Enantioselective Syntheses of Furan Atropisomers by an Oxidative Central-to-Axial Chirality Conversion Strategy

Vivek S. Raut, Marion Jean, Nicolas Vanthuyne, Christian Roussel, Thierry Constantieux, Cyril Bressy, Xavier Bugaut, Damien Bonne, and Jean Rodriguez

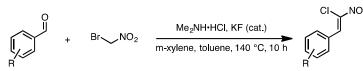
SUPPORTING INFORMATION

1.	General Information	S2
2.	General procedure for the preparation of α -chloronitroalkenes	S3
3.	General procedure for the enantioselective synthesis of dihydrofurans 3a-e	S4
4.	General procedure for the oxidation of dihydrofuran 3a-e to furan atropisomers 4a-e	S8
5.	General procedure for the enantioselective synthesis of dihydrofurans 10a-10m	S11
6.	General procedure for the oxidation of dihydrofuran 9a-m to furan atropisomers 10a-m	S19
7.	Enantiomerisation barrier determination	S26
8.	¹ H and ¹³ C NMR spectra	45

1. General Information

Reactions were run under argon atmosphere in oven-dried glassware. Unless specified, commercial reagents and solvents were used as received. Commercially available catalysts were purchased from Sigma-Aldrich. CHCl₃ was dried using a M-Braun SPS- 800 system.

Analytical thin layer chromatography (TLC) was performed on silica gel 60 F254 aluminum plates (Macherey-Nagel) containing a 254 nm fluorescent indicator. TLC plates were visualized by exposure to short wave ultraviolet light (254 nm) and further visualization was achieved by staining KMnO₄ and heating by a hot air gun. Flash column chromatography was performed using silica gel (35–70 μ m, 60 Å, Acros). Organic extracts were dried over anhydrous Na₂SO₄ or MgSO₄.


Proton nuclear magnetic resonance (¹H NMR) spectra were recorded with a Bruker AV 300, AV 400, AV 500 or AV 600 MHz spectrometer. Proton chemical shifts are reported in parts per million (δ scale), and are referenced using residual protium in the NMR solvent (CDCl₃: δ 7.26 (CHCl₃)). Data are reported as follows: chemical shift (multiplicity (s = singlet, br s = broad singlet, d = doublet, t = triplet, q = quadruplet, quint = quintuplet, sept = septuplet, m = multiplet), coupling constant(s) (Hz), integration). Carbon-13 nuclear magnetic resonance (¹³C NMR) spectra were recorded with Bruker AV 300, AV 400, AV 500 or AV 600 MHz spectrometers. Carbon chemical shifts are reported in parts per million (δ scale), and are referenced using the carbon resonances of the solvent (δ 77.16 (CHCl₃)). Data are reported as follows: chemical shift (CHn where n is the number of hydrogen atoms linked to the carbon atom).

HPLC analyses for the determination of enantiomeric excesses were performed on a Merck-Hitachi system equipped with Chiralpak AZ-H, Chiralpak IA, Chiralpak IB, Chiralpak IC, Chiralpak ID, Chiralpak IE, Chiralpak IF, Lux-Cellulose-2 and Lux- Cellulose-4.

Optical Rotations were recorded on an Anton Paar MCP 200 Polarimeter at 589 nm and 25 °C and specific rotations are reported as follows: specific rotation (concentration in grams/100 mL of solution, solvent).

High resolution mass spectra (HRMS) were recorded on a Waters Synapt G2 HDMS apparatus using a positive electrospray (ESI) ionization source.

General 2. procedure for the preparation of αchloronitroalkenes

All α -chloronitroalkenes were prepared according to the literature known procedure¹ slight modification. Substituted benzaldehyde (16.1 mmol. 1.0 equiv), with bromonitromethane (4.5 g, 32.2 mmol, 2.0 equiv), dimethylamine hydrochloride (11.82 g, 144.9 mmol, 9.0 equiv), potassium fluoride (0.14 g, 2.4 mmol, 0.15 equiv), toluene (15 mL) and m-xylenes (45 mL) were combined in a 250 mL round bottomed flask and connected to a Dean- Stark trap. The mixture was heated at 140 °C with azeotropic removal of water for 10 hours. The reaction was cool down up to room temperature and saturated sodium bisulfite (NaHSO₃, 20 mL) was poured in it. The reaction mixture was vigorous stirred before being partitioned between aqueous and organic layer. After separation of organic layer, the aqueous layer was extracted three times with dichloromethane. The combined organics layers were dried over anhydrous Na₂SO₄ and concentrated to afford a brown oil. The oily residue was subsequently purified on a silica column using ethyl acetate/hexane mixture to produce the product. The corresponding bromonitroalkene is often isolated (5-10 %) along with the desired product, which can be used as such in the domino Michael/O-alkylation reaction. Products 2c (R = 2-Cl),¹ 2e (R = CO₂Me),² 2f (R = 2-NO₂),¹ and 2j (R = 2-Me)¹ have been synthesized previously using the described procedure.

