457.2770.


(4*R*,7a*R*)-4-((*tert*-Butyldimethylsilyl)oxy)-3-(3-((4-methoxy-benzyl)oxy)-propyl)-6-methylene-5,6,7,7a-tetrahydro-1*H*-inden-2(4*H*)-one 13'

 $[\alpha]^{25}{}_{D}$ = +21.0 (c 3.1 , CHCl₃); ¹H NMR (600 MHz, CDCl₃); δ 7.25-7.23 (m, 2H), 6.85 (d, J = 8.6, 2H), 4.83 (s, 2H), 4.47 (dd, J = 11.7, 5.5, 1H), 4.41 (d, J = 11.6, 1H), 4.39 (d, J = 11.6, 1H), 3.79 (s, 3H), 3.42 (t, J = 7.0, 2H), 2.64-2.60 (m, 2H), 2.54-2.52 (m, 3H), 2.48-2.45 (m, 1H), 2.24 (t, J = 11.9, 1H), 1.96 (d, J = 17.2, 1H), 1.77-1.71 (m, 2H), 1.64-


1.62 (m, 1H), 0.92 (s, 9H), 0.13 (s, 3H), 0.11 (s, 3H); ¹³C NMR (151 MHz, CDCl₃); δ 208.4, 173.0, 159.0, 143.2, 138.0, 130.8, 129.3, 113.6, 111.6, 74.3, 72.3, 70.0, 55.2, 45.8, 42.8, 40.5, 39.1, 29.7, 25.9, 19.4, 18.2, -4.6, -5.0; IR (thin film, cm⁻¹) 2952, 1702, 1243, 1093; DART HRMS *m/z* [M+H]⁺ calcd for C₂₇H₄₁O₄Si 457.2774, found 457.2779.

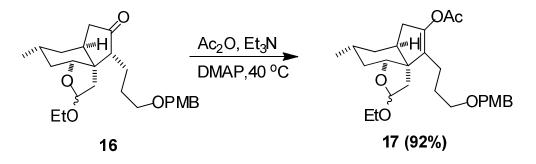
(4*R*,7a*S*)-4-Hydroxy-3-(3-((4-methoxybenzyl)oxy)propyl)-6methylene-5,6,7,7a-tetrahydro-1*H*-inden-2(4*H*)-one 14


To a solution of indenone 13 (1.63 g, 3.6 mmol) in THF (36 mL) at room temperature was added tetrabutylammonium fluoride TBAF (5.4 mL, 5.4 mmol, 1.0 M in THF). After stirring for 3 h at the same temperature, the reaction was quenched with saturated aq NH₄Cl and diluted by addition of EtOAc. The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic extracts were washed with water and brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was chromatographed with (hexanes/EtOAc, 2:1) as an eluent. The crude eluted fractions were evaporated and the remaining solid residue was recrystallized from (EtOAc/hexanes) to give 14 as colorless needles (1.1 g, 90%, 99% ee): $[\alpha]_{D}^{30} = -$ 117.7 (c 1.0, CHCl₃); mp = 68-69 °C; ¹H NMR (600 MHz, CDCl₃); δ 7.23 (d, J = 8.6, 2H), 6.86 (d, J = 8.6, 2H), 4.98 (brs, 1H), 4.91-4.90 (m, 2H), 4.40 (d, J = 11.3, 1H), 4.38 (d, J = 11.3, 1H), 3.79 (s, 3H), 3.41 (t, J = 6.2, 2H), 3.04-3.00 (m, 1H), 2.79 (d, J = 4.8, 1H), 2.73 (dd, J = 12.7, 4.5, 1H), 2.60-2.53 (m, 2H), 2.32-2.30 (m, 3H), 1.97 (dd, J = 18.7, 1.9, 1H) 1.77-1.72 (m, 3H); ¹³C NMR (151 MHz, CDCl₃); δ 208.7, 172.8, 159.0, 141.6, 137.6, 130.1, 129.2, 113.7, 113.5, 72.0, 68.7, 64.2, 55.1, 42.5, 42.0, 41.0, 36.7, 27.7, 19.2; IR (thin film, cm⁻¹) 3411, 1697, 1512, 1247, 1036; DART HRMS m/z [M+H]⁺ calcd for C₂₁H₂₇O₄ 343.1909, found 343.1906; HPLC: Daicel CHIRALPAK[®] OD-H column; $\lambda = 254$ nm; eluent: hexane/isopropanol = 94/6; flow rate: 1.0 mL/min; major enantiomer $t_R = 32.9$ min; ee = 99%.

(4*R*,6*R*,7a*S*)-4-Hydroxy-3-(3-((4-methoxybenzyl)oxy)propyl)-6methyl-5,6,7,7a-tetrahydro-1*H*-inden-2(4*H*)-one 15

To a stirred solution of **14** (5.5 g, 16 mmol) in benzene (60 mL) at room temperature was added RhCl(PPh₃)₃ (740 mg, 5 mol %). The reaction was stirred for 6 h at room temperature under 1 atm H₂. The brown mixture was concentrated under reduced pressure and the residue was chromatographed with (hexanes/EtOAc, 1:1) as an eluent to give **15** as colorless oil (5.4 g, 98%): $[\alpha]^{25}_{D} = -80.4$ (*c* 2.2 , CHCl₃); ¹H NMR (600 MHz, CDCl₃); δ 7.22 (d, *J* = 8.6, 2H), 6.87 (d, *J* = 8.6, 2H), 4.83 (brs, 1H), 4.40 (d, *J* = 11.7, 1H), 4.36 (d, *J* = 11.7, 1H), 3.80 (s, 3H), 3.41 (t, *J* = 5.3, 2H), 3.17-3.14 (m, 1H), 3.07 (s, 1H), 2.57 (dd, *J* = 18.9, 6.5, 1H), 2.31 (dd, *J* = 6.8, 6.5, 2H), 2.01-2.00 (m, 1H), 1.95-1.90 (m, 3H), 1.78-1.71 (m, 3H), 1.28-1.27 (m, 4H); ¹³C NMR (151 MHz, CDCl₃); δ 209.6, 175.1, 159.2, 137.4, 129.9, 129.3, 113.7, 71.8, 68.4, 64.2, 55.2, 41.5, 40.2, 37.9, 31.0, 27.0, 26.9, 20.5, 19.1; IR (thin film, cm⁻¹) 3426, 1701, 1512, 1174; DART HRMS *m/z* [M+H]⁺ calcd for C₂₁H₂₉O₄ 345.2065, found 345.2064.

(3a*S*,4R,6a*S*,8*R*,9a*R*)-2-Ethoxy-4-(3-((4-methoxybenzyl)oxy)propyl)-8-methyloctahydroindeno[4,3a-b]furan-5(4*H*)-one 16

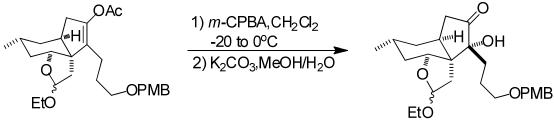


Pyridinium *p*-toluenesulfonate PPTS (263 mg, 1.05 mmol) and camphorsulfonic acid CSA (244 mg, 1.05 mmol) were added to a solution of alcohol **15** (1.8 g, 5.23 mmol) and (*Z/E*)-2-bromovinyl ethyl ether ³ (3.15 g, 20.9 mmol) at room temperature. After stirring for 2 h, the reaction was diluted by Et₂O and quenched with saturated aq NaHCO₃ at 0 °C. The layers were separated and the aqueous layer was extracted three times with Et₂O. The combined organic layers were washed with water and brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was passed through a short pad of silica gel using (hexanes/EtOAc, from 10:1 to 3:1) as an eluent. The crude eluted fractions were evaporated and dissolved in toluene. Tributyltin hydride *n*-Bu₃SnH (7.0 mL, 26.15 mmol) and Azobisisobutyronitrile AIBN were added (0.43 g, 2.62 mmol) at room

^{(3) (}Z/E)-2-Bromovinyl ethyl ether was freshly prepared as described by Stalick, W. M.; Khorrami, A.; Hatton, K. S. J. Org. Chem. **1986**, *51*, 3577.

temperature. The reaction was heated under reflux for 4 h. The solvent was evaporated under reduced pressure and the residue was chromatographed with (hexanes/EtOAc, from 6:1 to 2:1) to afford cyclic acetal **16** as colorless oil (1.97 g, 91%, two diastereomers, 3:1): $[\alpha]^{25}_{D} = +3.4$ (*c* 1.9 , CHCl₃); ¹H NMR (600 MHz, CDCl₃, major isomer); δ 7.25-7.24 (m, 2H), 6.87 (d, *J* = 8.6, 2H), 5.12 (dd, *J* = 5.7, 2.6, 1H), 4.41 (s, 2H), 3.95 (t, *J* = 5.3, 1H), 3.80 (s, 3H), 3.75-3.71 (m, 1H), 3.46-3.41 (m, 3H), 2.44 (dd, *J* = 19.2, 8.9, 1H), 2.36-2.35 (m, 1H), 2.26 (dd, *J* = 9.3, 4.8, 1H), 2.00-1.96 (m, 2H), 1.89-1.87 (m, 2H), 1.77-1.73 (m, 2H), 1.68-1.64 (m, 1H), 1.53-1.45 (br m, 3H), 1.39-1.34 (m, 1H), 1.28-1.25 (m, 1H), 1.17 (t, *J* = 7.0, 3H), 1.07 (d, *J* = 6.9, 3H); ¹³C NMR (151 MHz, CDCl₃, major isomer); δ 219.4, 159.1, 130.6, 129.2, 113.7, 102.0, 78.7, 72.4, 69.9, 62.9, 55.2, 52.3, 50.0, 42.1, 38.0, 33.8, 33.6, 33.4, 27.8, 24.9, 23.2, 20.7, 15.3; IR (thin film, cm⁻¹) 2924, 1736, 1513, 1247, 1098; DART HRMS *m/z* [M+H]⁺ calcd for C₂₅H₃₇O₅ 417.2641, found 417.2639.

