A Versatile Method to Determine the Cellular Bioavailability of Small-Molecule Inhibitors

Kevin B. Teuscher, \dagger, \S Min Zhang, \dagger and Haitao Ji $\dagger, \ddagger, \S, *$
\dagger Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902Magnolia Drive, Tampa, Florida 33612-9416, United States.\ddagger Department of Oncologic Sciences, University of South Florida College of Medicine, Tampa,Florida 33612, United States.§ Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States.
*Correspondence to: Dr. Haitao Ji (E-mail: Haitao.Ji@moffitt.org)
Table of Contents
Supplemental Procedures S2
Figure S1 S3-S4
Figure S2 S5-S8
Figure S3 S9
Figure S4 S10
Figure S5 S11
Figure S6 S12
Figure S7 S13
Figure S8 S14-S17
Table S1 S18
Supplementary Reference. S19

Supplemental Procedure.

MTs cell viability assay. MDA-MB-231 were seeded in the 96 -well plates at 4×10^{3} cells/well, maintained overnight at $37^{\circ} \mathrm{C}$, and incubated with $\mathbf{1}$ (TP-472), $\mathbf{2}$ (BAY-299), and $\mathbf{4}$ at various concentrations. Cell viability was monitored after 72 h using a freshly prepared mixture of 1 part phenazine methosulfate (PMS, Sigma) solution ($0.92 \mathrm{mg} / \mathrm{mL}$) and 19 parts 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTs, Promega) solution ($2 \mathrm{mg} / \mathrm{mL}$). Cells were incubated in $10 \mu \mathrm{~L}$ of this solution at $37^{\circ} \mathrm{C}$ for 3 h , and A_{490} was measured. The effect of the compound is expressed as the concentration required to reduce A_{490} by $50 \%\left(\mathrm{IC}_{50}\right)$ relative to DMSO-treated cells. Experiments were performed in triplicate.

The MTs cell viability assay result of $\mathbf{3}$ for triple negative breast cancer MDA-MB-231 cells have previously been reported. ${ }^{24}$

Figure S1. HPLC chromatograms of 1 (TP-472), 2 (BAY-299), 3, and 4 in 5 mL DMEM with fetal bovine serum (FBS) (10% for $\mathbf{1}$ and $\mathbf{2} ; 5 \%$ for $\mathbf{3}$ and $\mathbf{4}$) at the starting time point.

Figure S2. Determination of the calibration curves for 1-4.

Figure S3. Mass spectrometry (MS) data for the HPLC peaks in Figure 3A. (A) pure 1. (B) MDA-MB-231 cell samples after the treatment with $\mathbf{1}$ for 24 h .

Figure S4. Mass spectrometry (MS) data for the HPLC peaks in Figure 3B. (A) pure 2. (B) MDA-MB-231 cell samples after the treatment with $\mathbf{2}$ for 24 h .

Figure S5. Mass spectrometry (MS) data for the HPLC peaks in Figure 3C. (A) pure 3. (B) MDA-MB-231 cell samples after the treatment with $\mathbf{3}$ for 24 h .

A

Figure S6. Mass spectrometry (MS) data for the HPLC peaks in Figure 3D. (A) pure 4. (B) MDA-MB-231 cell samples after the treatment with $\mathbf{4}$ for 24 h .

Figure S7. Time-dependence of the percent of the β-catenin/BCL9 inhibitors remaining the DMEM medium. Inhibitors 3 (A) and 4 (B) were incubated over a period of 72 h with the initial concentration of 2 and $20 \mu \mathrm{M}$. Each set of data is expressed as mean \pm standard deviation (SD) $(\mathrm{n}=3)$.

Figure S8. Determination of the calibration curves for 5-8. (A) Areas under curve (AUCs) of the UV absorption and the different concentrations of pure 5 for HPLC analyses. The calibration curve and the calibration equation of 5. (B) Areas under curve (AUCs) of the UV absorption and the different concentrations of pure 6 for HPLC analyses. The calibration curve and the calibration equation of 6 . (C) Areas under curve (AUCs) of the UV absorption and the different concentrations of pure 7 for HPLC analyses. The calibration curve and the calibration equation of 7. (D) Areas under curve (AUCs) of the UV absorption and the different concentrations of pure $\mathbf{8}$ for HPLC analyses. The calibration curve and the calibration equation of $\mathbf{8}$.

Table S1. Calculated physicochemical properties of 1-8.
 1

2

6

3

7

8
Physical Properties

Compound	Physical Properties							
	$\mathrm{MW}^{\text {a }}$	$\mathrm{HBD}^{\text {b }}$	$\mathrm{HBA}^{\text {c }}$	tPSA ${ }^{\text {d }}$	rotatable bond	charge	cLogP	$\log \mathrm{D}_{\mathrm{pH}=7.0}{ }^{\text {e }}$
1	333	1	3	61.8	6	0	2.48	not calculated
2	429	1	4	81.2	8	0	2.55	not calculated
3	573	3	5	71.6	8	+2	5.08	1.21
4	563	2	5	77.2	6	+2	3.96	0.63
5	523	3	5	88.0	12	0	4.14	1.70
6	431	1	1	29.1	4	0	7.25	7.17
7	297	1	7	99.2	4	-1	2.98	0.34
8	325	0	7	88.2	6	0	3.94	3.96

[^0]Supplementary Reference:
(41) Liao, C.; Nicklaus, M. C. Comparison of nine programs predicting $p \mathrm{~K}_{\mathrm{a}}$ values of pharmaceutical substances. J. Chem. Inf. Model. 2009, 49, 2801-2812.

[^0]: ${ }^{\text {a }}$ molecular weight.
 ${ }^{\mathrm{b}}$ number of hydrogen bond acceptors.
 ${ }^{\mathrm{c}}$ number of hydrogen bond donors.
 ${ }^{\text {d }}$ topological polar surface area $\left(\AA^{2}\right)$.
 ${ }^{\mathrm{e}} \log \mathrm{D}$ was calculated by $\mathrm{ACD} / \log \mathrm{D} .{ }^{41}$

