A Versatile Method to Determine the Cellular Bioavailability of Small-Molecule Inhibitors Kevin B. Teuscher,†, § Min Zhang,† and Haitao Ji†, ‡,§,* - † Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612–9416, United States. - ‡ Department of Oncologic Sciences, University of South Florida College of Medicine, Tampa, Florida 33612, United States. - § Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States. ## **Table of Contents** | Supplemental Procedures | S2 | |-------------------------|---------| | Figure S1 | S3–S4 | | Figure S2 | | | Figure S3 | | | Figure S4 | | | Figure S5 | S11 | | Figure S6 | | | Figure S7 | S13 | | Figure S8 | S14–S17 | | Table S1 | S18 | | Supplementary Reference | S19 | ^{*}Correspondence to: Dr. Haitao Ji (E-mail: Haitao.Ji@moffitt.org) ## **Supplemental Procedure.** MTs cell viability assay. MDA-MB-231 were seeded in the 96-well plates at 4×10^3 cells/well, maintained overnight at 37 °C, and incubated with 1 (TP-472), 2 (BAY-299), and 4 at various concentrations. Cell viability was monitored after 72 h using a freshly prepared mixture of 1 part phenazine methosulfate (PMS, Sigma) solution (0.92 mg/mL) and 19 parts 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTs, Promega) solution (2 mg/mL). Cells were incubated in 10 μ L of this solution at 37 °C for 3 h, and A₄₉₀ was measured. The effect of the compound is expressed as the concentration required to reduce A₄₉₀ by 50% (IC₅₀) relative to DMSO-treated cells. Experiments were performed in triplicate. The MTs cell viability assay result of **3** for triple negative breast cancer MDA-MB-231 cells have previously been reported.²⁴ **Figure S1.** HPLC chromatograms of 1 (TP-472), 2 (BAY-299), **3**, and **4** in 5 mL DMEM with fetal bovine serum (FBS) (10% for **1** and **2**; 5% for **3** and **4**) at the starting time point. | A | HPLC Injection (20 μ L) | Concentration of 1 (mol/L) | AUC (mAU) | |---|-----------------------------|-----------------------------------|------------------------| | | 1 | 7.67 x 10 ⁻⁴ | 1.51 x 10 ⁴ | | | 2 | | 1.51 x 10 ⁴ | | | 3 | | 1.50 x 10 ⁴ | | | 1 | 3.84 x 10 ⁻⁴ | 7.63×10^3 | | | 2 | | 7.63×10^3 | | | 3 | | 7.62×10^3 | | | 1 | 1.92 x 10 ⁻⁴ | 3.74×10^3 | | | 2 | | 3.74×10^3 | | | 3 | | 3.71×10^3 | | | 1 | 9.59 x 10 ⁻⁵ | 1.84 x 10 ³ | | | 2 | | 1.84 x 10 ³ | | | 3 | | 1.84×10^3 | | | 1 | 4.79 x 10 ⁻⁵ | 9.47 x 10 ² | | | 2 | | 9.55×10^{2} | | | 3 | | 9.45×10^{2} | | | 1 | 1.20 x 10 ⁻⁵ | 2.50 x 10 ² | | | 2 | | 2.49 x 10 ² | | | 3 | | 2.48 x 10 ² | | | 1 | 3.00 x 10 ⁻⁶ | 7.82 x 10 ¹ | | | 2 | | 6.64 x 10 ¹ | | | 3 | | 1.85 x 10 ¹ | | В | HPLC Injection (20 μ L) | Concentration of 2 (mol/L) | AUC (mAU) | |---|-----------------------------|----------------------------|-----------------------| | | 