(3aS,6aS,8R,9aR)-2-Ethoxy-4-(3-((4-methoxybenzyl)oxy)propyl)-8methyl-2,3,6,6a,7,8,9,9a-octahydroindeno[4,3a-b]furan-5-yl acetate 17



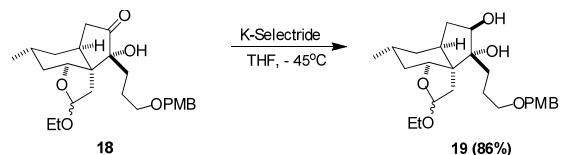
Dimethylaminopyridine DMAP (410.5 mg, 3.36 mmol) and Et₃N (11.6 mL, 84 mmol) were added to a solution of **16** (3.5 g, 8.4 mmol) and acetic anhydride ⁴ (23.8 mL, 252 mmol) at room temperature. The reaction mixture was stirred at 40 °C for 48 h. The color changed from pale yellow to dark brown during the course of the reaction. The reaction was diluted by EtOAc at 0 °C and quenched with saturated aq NaHCO₃. The heterogeneous mixture was filtered through Celite[®] and the Celite[®] was washed thoroughly with EtOAc. The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic layers were washed with saturated aq copper(II) sulfate and brine, dried over anhydrous Na₂SO₄,

⁽⁴⁾ Acetic anhydride was distilled from K₂CO₃ prior to use.

filtered and concentrated under reduced pressure. The residue was purified by column chromatography using (hexanes/EtOAc, from 9:1 to 6:1) as an eluent to afford vinyl acetate derivative **17** as pale yellow oil (3.54 g, 92%, two diastereomers, 3:1): $[\alpha]^{24}{}_{\rm D} = -13.1$ (*c* 1.5, CHCl₃); ¹H NMR (600 MHz, CDCl₃, major isomer); δ 7.26 (d, *J* = 8.6, 2H), 6.87 (d, *J* = 8.6, 2H), 5.11 (dd, *J* = 6.0, 3.3, 1H), 4.41 (s, 2H), 4.05 (t, *J* = 4.6, 1H), 3.80 (s, 3H), 3.75-3.73 (m, 1H), 3.45-3.40 (m, 3H), 2.57 (dd, *J* = 15.1, 7.9, 1H), 2.18-2.13 (br m, 5H), 2.08 (s, 3H), 1.92 (dd, *J* = 13.9, 3.3, 1H), 1.77-1.68 (m, 4H), 1.60-1.56 (m, 1H), 1.48-1.46 (m, 1H), 1.39-1.34 (m, 1H), 1.17 (t, *J* = 7.0, 3H), 1.03 (d, *J* = 6.9, 3H); ¹³C NMR (151 MHz, CDCl₃, major isomer); δ 168.7, 159.0, 146.1, 130.7, 129.1, 128.4, 113.7, 102.2, 78.0, 72.3, 69.8, 63.1, 55.2, 54.1, 44.0, 39.0, 35.3, 33.7, 32.7, 28.5, 23.9, 21.7, 20.8, 20.5, 15.3; IR (thin film, cm⁻¹) 3292, 1754, 1512, 1246, 1100; DART HRMS *m*/*z* [M+H]⁺ calcd for C₂₇H₃₉O₆ 459.2747, found 459.2749.

(3a*R*,4*R*,6a*S*,8*R*,9a*R*)-2-Ethoxy-4-hydroxy-4-(3-((4-methoxybenzyl)oxy)propyl)-8-methyloctahydroindeno[4,3a-b]furan-5(4*H*)-one 18

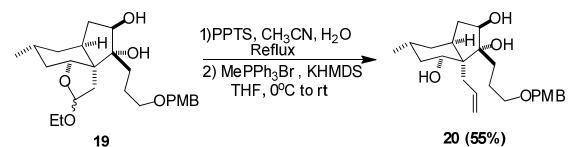
17


18 (96%)

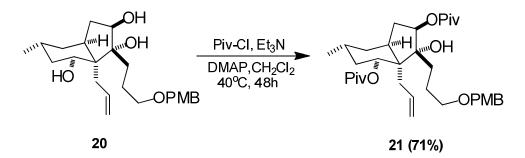
To a solution of 17 (2.0 g, 4.36 mmol) in CH_2Cl_2 (40 mL) at -20 °C was added a solution of *m*-CPBA⁵ (2.26 g, 13.0 mmol) in CH_2Cl_2 (25 mL). The reaction mixture was gradually warmed to 0 °C and stirred for 2 h at the same temperature. The reaction was quenched with saturated aq NaHCO₃ and Na₂S₂O₃. The layers were separated and the aqueous layer was extracted three times with CH_2Cl_2 . The combined organic layers were washed with water and brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was dissolved in MeOH/H₂O (15 mL: 1.5 mL). Potassium carbonate K₂CO₃ (241 mg, 1.74 mmol) was added and the reaction mixture was stirred for 4 h at room temperature. The reaction mixture was partitioned between EtOAc and brine. The

⁽⁵⁾ *m*-CPBA was purified and recrystallized from CH₂Cl₂ as described by Traylor, T. G.; Miksztal, A. R. J. Am. Chem. Soc. **1987**, 109, 2770.

layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography using (hexanes/EtOAc, 4:1) as an eluent to give α -hydroxy ketone **18** as colorless oil (1.8 g, 96% yield, two diastereomers, 3:1): $[\alpha]^{24}{}_{D}$ = +42.5 (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃ major isomer); δ 7.23 (d, *J* = 8.7, 2H), 6.87 (d, *J* = 8.7, 2H), 5.05 (dd, *J* = 6.4, 4.6, 1H), 4.94 (s, 1H), 4.49 (d, *J* = 11.4, 1H), 4.42 (d, *J* = 11.4, 1H), 3.80 (s, 3H), 3.77-3.74 (m, 1H), 3.55-3.53 (m, 2H), 3.45-3.42 (m, 2H), 2.83-2.80 (m, 1H), 2.71 (dd, *J* = 14.7, 6.4, 1H), 2.63 (dd, *J* = 19.5, 10.3, 1H), 2.15-2.10 (m, 1H), 2.04-1.92 (m, 1H), 1.87-1.84 (m, 4H), 1.51-1.44 (m, 4H), 1.35-1.31 (m, 1H), 1.21 (t, *J* = 7.1, 3H), 0.92 (d, *J* = 5.5, 3H); ¹³C NMR (151 MHz, CDCl₃ major isomer); δ 215.8, 159.3, 129.6, 129.5, 113.8, 104.5, 80.4, 77.4, 72.7, 70.8, 63.5, 56.0, 55.2, 39.5, 39.2, 34.8, 33.6, 32.9, 28.3, 24.0, 22.9, 21.9, 15.4; IR (thin film, cm⁻¹) 3357, 1741, 1246, 1090; DART HRMS *m*/*z* [M+H]⁺ calcd for C₂₅H₃₇O₆ 433.25901, found 433.25905.

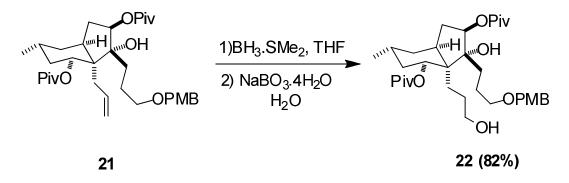

(3a*R*,4*R*,5*R*,6a*S*,8*R*,9a*R*)-2-Ethoxy-4-(3-((4-methoxybenzyl)oxy)propyl)-8-methyldecahydroindeno[4,3a-b]furan-4,5-diol 19

K-Selectride (5.5 mL, 5.5 mmol, 1.0M solution in THF) was added dropwise to a solution of **18** (1.8 g, 4.16 mmol) in THF (40 mL) at -45 °C under argon. After stirring for 6h at the same temperature, the reaction was quenched with 3 M aq NaOH and 30% aq H₂O₂. The mixture was diluted with EtOAc and the layers were separated. The aqueous layer was extracted three times with EtOAc. The combined organic extracts were washed with saturated aq Na₂S₂O₃ and brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography using (hexanes/EtOAc, from 2:1 to 1:1) as an eluent to give *trans*-diol **19** as colorless oil (1.54 g, 86% yield, two diastereomers, 3:1): $[\alpha]^{24}_{D} = -9.3$ (*c* 0.8, CHCl₃); ¹H NMR (600 MHz, CDCl₃); δ


7.24-7.23 (m, 2H), 6.88-6.87 (m, 2H), 5.12-5.04 (m, 1H), 4.49-4.45 (m, 3H) 4.00-3.98 (m, 1H), 3.80 (d, J = 10.0, 3H), 3.77-3.73 (m, 1H), 3.49-3.43 (m, 3H), 2.63-2.62 (m, 1H), 2.54-2.48 (m, 2H), 2.41-2.38 (m, 1H), 2.15-2.08 (m, 2H), 1.83-1.76 (m, 4H), 1.61-1.59 (m, 1H), 1.46-1.44 (m, 1H), 1.34-1.29 (m, 4H), 1.21-1.18 (m, 3H), 0.91-0.89 (m, 3H); ¹³C NMR (151 MHz, CDCl₃); δ 159.2, 129.6, 129.5, 129.4, 113.8, 103.9, 102.4, 86.0, 85.6, 77.9, 77.4, 77.2, 72.9, 72.8, 70.6, 70.3, 63.4, 63.3, 57.3, 55.2, 54.8, 40.0, 39.6, 38.4, 37.8, 37.4, 36.8, 36.2, 34.1, 34.0, 28.8, 27.5, 24.3, 23.9, 23.8, 22.1, 22.0, 15.4; IR (thin film, cm⁻¹) 3430, 1512, 1301, 1091; DART HRMS *m/z* [M+H]⁺ calcd for C₂₅H₃₉O₆ 435.2746, found 435.2742.

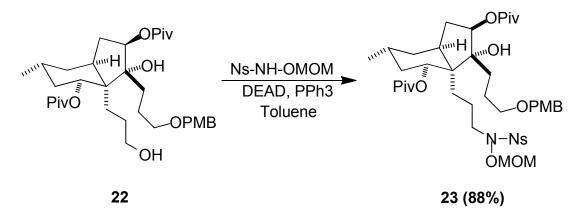
(1*R*,2*R*,3a*S*,5*R*,7*R*,7a*R*)-7a-Allyl-1-(3-((4-methoxybenzyl)oxy)propyl)-5-methyloctahydro-1*H*-indene-1,2,7-triol 20