(Z)-1-(2-chloro-2-nitrovinyl)-2-methoxynaphthalene (2a).

This compound was isolated as a pale yellow solid (3,6 g, 85%); mp = 66-67 °C; $\mathbf{R}f = 0.50$ (ethyl acetate/petroleum ether 1:4); ¹H NMR (400 MHz, CDCl₃) δ 8.72 (1H, s, CH), 7.98 (1H, d, J = 9.1 Hz, ArH), 7.85 (1H, d, J = 8.2 Hz, ArH), 7.63 (1H, d, J = 8.7 Hz, ArH), 7.54 (1H, ddd, J = 8,7, 6.7, 1.3 Hz, ArH), 7.42 (1H, ddd, J = 8,2, 6.7, 1.3 Hz, ArH), 7.32 (1H, d, J = 9.1 Hz, ArH), 4,01

(3H, s, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 155.5, 141.7, 132.9, 131.1, 129.3, 128.9, 128.8, 127.9, 124.5, 124.0, 112.8, 112.7, 56.4. **HRMS** (ESI+): $[M+NH_4H]^+$ calcd for $C_{13}H_{14}ClN_2O_3^+$ 281.0687, found 281.0695.

(Z)-1-bromo-2-(2-chloro-2-nitrovinyl)benzene (2b).

This compound was isolated as a pale yellow solid (3,2 g, 75%); mp = 50-51 °C; NO₂ $\mathbf{R}f = 0.75$ (ethyl acetate/petroleum ether 1:9); ¹H NMR (400 MHz, CDCl₃) δ 8.62 (1H, s, CH), 7.90 (1H, dd, J = 7.9, 1.8 Hz, ArH), 7.71 (1H, dd, J = 7.9, 1.4 Hz, ArH), 7.44 (1H, ddd, *J* = 7.7, 7.7, 1.4 Hz, ArH), 7.35 (1H, ddd, *J* = 7.7, 7.7, 1.6 Hz, ArH). ¹³C NMR (100 MHz, CDCl₃) δ 139.9, 136.1, 135.6, 132.6, 130.9, 130.7, 127.8, 126.3. **HRMS** (ESI+): $[M+Ag]^+$ calcd for C₈H₅BrClNO₂Ag⁺ 367.8238, found

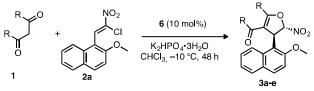
367.8239.

(Z)-1-(2-chloro-2-nitrovinyl)-2-iodobenzene (2d).

This compound was isolated as a viscous yellow oil (4.0 g, 80%); $\mathbf{R}f = 0.65$ (ethyl acetate/petroleum ether 1:9); ¹H NMR (400 MHz, CDCl₃) δ 8.48 (1H, s, CH), 7.98 (1H, dd, J = 8.0, 1.1 Hz, ArH), 7.80 (1H, dd, J = 8.0, 1.7 Hz, ArH), 7.48 (1H, ddd, J = 8.0, 7.3, 1.1 Hz, ArH), 7.17 (1H, ddd, J = 8.0, 7.3, 1.7 Hz, ArH). ¹³C NMR (100 MHz, CDCl₃) δ 140.3, 140.1, 135.3, 134.2, 132.4, 130.4, 128.6, 101.6. HRMS

 $(ESI+): [M+Ag]^+$ calcd for $C_8H_5NO_2IClAg^+$ 415.8099, found 415.8110.

(Z)-1-(2-chloro-2-nitrovinyl)-2-(trifluoromethyl)benzene (2h).

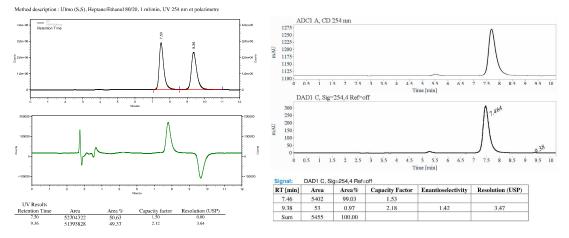

This compound was isolated as a pale yellow oil (3.04 g, 69%); $\mathbf{Rf} = 0.70$ (ethyl acetate/petroleum ether 1:9); ¹H NMR (300 MHz, CDCl₃) δ 8.59 (s, 1H), 7.82 (dd, CF₃ J = 13.7, 7.8 Hz, 2H), 7.69 (t, J = 7.4 Hz, 1H), 7.60 (t, J = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ δ 141.0, 134.3, 132.3, 130.7, 130.4, 128.7, 128.5, 126.7 (q, J = 5.5 Hz), 123.5 (q, J = 273 Hz). HRMS (ESI+): [M+Ag]⁺ calcd for C₉H₅NO₂ClF₃Ag⁺ 357.9006, found 357.9006.

(Z)-(2-(2-chloro-2-nitrovinyl)phenyl)diphenylphosphine oxide (2i).