1 | 5.38 x 10 ⁻⁴ | 6.21x 10 ³ | | | 2 | | 6.21x 10 ³ | | | 3 | | 6.13x 10 ³ | | | 1 | 2.69 x 10 ⁻⁴ | 3.18x 10 ³ | | | 2 | | 3.18x 10 ³ | | | 3 | | $3.18x 10^3$ | | | 1 | 1.34 x 10 ⁻⁴ | 1.58x 10 ³ | | | 2 | | 1.60x 10 ³ | | | 3 | | 1.58x 10 ³ | | | 1 | 6.72×10^{-5} | 7.96x 10 ² | | | 2 | | 7.95x 10 ² | | | 3 | | 7.96x 10 ² | | | 1 | 3.36 x 10 ^{−5} | 3.71x 10 ² | | | 2 | | 3.68x 10 ² | | | 3 | | 3.71x 10 ² | | | 1 | 8.40 x 10 ⁻⁶ | 8.88x 10 ¹ | | | 2 | | 8.88x 10 ¹ | | | 3 | | 8.88x 10 ¹ | | | 1 | 2.10 x 10 ⁻⁶ | 2.09x 10 ¹ | | | 2 | | 2.08x 10 ¹ | | | 3 | | 2.03x 10 ¹ | | _ | | | | | | | | | | | | | | |-----------|------------------------|----------|--|-------------|-------------------|----------|----------|------------------------|------------------------|-----------------|----------|--|--| | С | HPLC Inject
(10 µL) | | C | Conce
(ı | ntratio
mol/L) | | } | Αl | JC (m | AU) | | | | | | 1 | | | 1.7 | '2 x 10 | -3 | | 1 | .60 x | 10 ⁴ | | | | | | 2 | | | | | | | 1 | .70 x | 10 ⁴ | | | | | | 3 | | | | | | | 1 | .50 x | 10 ⁴ | | | | | | 1 | | | 8.6 | 2 x 10 | -4 | | 6 | 6.37 x | 10 ³ | | | | | | 2 | | | | | | | 6.76×10^3 | | | | | | | | 3 | | | | | | | | 7.54 x | 10 ³ | | | | | | 1 | | 4.31 x 10 ⁻⁴ | | | | | 2 | 2.92 x | 10 ³ | | | | | | 2 | | | | | | | 2 | 2.71 x | 10 ³ | | | | | | 3 | | | | | | | 2.94×10^3 | | | | | | | | 1 | | 2.15 x 10 ⁻⁴ | | | | 1 | 1.03×10^3 | | | | | | | | 2 | | | | | | | | 9.55×10^{2} | | | | | | | 3 | | | | | | | | 9.10 x 10 ² | | | | | | | 1 | | 1.08 x 10 ^{−4} | | | | | 3.15 x 10 ² | | | | | | | _ | 2 | | | | | | | 2.25 x 10 ² | | | | | | | | 1.80E+04 | | Calibration Curve
y = 1E+07x - 1228.6 | | | | | | | • | | | | | | 1.60E+04 | | | | | | | | | Ž | | | | | | 1.40E+04 | v = | | | | | | | | | | | | | | 1.20E+04 | | | 0.9918 | | | | | | | | | | | ĵ | 1.00E+04 | | | | | | | | | | | | | | AUC (mAU) | 8.00E+03 | | | | • | • | | | | | | | | | S | 6.00E+03 | | | | /\$ | | | | | | | | | | AL | 4.00E+03 | | | / | | | | | | | | | | | | 2.00E+03 | . / | * | | | | | | | | | | | | | 0.00E+00 | ** | | | | | | | | | | | | | | -2.00E+03 H | 2.00E-04 | 4.00E-04 | 6.00E-04 | 8.00E-04 | 1.00E-03 | 1.20E-03 | 1.40E-03 | 1.60E-03 | 1.80E-03 | 2.00E-03 | | | **3** (mol/L) Figure S2. Determination of the calibration curves for 1–4. Figure S3. Mass spectrometry (MS) data for the HPLC peaks in Figure 3A. (A) pure 1. (B) MDA-MB-231 cell samples after the treatment with 1 for 24 h. **Figure S4.** Mass spectrometry (MS) data for the HPLC peaks in Figure 3B. (A) pure **2**. (B) MDA-MB-231 cell samples after the treatment with **2** for 24 h. **Figure S5.** Mass spectrometry (MS) data for the HPLC peaks in Figure 3C. (A) pure **3**. (B) MDA-MB-231 cell samples after the treatment with **3** for 24 h. **Figure S6.