PPTS (123 mg, 0.49 mmol) was added to a solution of 19 (1.06 g, 2.44 mmol) in CH₃CN/H₂O (10 mL: 2 mL) at room temperature. The reaction mixture was heated under reflux for 4 h. The reaction was quenched with saturated aq NaHCO₃ and the mixture was partitioned between EtOAc and brine. The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was passed through a short pad of silica gel using (hexanes/EtOAc, 1:2) as an eluent. The crude eluted fractions were evaporated, dissolved in THF (10 mL) and cooled at 0°C. In a previously prepared second flask, methyltriphenylphosphonium bromide PPh₃MeBr (6.1 g, 17.08 mmol) was dried at 80 °C under vacuum for 3 hours. After the salt has cooled THF (24 mL) was added and the slurry was cooled to 0 °C under argon. Potassium bis(trimehtylsilyl)amide KHMDS (16.8 mL, 16.8 mmol, 1.0 M in THF) was added dropwise at the same temperature resulting in a bright yellow color. After stirring for 30 min at the same temperature, the bright yellow ylide slurry was cannulated to the first reaction flask at 0°C under argon. The reaction mixture was stirred at the same temperature for 2h then warmed gradually to room temperature and stirred overnight. The reaction was quenched with saturated aq NH₄Cl and the mixture was diluted with EtOAc. The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic extracts were washed with water and brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography with (hexanes/EtOAc, 2:1) as eluent to afford triol **20** as colorless oil (0.54 g, 55% yield): $[\alpha]^{24}_{D} = -13.4$ (*c* 0.8, CHCl₃); ¹H NMR (600 MHz, CDCl₃); δ 7.26-7.24 (m, 2H), 6.87 (d, J = 9.3, 2H), 6.22-6.15 (m, 1H), 5.14 (dd, J = 17.2, 1.7, 1H), 5.03 (dd, J = 10.0, 1.7, 1H), 4.49 (d, J = 11.7, 1H) 1H), 4.46 (d, J = 11.7, 1H), 4.31-4.27 (m, 1H), 3.94-3.93 (m, 1H), 3.80 (s, 3H), 3.57-3.54 (m, 1H), 3.46 (td, J = 8.5, 3.9, 1H), 3.33 (d, J = 2.7, 1H) 2.53-2.49 (m, 2H), 2.35-2.31 (m, 1H), 2.29-2.25 (m, 1H), 2.17 (s, 1H), 2.15-2.10 (m, 1H), 1.93-1.88 (m, 1H), 1.84-1.80 (m, 2H), 1.75-1.74 (m, 1H), 1.67-1.64 (m, 1H), 1.49-1.44 (m, 2H), 1.19-1.16 (m, 2H), 1.12-1.09 (m, 1H), 0.92 (d, J = 6.5, 3H); ¹³C NMR (151 MHz, CDCl₃); δ 159.3, 139.1, 129.8, 129.5, 116.5, 113.8, 89.3, 77.8, 72.8, 70.1, 69.2, 55.2, 53.0, 41.3, 39.7, 36.0, 32.5, 32.1, 29.4, 25.6, 24.0, 22.1; IR (thin film, cm⁻¹) 3424, 1513, 1247, 1035; DART HRMS m/z [M+H]⁺ calcd for C₂₄H₃₇O₅ 405.2641, found 405.2640.


(2*R*,3*R*,3a*R*,4*R*,6*R*,7a*S*)-3a-Allyl-3-hydroxy-3-(3-((4-methoxybenzyl)oxy)propyl)-6-methyloctahydro-1*H*-indene-2,4-diyl bis(2,2-dimethylpropanoate) 21

DMAP (35.5 mg, 0.29 mmol) and Et_3N (8 mL, 58 mmol) were added to a solution of triol **20** (235 mg, 0.58 mmol) in CH_2Cl_2 (4 mL) at room temperature. The reaction was cooled to 0 °C and pivaloyl chloride (7.1 mL, 58 mmol) was added dropwise. After the addition, the reaction was stirred at 0 °C for 1 h and then warmed to 40 °C and stirred for 48 h. The reaction mixture was diluted with CH_2Cl_2 at 0 °C and quenched with saturated aq NaHCO₃. The layers were separated and the aqueous layer was extracted three times with CH_2Cl_2 . The combined organic layers were

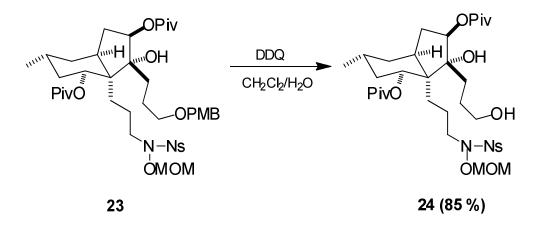
washed with saturated aq copper(II) sulfate and brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using (hexanes/EtOAc, from 18:1 to 6:1) as an eluent to afford **21** as colorless oil (234.5 mg, 71% yield)): $[\alpha]^{25}_{D} = -17.8$ (*c* 3.3, CHCl₃); ¹H NMR (600 MHz, CDCl₃); δ 7.22 (d, *J* = 8.6, 2H), 6.86 (d, *J* = 8.6, 2H), 6.19-6.15 (m, 1H), 5.22 (dd, *J* = 11.5, 4.6, 1H), 5.12 (dd, *J* = 17.0, 1.5, 1H), 5.03 (dd, *J* = 10.1, 1.5, 1H), 4.80 (dd, *J* = 8.2, 3.1, 1H), 4.42 (d, *J* = 11.3, 1H), 4.39 (d, *J* = 11.3, 1H), 3.80 (s, 3H), 3.48-3.44 (m, 1H), 3.39 (br s, 1H), 3.34-3.30 (m, 1H), 2.65-2.63 (m, 1H), 2.55 (dd, *J* = 15.1, 7.2, 1H), 2.50-2.45 (m, 2H), 1.77-1.75 (m, 1H), 1.70-1.66 (m, 3H), 1.62-1.61 (m, 1H), 1.46-1.43 (m, 2H), 1.35-1.31 (m, 2H), 1.21 (s, 9H), 1.17 (s, 9H), 1.11-1.06 (m, 1H), 0.90 (d, *J* = 6.5, 3H); ¹³C NMR (151 MHz, CDCl₃); δ 177.4, 177.2, 159.2, 138.3, 130.0, 129.3, 116.4, 113.7, 88.1, 79.0, 72.7, 72.4, 70.5, 55.2, 51.8, 40.1, 38.8, 36.5, 35.5, 33.2, 32.6, 30.3, 27.1, 27.0, 26.8, 25.2, 24.0, 21.9; IR (thin film, cm⁻¹) 3443, 2924, 1721, 1158; DART HRMS *m*/*z* [M+H]⁺ calcd for C₃₄H₅₃O₇ 573.3791, found 573.3794.


(2*R*,3*R*,3a*R*,4*R*,6*R*,7a*S*)-3-Hydroxy-3a-(3-hydroxypropyl)-3-(3-((4-methoxybenzyl)oxy)propyl)-6-methyloctahydro-1*H*-indene-2,4-diyl bis(2,2-dimethylpropanoate) 22

Borane dimethyl sulfide complex $BH_3.SMe_2$ (0.5 mL, 4.95 mmol) was added to a solution of allyl derivative **21** (566 mg, 0.99 mmol) in THF (10 mL) at 0 °C under argon. After stirring for 2 h at the same temperature, water H_2O (2 mL) and NaBO₃.4H₂O (762 mg, 4.95 mmol) were added. The reaction was warmed to room temperature and stirred for 4 h. The reaction mixture was partitioned between EtOAc and brine and the layers were separated. The aqueous layer was extracted three times with EtOAc. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was chromatographed

using (hexanes/EtOAc, from 2:1 to 1:1) as an eluent to afford primary alcohol **22** as colorless oil (480 mg, 82% yield): $[\alpha]^{25}{}_{D} = -19.8$ (*c* 3.0, CHCl₃); ¹H NMR (600 MHz, CDCl₃); δ 7.23 (d, *J* = 8.2, 2H), 6.87 (d, *J* = 8.2, 2H), 5.21 (dd, *J* = 11.5, 4.6, 1H), 4.81 (dd, *J* = 8.9, 3.4, 1H), 4.43 (d, *J* = 11.5, 1H), 4.39 (d, *J* = 11.5, 1H), 3.81 (s, 3H), 3.64-3.63 (m, 2H), 3.50-3.47 (m, 2H), 3.33-3.31 (m, 1H), 2.65-2.62 (m, 1H), 2.51-2.45 (m, 1H), 1.95-1.93 (m, 1H), 1.77-1.69 (m, 4H), 1.66-1.61 (m, 5H), 1.50-1.48 (m, 2H), 1.32-1.26 (m, 3H), 1.21 (s, 9H), 1.16 (s, 9H), 0.89 (d, *J* = 6.5, 3H); ¹³C NMR (151 MHz, CDCl₃); δ 177.4, 177.3, 159.3, 129.8, 129.4, 113.8, 87.9, 79.5, 72.8, 72.7, 70.5, 64.3, 55.3, 50.9, 40.4, 38.8, 38.5, 36.6, 35.6, 33.5, 30.2, 29.2, 27.1, 26.8, 25.2, 24.6, 24.1, 21.9; IR (thin film, cm⁻¹) 3426, 1721, 1284, 1156; DART HRMS *m*/*z* [M+H]⁺ calcd for C₃₄H₅₅O₈ 591.3897, found 591.3890.

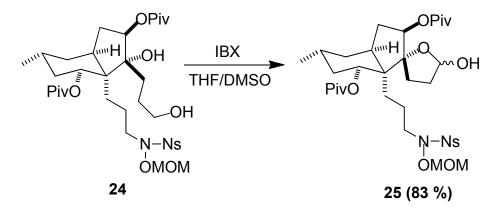
(2*R*,3*R*,3a*R*,4*R*,6*R*,7aS)-3-Hydroxy-3-(3-((4-methoxybenzyl)oxy)propyl)-3a-(3-(N-(methoxymethoxy)-2-nitrophenylsulfonamido)propyl)-6-methyloctahydro-1*H*-indene-2,4-diyl bis(2,2-dimethylpropanoate) 23



N-(Methoxymethoxy)-2-nitrobenzenesulfonamide⁶ **S5** Ns-NH-OMOM (47 mg, 0.18 mmol) and triphenylphosphine (168 mg, 0.64 mmol) were added to a solution of primary alcohol **22** (94 mg, 0.16 mmol) in toluene (3 mL) at -20 °C. Diethyl azodicarboxylate DEAD (348 μ L, 0.8 mmol, 40% in toluene) was added dropwise to the reaction mixture at the same temperature. The yellow suspension was warmed gradually to room temperature and stirred for 1 h. The orange suspension was concentrated under reduced pressure and the residue was chromatographed with (hexanes/Et₂O, from 1:1 to 1:2) to afford **23** as pale yellow oil (114 mg, 88%): $[\alpha]^{25}_{D}$

⁽⁶⁾ N-(Methoxymethoxy)-2-nitrobenzenesulfonamide **S5** was prepared as described by Canham, S. M.; France, D. J.; Overman, L. E. *J. Am. Chem. Soc.* **2010**, *132*, 7876.

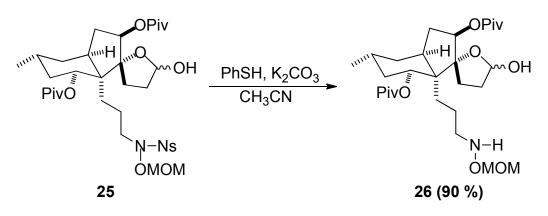
= -39.2 (*c* 1.5, CHCl₃); ¹H NMR (600 MHz, CDCl₃); δ 8.04 (dd, *J* = 7.9, 1.0, 1H), 7.79-7.72 (m, 2H), 7.59 (dd, *J* = 7.7, 1.2, 1H), 7.20 (d, *J* = 8.6, 2H), 6.86 (d, *J* = 8.6, 2H), 5.19 (dd, *J* = 11.5, 4.6, 1H), 5.02 (d, *J* = 8.3, 1H), 4.99 (d, *J* = 8.3, 1H), 4.79 (dd, *J* = 8.6, 3.1, 1H), 4.40 (d, *J* = 11.0, 1H), 4.38 (d, *J* = 11.0, 1H), 3.80 (s, 3H), 3.49-3.44 (m, 1H), 3.43 (s, 3H), 3.33-3.32 (m, 1H), 3.24-3.23 (m, 2H), 2.62-2.58 (m, 1H), 2.49-2.45 (m, 1H), 2.07-2.04 (m, 1H), 1.78-1.75 (m, 3H), 1.63-1.62 (m, 3H), 1.49-1.43 (m, 2H), 1.29-1.26 (m, 4H), 1.21 (s, 9H), 1.15 (s, 9H), 1.10-1.06 (m, 2H), 0.89 (d, *J* = 6.5, 3H); ¹³C NMR (151 MHz, CDCl₃); δ 177.4, 177.3, 159.2, 149.8, 134.8, 132.3, 130.9, 130.0, 129.2, 126.6, 123.8, 113.7, 102.7, 87.9, 79.3, 72.7, 72.6, 70.5, 57.6, 55.3, 54.5, 51.0, 39.8, 38.8, 36.5, 35.5, 33.3, 30.2, 29.7, 27.1, 26.8, 25.5, 25.2, 24.2, 23.2, 21.8; IR (thin film, cm⁻¹) 3372, 2923, 1722, 1178; DART HRMS *m*/*z* [M+H]⁺ calcd for C₄₂H₆₃N₂O₁₃S 835.4051, found 835.4050.


(2*R*,3*R*,3a*R*,4*R*,6*R*,7a*S*)-3-Hydroxy-3-(3-hydroxypropyl)-3a-(3-(N-(methoxymethoxy)-2-nitrophenylsulfonamido)propyl)-6methyloctahydro-1*H*-indene-2,4-diyl bis(2,2-dimethylpropanoate) 24

2,3-Dichloro-5,6-dicyano-1,4-benzoquinone DDQ (102 mg, 0.45 mmol) was added to a solution of **23** (250 mg, 0.3 mmol) in CH₂Cl₂/H₂O (4 mL: 1 mL) at room temperature. After stirring for 4 h at the same temperature, the reaction was quenched with saturated aq NaHCO₃. The layers were separated and the aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were washed with H₂O and brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using (hexane/EtOAc, from 1:1 to 1:2) as an eluent to afford diol **24** as pale yellow oil (182 mg, 85% yield): $[\alpha]^{25}_{D} = -12.2$ (*c* 0.22, CHCl₃); ¹H NMR (600 MHz, CDCl₃); δ 8.05 (dd, *J* = 7.9, 2.1,

1H), 7.82-7.79 (m, 1H), 7.77-7.76 (m, 1H), 7.60 (d, J = 7.9, 1H), 5.21 (dd, J = 11.5, 4.6, 1H), 5.06 (d, J = 7.9, 1H), 5.01 (d, J = 7.9, 1H), 4.82 (dd, J = 8.1, 2.9, 1H), 3.70-3.68 (m, 1H), 3.55-3.53 (m, 1H), 3.47 (s, 3H), 3.28-3.21 (m, 3H), 2.62-2.59 (m, 1H), 2.50-2.44 (m, 1H), 2.07-2.05 (m, 1H), 1.84-1.75 (m, 5H), 1.64-1.63 (m, 2H), 1.50-1.44 (m, 2H), 1.34-1.25 (m, 3H), 1.22 (s, 9H), 1.18 (s, 9H), 1.11-1.09 (m, 2H), 0.90 (d, J = 6.5, 3H); ¹³C NMR (151 MHz, CDCl₃); δ 177.5, 177.3, 149.8, 134.9, 132.3, 131.0, 126.6, 123.8, 102.7, 87.9, 79.2, 72.6, 63.3, 57.7, 54.5, 51.0, 39.9, 38.9, 38.6, 36.5, 35.5, 33.3, 29.8, 27.1, 26.8, 25.4, 25.2, 23.1, 21.8, 14.2; IR (thin film, cm⁻¹) 3476, 1721, 1711, 1156; DART HRMS m/z [M+H]⁺ calcd for C₃₄H₅₅N₂O₁₂S 715.3476, found 715.3472.

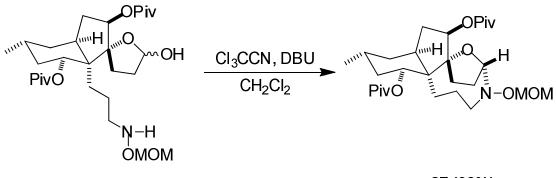
(1'*R*,2'*R*,3a'*S*,5'*R*,7'*R*,7a'*R*)-5-Hydroxy-7a'-(3-(N-(methoxymethoxy)-2-nitrophenylsulfonamido)propyl)-5'-methyldecahydro-3*H*spiro[furan-2,1'-indene]-2',7'-diyl bis(2,2-dimethylpropanoate) 25



2-Iodoxybenzoic acid IBX⁷ (29 mg, 0.105 mmol) was added to a solution of diol **24** (49 mg, 0.07 mmol) in THF/DMSO (1.0 mL: 1.0 mL) at room temperature. After stirring for 6 h at the same temperature, the reaction was quenched with saturated aq NaHCO₃ and partitioned between EtOAc and brine. The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using (hexanes/EtOAc, 1:1) as an eluent to afford spirolactol **25** as colorless oil (41.5 mg, 83% yield, two diastereomers, 3:1): $[\alpha]^{24}_{D} = -8.8$ (*c* 0.24, CHCl₃); ¹H NMR (400 MHz, CDCl₃); δ 8.08-8.05 (m, 1H), 7.79-7.74 (m, 2H), 7.61-7.60 (m, 1H), 5.46-5.41

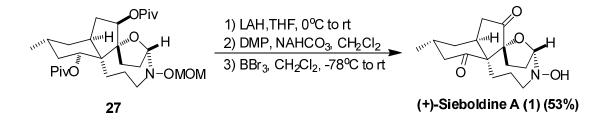
⁽⁷⁾ IBX was freshly prepared as described by Frigerio, M.; Santagostino, M.; Sputore, S. J. Org. Chem. 1999, 64, 4537.

(m, 1H), 5.13-5.10 (m, 1H), 5.02-4.97 (m, 2H), 4.80-4.78 (m, 1H), 3.47 (d, J = 11.0, 3H), 3.28-3.23 (m, 2H), 2.55-2.48 (m, 1H), 2.42-2.38 (m, 1H), 2.21-2.17 (m, 1H), 2.11-2.03 (m, 1H), 1.81-1.77 (m, 4H), 1.70-1.65 (m, 4H), 1.54-1.50 (m, 2H), 1.44-1.32 (m, 2H), 1.22 (d, J = 5.5, 9H), 1.17 (d, J = 1.8, 9H), 1.08-1.05 (m, 1H), 0.91-0.89 (m, 3H); ¹³C NMR (101 MHz, CDCl₃); δ 177.7, 177.3, 158.4, 145.4, 134.8, 132.3, 132.0, 131.1, 123.9, 123.8, 102.3, 100.0, 99.3, 97.0, 78.1, 72.3, 72.1, 57.8, 55.0, 48.8, 39.3, 38.8, 38.6, 36.1, 34.6, 33.2, 32.9, 31.8, 27.2, 27.1, 26.9, 25.0, 24.3, 23.9, 23.4, 21.9; IR (thin film, cm⁻¹) 3492, 1719, 1283, 1158; DART HRMS *m/z* [M+H]⁺ calcd for C₃₄H₅₃N₂O₁₂S 713.3319, found 713.3313.


(1'*R*,2'*R*,3a'*S*,5'*R*,7'*R*,7a'*R*)-5-Hydroxy-7a'-(3-((methoxymethoxy)amino)propyl)-5'-methyldecahydro-3*H*-spiro[furan-2,1'-indene]-2',7'-diyl bis(2,2-dimethylpropanoate) 26

K₂CO₃ (29.0 mg, 0.21 mmol) and thiophenol PhSH (140 μL, 0.14 mmol, 1.0M in CH₃CN) were added to a solution of **25** (50 mg, 0.07 mmol) in CH₃CN (4 mL) at room temperature. After stirring for 6 h at the same temperature, the mixture was partitioned between EtOAc and brine. The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using (hexanes/EtOAc, from 1:1 to 1:2) as an eluent to afford aminolactol **26** as colorless oil (33.2 mg, 90% yield, two diastereomers, 3:1): $[\alpha]^{24}_{D} = -6.5$ (*c* 0.4, CHCl₃); ¹H NMR (600 MHz, CDCl₃); δ 5.44-5.43 (m, 1H), 5.11-5.09 (m, 1H), 4.82-4.80 (m, 1H), 4.76 (d, *J* = 2.4, 2H), 3.42 (s, 3H), 3.18-3.16 (m, 1H), 2.92-2.87 (m, 1H), 2.56-2.54 (m, 1H), 2.43-2.38 (m, 1H), 2.13-2.09 (m, 1H), 2.06-2.04 (m, 1H), 1.84-1.75 (m, 5H), 1.70-1.63 (m, 2H), 1.54-1.52 (m, 2H), 1.43-1.38 (m, 1H), 1.27-1.25 (m, 1H), 1.23 (d,

J = 7.2, 9H), 1.17 (d, J = 9.3, 9H), 1.12-1.08 (m, 2H), 0.90-0.89 (m, 4H); ¹³C NMR (151 MHz, CDCl₃); δ 177.6, 177.3, 100.2, 99.2, 98.9, 97.0, 78.3, 72.4, 55.9, 53.1, 48.7, 40.0, 39.3, 38.9, 38.6, 36.4, 34.7, 33.3, 33.2, 27.2, 27.1, 26.9, 25.0, 24.5, 23.9, 23.0, 21.9; IR (thin film, cm⁻¹) 3733, 1723, 1151; DART HRMS *m*/*z* [M+H]⁺ calcd for C₂₈H₅₀NO₈ 528.3536, found 528.3544.