** Mass spectrometry (MS) data for the HPLC peaks in Figure 3D. (A) pure 4. (B) MDA-MB-231 cell samples after the treatment with 4 for 24 h. **Figure S7.** Time-dependence of the percent of the β -catenin/BCL9 inhibitors remaining the DMEM medium. Inhibitors **3** (A) and **4** (B) were incubated over a period of 72 h with the initial concentration of 2 and 20 μ M. Each set of data is expressed as mean \pm standard deviation (SD) (n = 3). | Α | HPLC Injection (10 μL) | Concentration of 5 (mol/L) | AUC (mAU) | |---|------------------------|-----------------------------------|------------------------| | | 1 | 1.92 x 10 ⁻³ | 3.78 x 10 ⁴ | | | 2 | | 3.50 x 10 ⁴ | | | 3 | | 3.72 x 10 ⁴ | | | 1 | 9.59 x 10 ⁻⁴ | 2.01 x 10 ⁴ | | | 2 | | 1.92 x 10 ⁴ | | | 3 | | 1.90 x 10 ⁴ | | | 1 | 4.79 x 10 ⁻⁴ | 9.82×10^3 | | | 2 | | 9.52×10^3 | | | 3 | | 9.69×10^{3} | | | 1 | 2.40 x 10 ⁻⁴ | 4.97×10^3 | | | 2 | | 5.03×10^3 | | | 3 | | 5.02 x 10 ³ | | | 1 | 1.20 x 10 ⁻⁴ | 2.32×10^3 | | | 2 | | 2.33 x 10 ³ | | | 3 | | 2.32×10^3 | | | 1 | 5.99 x 10 ⁻⁵ | 1.23 x 10 ³ | | | 2 | | 1.24 x 10 ³ | | _ | 3 | | 1.14 x 10 ³ | | В | LC Injection (10 µL) | Concentration of 6 (mol/L) | AUC (mAU) | |---|----------------------|----------------------------|------------------------| | | 1 | 2.29 x 10 ⁻³ | 3.52 x 10 ⁴ | | | 2 | | 3.56 x 10 ⁴ | | | 1 | 1.15 x 10⁻³ | 1.94 x 10 ⁴ | | | 2 | | 1.79 x 10 ⁴ | | | 3 | | 1.92 x 10 ⁴ | | | 1 | 5.74 x 10 ⁻⁴ | 9.74×10^3 | | | 2 | | 9.22×10^3 | | | 3 | | 9.26×10^3 | | | 1 | 2.87 x 10 ⁻⁴ | 4.73×10^3 | | | 2 | | 4.71×10^3 | | | 3 | | 4.77×10^3 | | | 1 | 1.43 x 10 ^{−4} | 2.28 x 10 ³ | | | 2 | | 2.34×10^3 | | | 3 | | 2.37 x 10 ³ | | | 1 | 7.17 x 10 ⁻⁵ | 1.13 x 10 ³ | | | 2 | | 1.13 x 10 ³ | | | 3 | | 1.09 x 10 ³ | | | 1 | 3.59 x 10 ⁻⁵ | 5.47 x 10 ² | | | 2 | | 5.60 x 10 ² | | | 3 | | 5.43 x 10 ² | | C HPLC Injection (10 μ L) | Concentration of 7 (mol/L) | AUC (mAU) | |-------------------------------|----------------------------|------------------------| | 1 | 3.04 x 10 ⁻³ | 2.77 x 10 ⁴ | | 2 | | 2.82 x 10 ⁴ | | 1 | 1.52 x 10⁻³ | 1.51 x 10 ⁴ | | 2 | | 1.43 x 10 ⁴ | | 3 | | 1.52 x 10 ⁴ | | 1 | 7.61 x 10 ⁻⁴ | 7.71×10^3 | | 2 | | 7.46×10^3 | | 3 | | 7.59×10^3 | | 1 | 3.80 x 10 ⁻⁴ | 3.71×10^3 | | 2 | | 3.73×10^3 | | 3 | | 3.78×10^3 | | 1 | 1.90 x 10 ^{−4} | 1.76×10^3 | | 2 | | 1.80×10^3 | | 3 | | 1.84 x 10 ³ | | 1 | 9.51 x 10 ⁻⁵ | 8.82×10^{2} | | 2 | | 8.77×10^{2} | | 3 | | 8.91 x 10 ² | | D | HPLC Inject