(5*S*,7a*R*,8*R*,9a*S*,11*R*,13*R*,13a*R*)-4-(Methoxymethoxy)-11methyltetradecahydro-5,7a-epoxyindeno[1,7a-e]azonine-8,13-diyl bis(2,2-dimethylpropanoate) 27

26

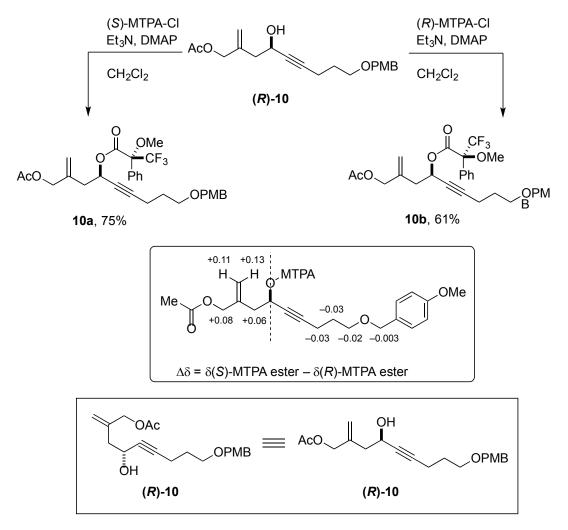
27 (63%)

1,8-Diazabicyclo[5.4.0]undec-7-ene DBU (550 µL, 1.32 mmol, 2.4 M in CH₂Cl₂) was added dropwise to a solution of aminolactol 26 (32.0 mg, 0.06 mmol) in CH₂Cl₂ (4.0 mL) at 0 °C under argon. Trichloroacetonitrile (660 µL, 3.3 mmol, 5.0 M in CH₂Cl₂) was added dropwise to the reaction mixture at the same temperature. After stirring at 0 °C for 2 h, the reaction mixture was gradually warmed to room temperature and stirred for 36 h. The color changed from pale yellow to dark brown during the course of the reaction. The dark brown solution was concentrated under reduced pressure and the residue was purified by flash chromatography using (hexanes/acetone, 40:3) as an eluent to afford tetracyclic derivative 27 as a colorless film: (19.4 mg, 63% yield). $[\alpha]_{D}^{24} = +85.5 \ (c \ 0.33, \ CHCl_{3});$ ¹H NMR (600 MHz, CDCl₃); $\delta \ 5.19 \ (dd, \ J = 11.5, \ J =$ 4.6, 1H), 5.09 (t, J = 5.7, 1H), 4.90 (dd, J = 8.9, 3.6, 1H), 4.75 (s, 2H), 3.42 (s, 3H), 3.34-3.31 (m, 1H), 3.14-3.12 (m, 1H), 2.73-2.68 (m, 1H), 2.47-2.41 (m, 1H), 2.37-2.33 (m, 1H), 2.21-2.16 (m, 1H), 2.01-1.96 (m, 4H), 1.77-1.70 (m, 3H), 1.55-1.52 (m, 1H), 1.48-1.43 (m, 2H), 1.21 (s, 9H), 1.20 (s, 9H), 1.16-1.15 (m, 2H), 0.89 (d, J = 6.2, 3H); ¹³C NMR (151 MHz, CDCl₃); δ 177.8, 177.0, 98.8, 96.5, 95.6, 80.5, 72.1, 56.1, 54.2, 49.5, 38.9, 38.6, 38.4, 35.2, 34.2, 31.3, 29.0, 27.1, 26.9, 26.5, 25.2, 25.0, 21.9, 19.3; IR (thin film, cm⁻¹) 2956, 1723, 1153; DART HRMS m/z [M+H]⁺ calcd for C₂₈H₄₈NO₇ 510.3431, found 510.3432.

Lithium aluminium hydride LAH (57 mg, 1.5 mmol) was added to a solution of **27** (11 mg, 0.021 mmol) in THF (3 mL) at 0 °C under argon. After stirring for 2 h at the same temperature, the reaction mixture was gradually warmed to room temperature and stirred for 18 h. The reaction was diluted with EtOAc at 0 °C and a saturated aq solution of Rochelle's salt was added. The mixture was allowed to warm to room temperature and stirred for 2h. The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic layers were washed with H_2O and brine, dried over anhydrous Na_2SO_4 , filtered and concentrated under reduced pressure.

The residue was dissolved in CH_2Cl_2 (3 mL). NaHCO₃ (13 mg, 0.15 mmol) and Dess martin periodinane DMP (0.5 mL, 0.15 mmol, 0.3 M in CH_2Cl_2) were added to the reaction mixture at room temperature under argon. After stirring for 2 h, the reaction was quenched with saturated aq NaHCO₃. The layers were separated and the aqueous layer was extracted three times with CH_2Cl_2 . The combined organic layers were washed with H_2O and brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure.

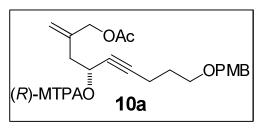
The residue was dissolved in CH₂Cl₂ (3 mL) and cooled to -78 °C under argon. Boron tribromide BBr₃ (105 µL, 0.105 mmol, 1.0 M in CH₂Cl₂) was added dropwise to the reaction mixture at the same temperature. The reaction mixture was gradually warmed to 0 °C and stirred for 2 h and was then warmed to room temperature and stirred for 18h. The reaction was quenched with saturated aq NaHCO₃. The layers were separated and the aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were washed with H₂O and brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography using (hexanes/acetone, 1:1) as an eluent to afford (+)-sieboldine A (1) as a colorless powder (3.3 mg, 53% yield): $[\alpha]^{25}_{D} = +140.0$ (*c* 0.33, CH₃OH); ¹H NMR (600 MHz, CD₃OD); δ ; 4.89-4.87 (m, 1H), 3.27-3.22 (m, 1H),


3.20-3.18 (m, 1H), 2.90 (ddd, J = 14.8, 7.4, 3.7, 1H), 2.57-2.55 (m, 1H), 2.51 (dd, J = 12.9, 12.5, 1H), 2.47-2.45 (m, 1H), 2.43 (dd, J = 21.3, 10.7, 1H), 2.40-2.38 (m, 1H), 2.11-2.10 (m, 1H), 2.08-2.07 (m, 1H), 2.05-2.04 (m, 1H), 2.03-2.01 (m, 1H), 1.98-1.96 (m, 1H), 1.92 (dd, J = 19.6, 10.7, 1H), 1.79-1.77 (m, 2H), 1.76-1.75 (m, 1H), 1.62-1.60 (m, 1H), 1.05 (d, J = 6.2, 3H); ¹³C NMR (151 MHz, CD₃OD); δ 216.5, 212.7, 98.5, 92.8, 62.3, 54.5, 47.6, 38.7, 37.2, 32.5, 31.8, 31.4, 28.3, 26.1, 22.5, 19.4; IR (thin film, cm⁻¹) 3400, 1754, 1698; DART HRMS m/z [M+H]⁺ calcd for C₁₆H₂₄NO₄ 294.1705, found 294.1701.

Optimization of asymmetric allylation of aldehyde 9 (Table S1):

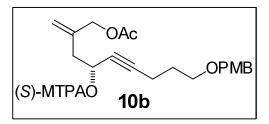
R R OPMB Н OPMB Asymmetric ŌΗ Ö allylation 9 ee^{a)} Yield R Х Reagent Solvent Temp (°C) Entry (%) (%) -CH=CH₂ In⁰, (+)-Ipc₂BCl THF -78 to rt 7 1 Ι 75 In⁰, (+)-Ipc₂BCl 2 -CH=CH₂ Ι THF -98 to rt 35 77 In⁰, (+)-Ipc₂BCl 3 -OTBDPS Ι THF -78 to rt 15 75 TiCl₄,Ti(O*i*-Pr)₄ -OTBDPS -15 to rt 89 4 SnBu₃ CH_2Cl_2 80 (R)-BINOL TiCl₄,Ti(O*i*-Pr)₄ (*R*)-BINOL 5 93 -OAc $SnBu_3$ $CH_2Cl_2 \\$ -15 to rt 80

Table S1. Asymmetric allylation of aldehyde 9


a) ee was determined by HPLC analysis (Daicel CHIRALPAK® OD-H)

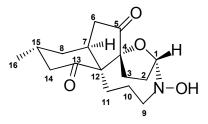
Determination of the absolute configuration of (*R***)-10 (Scheme S1):**

Scheme S1.


(*R*)-MTPA ester of (*R*)-10 (10a)

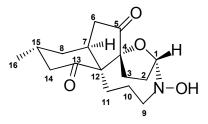
To a solution of (*R*)-10 (14 mg, 0.040 mmol) in CH₂Cl₂ (0.40 mL) were added Et₃N (50 μ L, 0.36 mmol), DMAP (1.0 mg, 8.0 x10⁻³ mmol) and (*S*)-MTPA-Cl (15 mg, 6.0 x10⁻² mmol) at room temperature. After stirring

for 1.5 h at the same temperature, the reaction was quenched with saturated aq NH_4Cl . The layers were separated and the aqueous layer was extracted three times with CH_2Cl_2 . The combined organic extracts were dried over anhydrous Na_2SO_4 , filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography using (hexanes/EtOAc, 6:1) as an eluent to afford **10a** (17 mg, 75%) as a colorless oil: ¹H NMR (400 MHz, CDCl₃); δ 7.55-7.53 (m, 2H), 7.39-7.36 (m, 3H), 7.26-7.23 (m, 2H), 6.88-6.86 (m, 2H), 5.71-5.68 (m, 1H), 5.09 (s, 1H), 4.95 (s, 1H), 4.46-4.45 (m, 2H), 4.41 (s, 2H), 3.80 (s, 3H), 3.58 (s, 3H), 3.49 (t, *J* = 6.2, 2H), 2.58-2.49 (m, 2H), 2.33 (td, *J* = 7.1, 1.8, 2H), 2.07 (s, 3H), 1.81-1.74 (m, 2H).

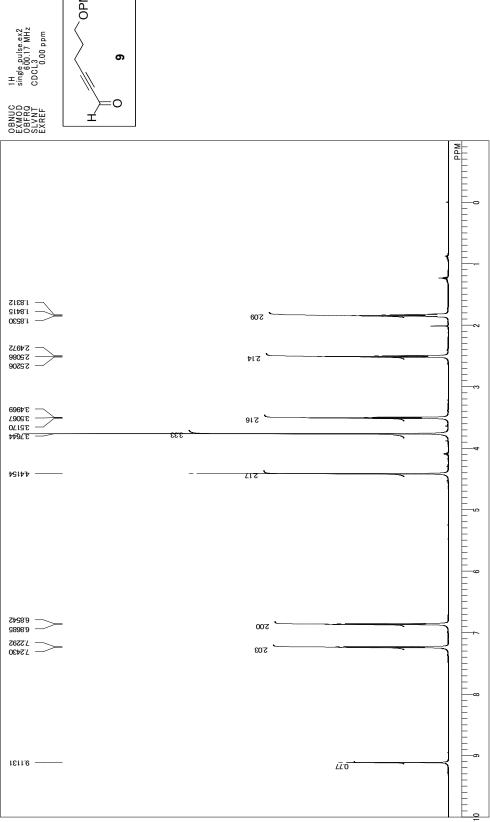

(S)-MTPA ester of (R)-10 (10b)

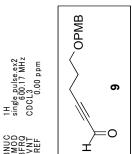
In the same manner as that described for preparation of **10a**, (*R*)-**10** (14 mg, 0.040 mmol) with (*R*)-MTPA-Cl (15 mg, 6.0 x 10^{-2} mmol) afforded **10b** (14 mg, 61 %) as a colorless oil: ¹H NMR (400 MHz, CDCl₃); δ

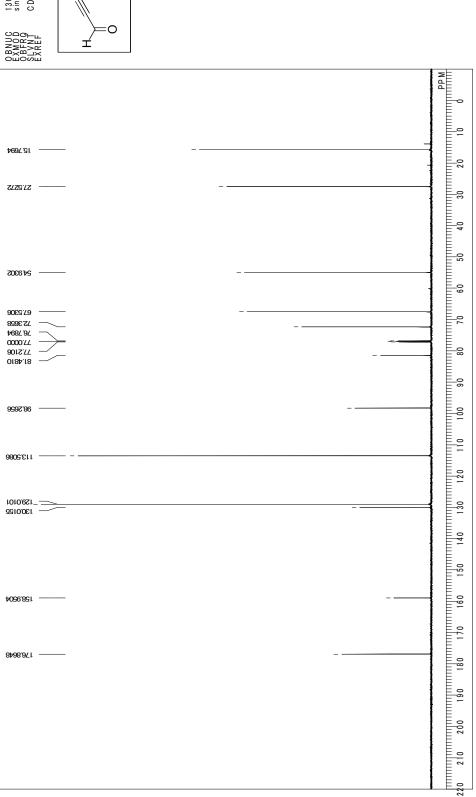
7.53-7.51 (m, 2H), 7.40-7.35 (m, 3H), 7.26-7.23 (m, 2H), 6.89-6.85 (m, 2H), 5.70-5.65 (m, 1H), 5.20 (s, 1H), 5.09 (s, 1H), 4.53 (s, 2H), 4.41 (s, 2H), 3.80 (s, 3H), 3.53 (s, 3H), 3.48 (t, J = 6.2, 2H), 2.65-2.53 (m, 2H), 2.30 (td, J = 7.1, 1.8, 2H), 2.07 (s, 3H), 1.78-1.72 (m, 2H).

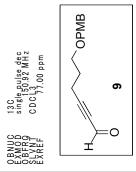

(+)-Sieboldine A ¹³C spectra comparison:

(+)-Sieboldine A

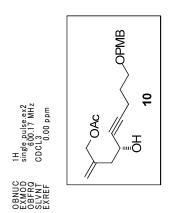

Desition	¹³ C NMR (δ) Natural isolate	¹³ C NMR (δ) Synthetic sample
Position	(CD ₃ OD)	(151 MHz, CD ₃ OD)
1	98.5	98.5
2	31.4	31.4
3	26.1	26.1
4	92.8	92.8
5	212.6	212.7
6	37.2	37.2
7	38.7	38.7
8	31.8	31.8
9	54.5	54.5
10	19.4	19.4
11	28.3	28.3
12	62.3	62.3
13	216.5	216.5
14	47.4	47.6
15	32.5	32.5
16	22.5	22.5

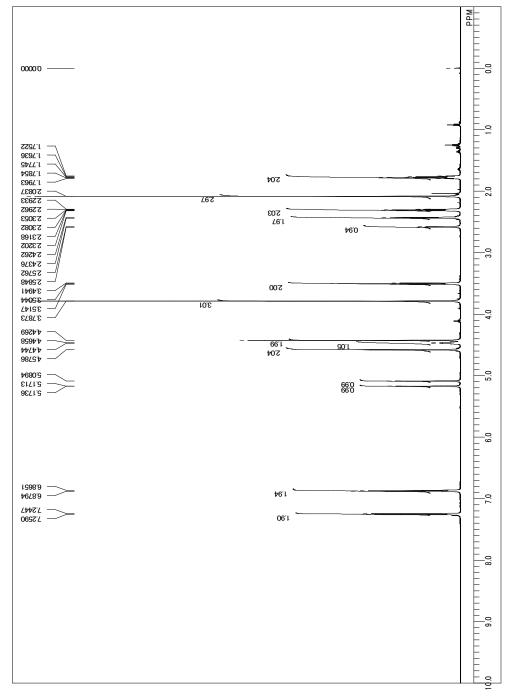

(+)-Sieboldine A ¹H spectra comparison:

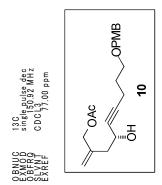



(+)-Sieboldine A

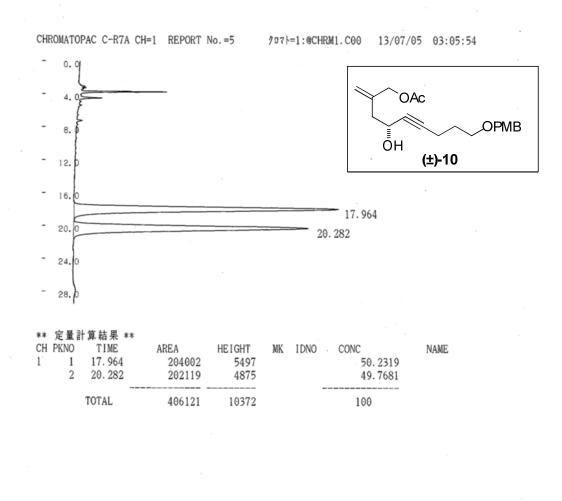
Position	¹ H NMR (δ) Natural isolate (CD ₃ OD)	¹ H NMR (δ) Synthetic sample (600 MHz, CD ₃ OD)
1	4.89 (m, 1H)	4.89-4.87 (m, 1H)
2a	1.98 (m, 1H)	1.98-1.96 (m, 1H)
2b	2.12 (m, 1H)	2.11-2.10 (m, 1H)
3 a	2.08 (m, 1H)	2.08-2.07 (m, 1H)
3b	2.40 (m, 1H)	2.40-2.38 (m, 1H)
6a	1.93 (dd, <i>J</i> = 19.6, 10.9, 1H)	1.92 (dd, <i>J</i> = 19.6, 10.7, 1H)
6b	2.45 (dd, <i>J</i> = 19.6, 9.2, 1H)	2.43 (dd, <i>J</i> = 21.3, 10.7, 1H)
7	3.25 (m, 1H)	3.27-3.22 (m, 1H)
8a	1.76 (m, 1H)	1.76-1.75 (m, 1H)
8b	1.77 (m, 1H)	1.79-1.77 (m, 1H)
9a	2.91 (ddd, <i>J</i> = 14.8, 8.0, 3.7, 1H)	2.90 (ddd, <i>J</i> = 14.8, 7.4, 3.7, 1H)
9b	3.19 (m, 1H)	3.20-3.18 (m, 1H)
10a	1.63 (m, 1H)	1.62-1.60 (m, 1H)
10b	2.57 (m, 1H)	2.57-2.55 (m, 1H)
11a	1.77 (m, 1H)	1.79-1.77 (m, 1H)
11b	2.46 (m, 1H)	2.47-2.45 (m, 1H)
14a	2.03 (m, 1H)	2.03-2.01 (m, 1H)
14b	2.54 (dd, <i>J</i> = 12.7, 12.7, 1H)	2.51 (dd, <i>J</i> = 12.9, 12.5, 1H)
15	2.06 (m, 1H)	2.05-2.04 (m, 1H)
16	1.06 (d, J = 6.2, 3H)	1.05 (d, J = 6.2, 3H)