(10 μL) | | AUC (mAU) | | | | |-----------|------------------------|--|--|--|--|--| | _ | 1 | 3.14 x 10 ⁻³ | 2.22 x 10 ⁴ | | | | | | 2 | 511111 | 2.17 x 10 ⁴ | | | | | | 3 | | 2.28 x 10 ⁴ | | | | | | 1 | 1.57 x 10 ⁻³ | 1.17 x 10 ⁴ | | | | | | 2 | | 1.12 x 10 ⁴ | | | | | | 3 | | 1.05 x 10 ⁴ | | | | | | 1 | 7.85 x 10 ⁻⁴ | 5.61×10^3 | | | | | | 2 | | 5.54×10^3 | | | | | | 3 | | 5.92×10^3 | | | | | | 1 | 3.93 x 10 ⁻⁴ | 2.89×10^{3} | | | | | | 2 | | 2.87×10^3 | | | | | | 3 | | 2.97×10^{3} | | | | | | 1 | 1.96 x 10 ^{−4} | 1.42×10^3 | | | | | | 2 | | 1.37×10^3 | | | | | | 3 | | 1.46×10^3 | | | | | | 1 | 9.82 x 10 ^{−5} | 7.30×10^3 | | | | | | 2 | | 9.49×10^3 | | | | | _ | 3 | | 7.14 x 10 ³ | | | | | | 2.40E+04] | Calibration Curve | , | | | | | | 2.10E+04 | | | | | | | | 1.80E+04 | y = 7E + 06x + 107.28
$R^2 = 0.99857$ | | | | | | S | 1.50E+04 | | | | | | | AUC (mAU) | | | | | | | | Ö | 1.20E+04 - | | | | | | | Ą | 9.00E+03 - | | | | | | | | 6.00E+03 | | | | | | | | 3.00E+03 | | | | | | | | 0.00E+00 | • • | 0 # 0 # # 0 | | | | | | J | 0.0002
0.0006
0.0006
0.0001
0.0012
0.0016
0.0016 | 0.0024
0.0024
0.0026
0.0028
0.0032 | | | | | | | 8 (mol/L) | | | | | **Figure S8.** Determination of the calibration curves for 5–8. (A) Areas under curve (AUCs) of the UV absorption and the different concentrations of pure 5 for HPLC analyses. The calibration curve and the calibration equation of 5. (B) Areas under curve (AUCs) of the UV absorption and the different concentrations of pure 6 for HPLC analyses. The calibration curve and the calibration equation of 6. (C) Areas under curve (AUCs) of the UV absorption and the different concentrations of pure 7 for HPLC analyses. The calibration curve and the calibration equation of 7. (D) Areas under curve (AUCs) of the UV absorption and the different concentrations of pure 8 for HPLC analyses. The calibration curve and the calibration equation of 8. Table S1. Calculated physicochemical properties of 1–8. | | Physical Properties | | | | | | | | |----------|---------------------|---------|------------------|-------------------|----------------|--------|-------|----------------------| | Compound | MW^a | HBD^b | HBA ^c | tPSA ^d | rotatable bond | charge | cLogP | $log D_{pH=7.0}^{e}$ | | 1 | 333 | 1 | 3 | 61.8 | 6 | 0 | 2.48 | not calculated | | 2 | 429 | 1 | 4 | 81.2 | 8 | 0 | 2.55 | not calculated | | 3 | 573 | 3 | 5 | 71.6 | 8 | +2 | 5.08 | 1.21 | | 4 | 563 | 2 | 5 | 77.2 | 6 | +2 | 3.96 | 0.63 | | 5 | 523 | 3 | 5 | 88.0 | 12 | 0 | 4.14 | 1.70 | | 6 | 431 | 1 | 1 | 29.1 | 4 | 0 | 7.25 | 7.17 | | 7 | 297 | 1 | 7 | 99.2 | 4 | -1 | 2.98 | 0.34 | | 8 | 325 | 0 | 7 | 88.2 | 6 | 0 | 3.94 | 3.96 | a molecular weight. b number of hydrogen bond acceptors. c number of hydrogen bond donors. d topological polar surface area (Ų). e logD was calculated by ACD/logD. ## **Supplementary Reference:** (41) Liao, C.; Nicklaus, M. C. Comparison of nine programs predicting pK_a values of pharmaceutical substances. *J. Chem. Inf. Model.* **2009**, *49*, 2801–2812.