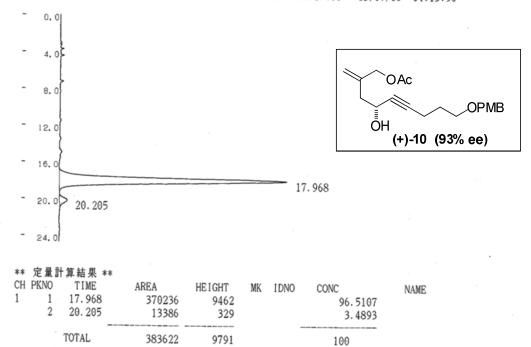


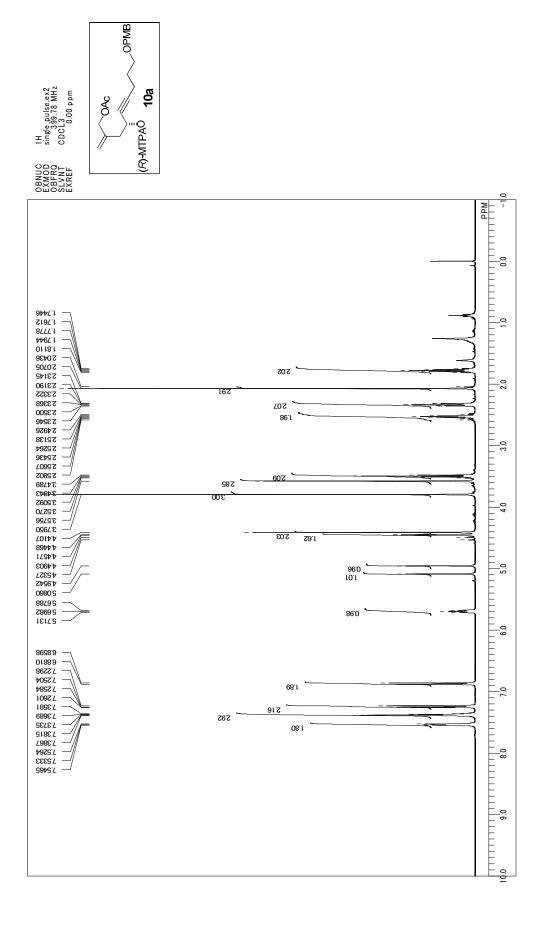


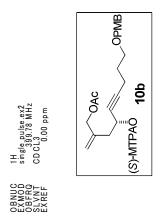


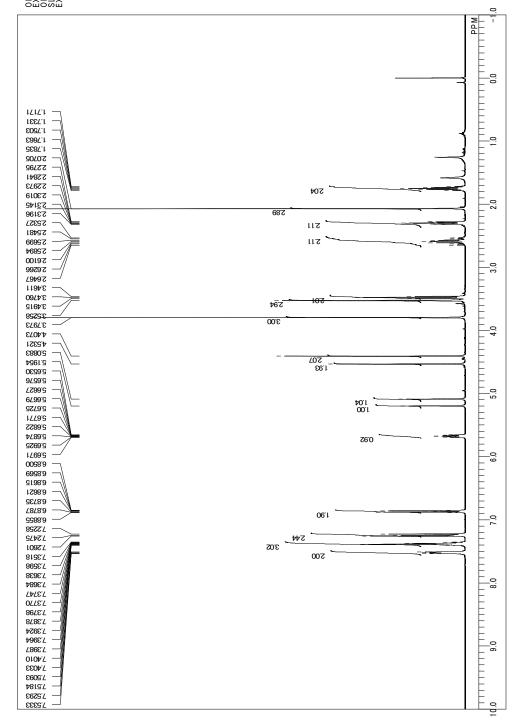
S29



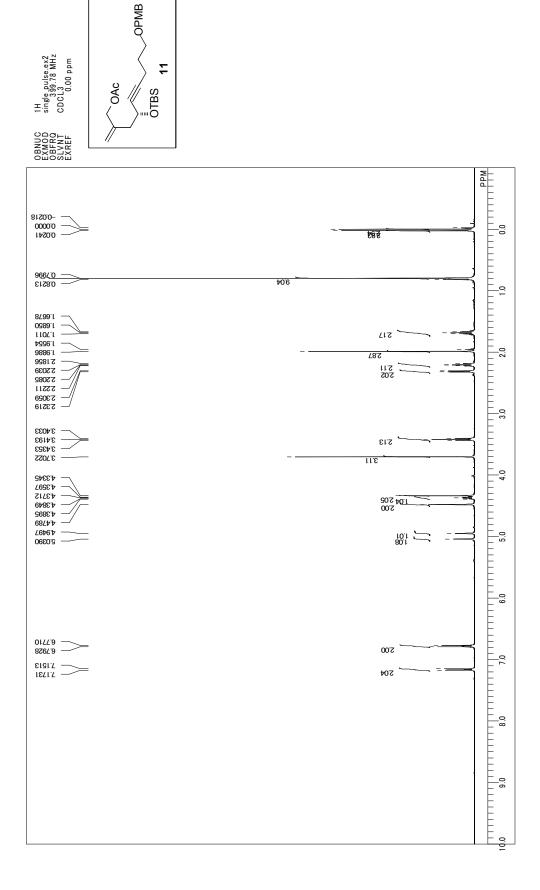


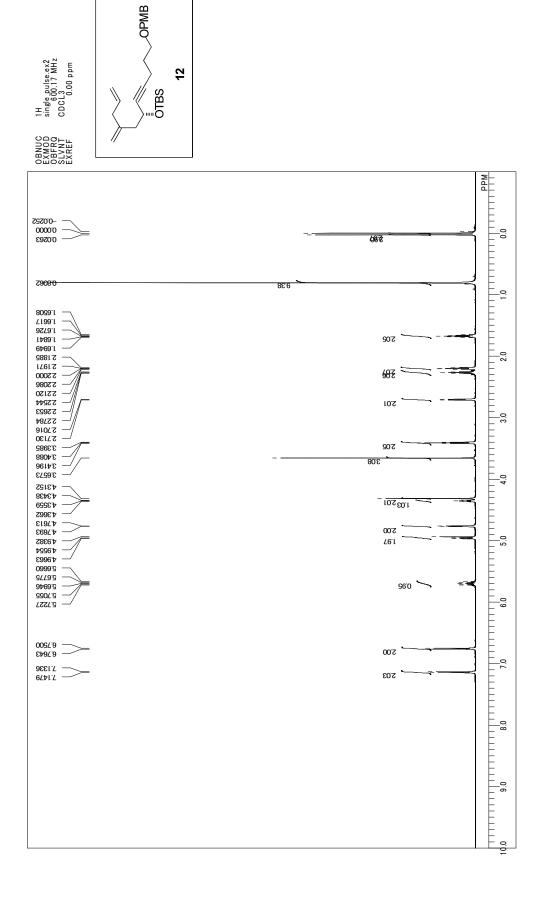

	M d d
	0.0
	10.0
12'3864	 E
P707.02	 20.0
58 2352	 30.0
41.8606	 40.0
	5 0.0
22'083t	 E
7226.09	 0.08
<u>2912'99</u>	 0.0
J63/20t	 02 20
0000/LL	 80.0
8018.08	 0.0
	06 0
	100.0
	110.0
8116G11	
	120.0
E960621	 130.0
1303123	
85974621	 140.0
	150.0
	Eo
9696.831	 160.
	 1 70.0
	E
	180.0
	22 0.0 210.0 200.0 190.0 1
	0.
	200
	10.0

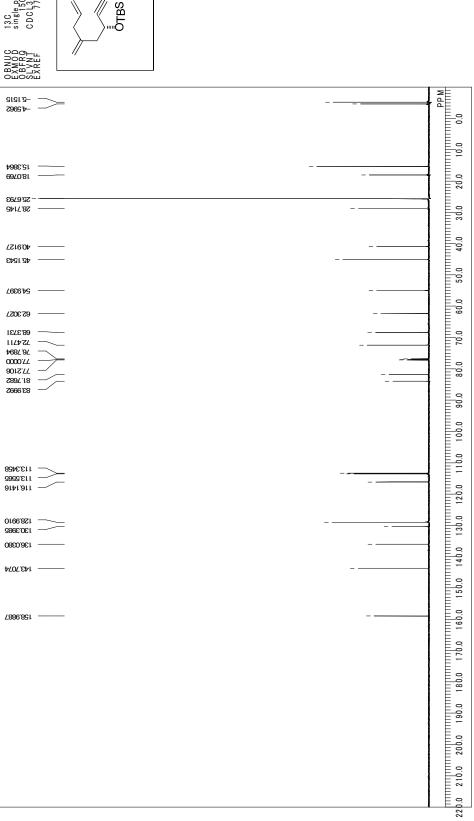

S31

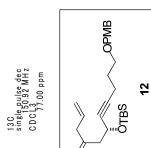


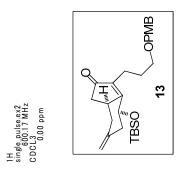
CHROMATOPAC C-R7A CH=1 REPORT No.=7 /pr/l=1:@CHRM1.C00 13/07/05 04:13:56



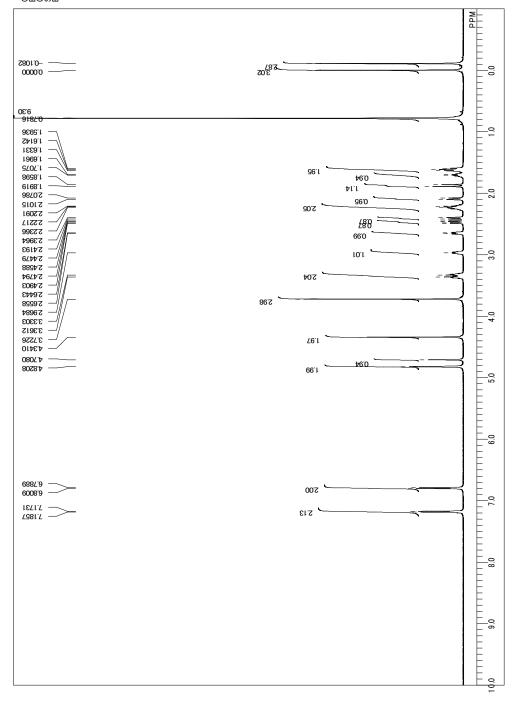


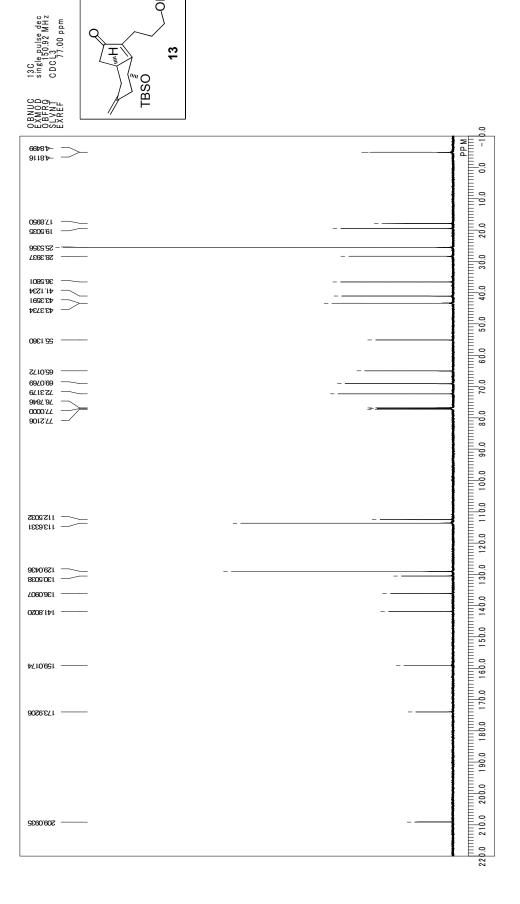


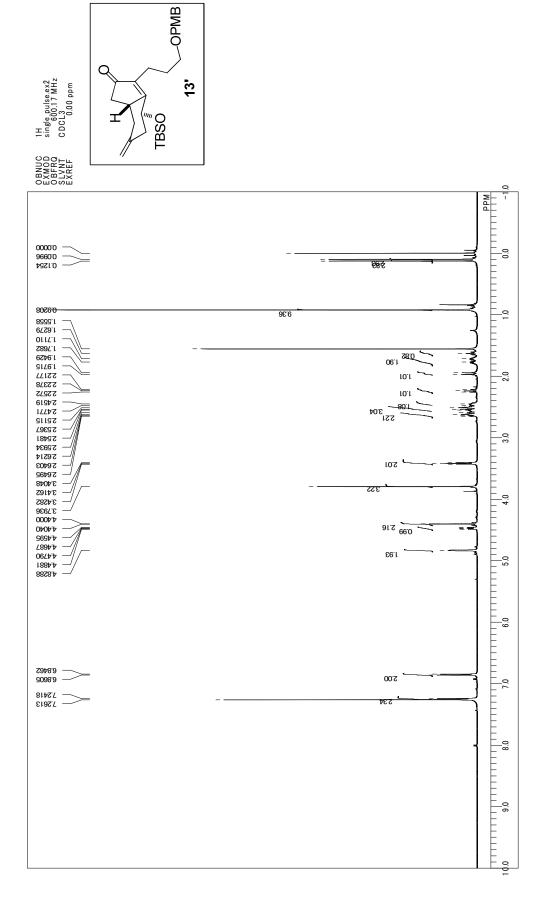

S34

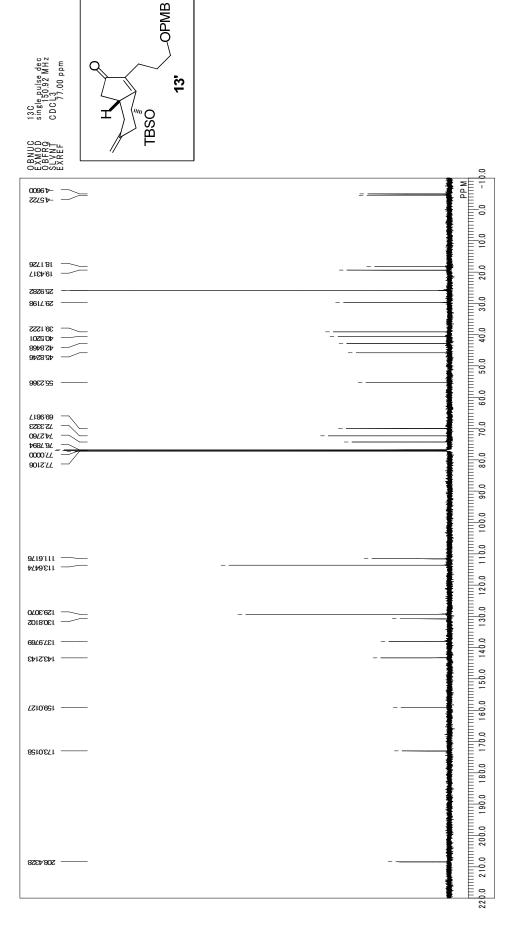


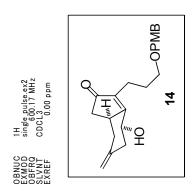
OBNUC 13C EXMOD singlepulse dec EXMOD singlepulse dec SLVNT CDCL3 EXREF 77.00 ppm	OAC OTBS 11			
-21308	=	 		PPPM
16211.21		 		0.0
50,8604				
58 7360	_			40.0 30
				50.0
221203				60.0 50
6570769 6570769 6570769 6872145				
		 	·	
0000.17 17.3146 0000.17				80.0
2000 10				Нитеристични при при при при при при при при при пр
9629711 88997911	_	 		
				15
130,4604				130.0
9088'681	_			140.0
				150.0
1590.621	_	-		160.0
2462.071				1 70.0
				1 8 0.0
				Eq
				200.0
				210.0
				22 0.0 2
				22

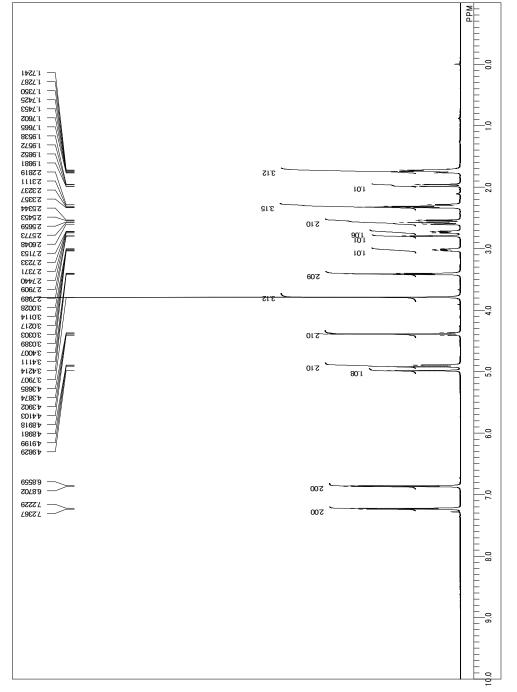


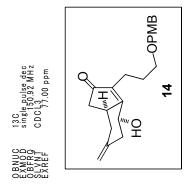


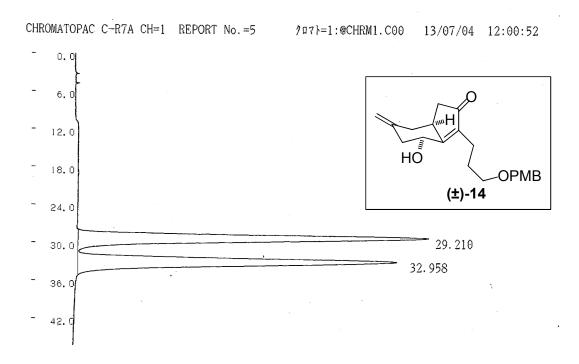

O BNUC E XMOD O BFRQ S L V N T E X R E F

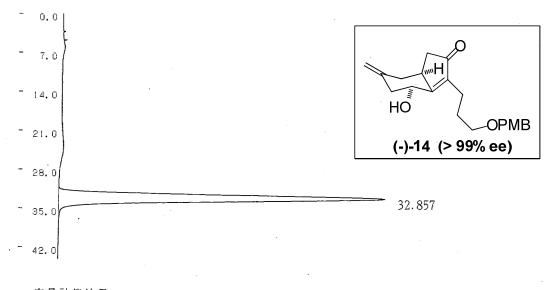


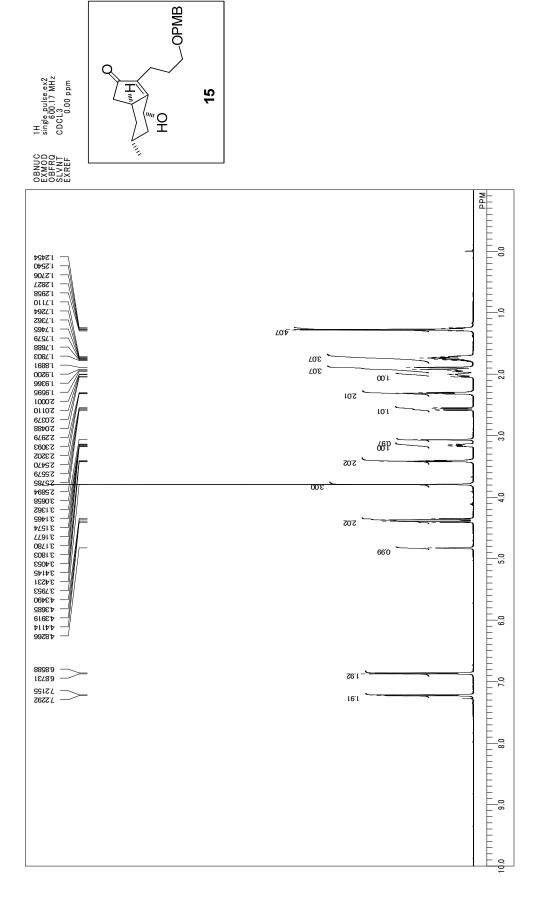


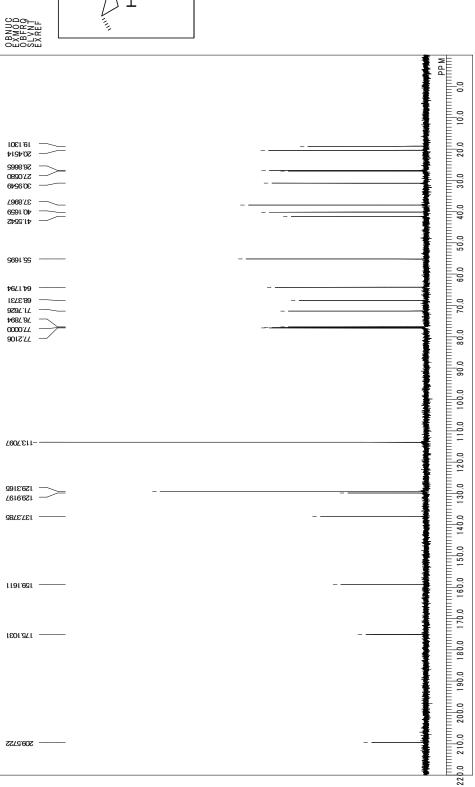

-OPMB

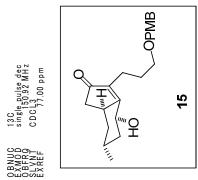


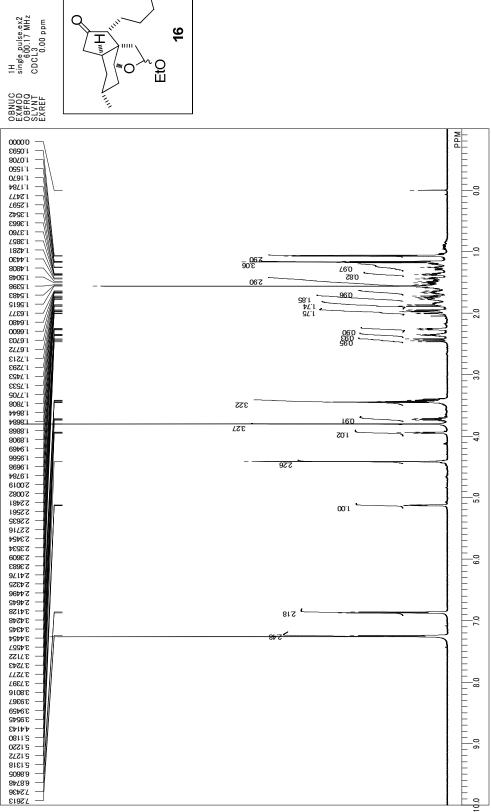


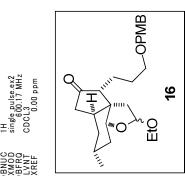

		M dd 0
		<u>_o</u>
	1	20.0 10.0 0.0
		E I
		E
		EI
		Egl
1261.61		
		- 7
		0.0 30.0 2
8078.72		Eol
		<u> </u>
		E °°
ELGL'9E 38' J2J3		
8940.14		Ee
t996'1t		40
45 2308		0.
		<u> </u>
	1	50.
- 22/1315		E I
EE 4040		
		O
		60.
0681,469	-	
96/9/89		Eol
		70.0
	-	
t/68/_'9/		
00001/1		80.0
9012.77 —		80.
		I E~
		E I
		<u> </u>
		06
		0.
		100.0
		E 🗧
		Eq
		110.0
1130018		
		EQ
	1	120.
		1 E - I
		E o.
9102.921		Eoil
1301112		130.
8/19/281		Eq
		140.0
9292.141		E -
		150.0
		20
		E
128'0823		
		160.0
89927271		170.0
		E o.
		180.
		EQ
		190.
		200.0
		~
		F F _
208/7488		210.0
		EE
		Eq
		22 0.0
		22


```
** 定量計算結果 **
```


СН 1-	PKNO 1	TIME 29.21	AREA 456676	HEIGHT 6245	MK	IDNO	CONC 49.945	NAME
	2	32.958	457667	5681			50.054	-
TOTAL		914343	11926		-	100		


CHROMATOPAC C-R7A CH=1 REPORT No.=2 /pr?b=1:@CHRM1.C00 13/07/04 08:57:06




CH PKN	量計算結果 ** ₩0 TIME 1 32.857	AREA 951164	HEIGHT 11653	MK	I DNO	CONC 100	NAME
	TOTAL	951164	11653		 : .	100	-