This compound was isolated as a pale yellow solid (2.2 g, 58%); $\mathbf{R}f = 0.34$ (ethyl acetate/petroleum ether 1:1); ¹**H** NMR (400 MHz, CDCl₃) δ 8.9 (1H, s, CH), 7.79 (1H, dd, J = 7.5, 4.1 Hz, ArH), 7.73-7.60 (5H, m, ArH), 7.59-7.53 (1H, m, ArH), 7.53-7.40 (5H, m, ArH), 7.32 (1H, ddd, J = 13.6, 7.78, 1.4 Hz, ArH). ¹³C NMR (100 MHz, CDCl₃) δ 139.5, 134.8 (d, J = 6.5 Hz), 133.0 (d, J = 99.0 Hz), 133.7 (d, J = 10.8 Hz), 133.5, 132.6 (d, J = 2.7 Hz), 132.3 (d, J = 1.9 Hz), 132.2, 132.1 (d, J = 9.8 Hz), 131.4 (d, J = 5.4 Hz), 131.2, 130.6 (d, J = 8.9 Hz), 129.9 (d, J = 12.1 Hz), 129.0 (d, J = 12.1 Hz). **HRMS** (ESI+): [M+Ag]⁺ calcd for C₂₀H₁₅NO₃PClAg⁺ 489.9524, found 489.9528.

3. General procedure for the enantioselective synthesis of dihydrofurans 3a-e

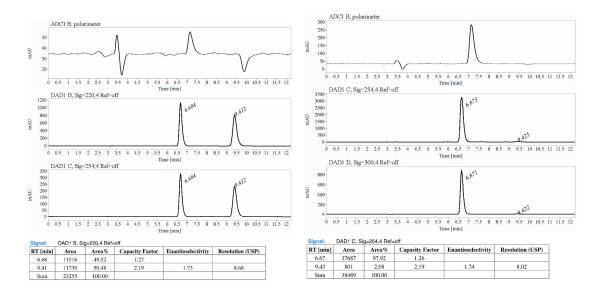
Catalyst **6** was synthetized according to literature procedure.³ Racemic samples were synthesized according to the following procedure.⁴



A solution of the corresponding α -chloronitroalkenes (0.28 mmol, 1.0 equiv) and catalyst **6** (10 mol %) in CHCl₃ (0.03 M, 9 mL) was cooled at 0 °C. Then, diketone derivate (0.36 mmol, 1.3 equiv) and K₂HPO₄ (0.42 mmol, 1.5 equiv) were added sequentially. The reaction mixture was stirred at same temperature for 48 hours. When the reaction was complete as

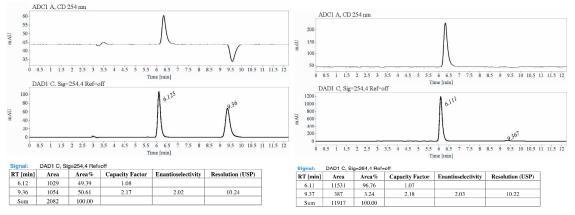
indicated by TLC analysis, the crude product was directly purified by means of flash silica gel column chromatography.

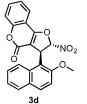
(2*S*,3*S*)-3-(2-methoxynaphthalen-1-yl)-6,6-dimethyl-2-nitro-3,5,6,7-tetrahydro-benzo-furan-4(2*H*)-one (3a).


This compound was isolated as a pale yellow solid (94 mg, 92%); **mp** = 154-155 °C; **R**f = 0.35 (ethyl acetate/petroleum ether 3:7); **dr** (*trans/cis*) > 20:1; **HPLC** (Ulmo (S,S), Heptane/ethanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm): t_{major} = 7.46 min, t_{minor} = 9.38 min, ee = 99%; $[\alpha]_D^{25}$ (CHCl₃, c = 1.0) = +465; ¹**H NMR** (400 MHz, CDCl₃) δ 8.17 (1H, brs, ArH), 7,85 (1H, d, J = 9.0 Hz, ArH), 7,80 (1H, d, J = 8.1 Hz, ArH), 7.56 (1H, brs, ArH), 7.39 (1H, dd, J = 9.0, 7.6 Hz, ArH), 7.24 (1H, brs, ArH), 6.29 (1H, d, J = 2.9 Hz, CH), 5.46 (1H, brs, CH), 3.90 (3H, s, CH₃), 2.72-2.47 (2H, m), 2.25 (1H, d, J = 16.4 Hz, CH), 2.13 (1H, d, J = 16.4 Hz, CH), 1.19 (3H, s, CH₃), 1.11 (3H, s, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 193.0, 174.3, 155.3, 132.8, 130.8, 129.5, 128.8, 127.6, 123.9, 122.6, 117.6, 113.8, 112.6, 111.7, 56.0, 51.4, 45.9, 37.4, 34.7, 29.2, 28.0. **HRMS** (ESI+): [M+H]⁺ calcd for C₂₁H₂₂NO₅⁺ 368.1492, found 368.1492.

(2*S*,3*S*)-3-(2-methoxynaphthalen-1-yl)-2-nitro-3,5,6,7-tetrahydrobenzofuran-4(2*H*)-one (3b).

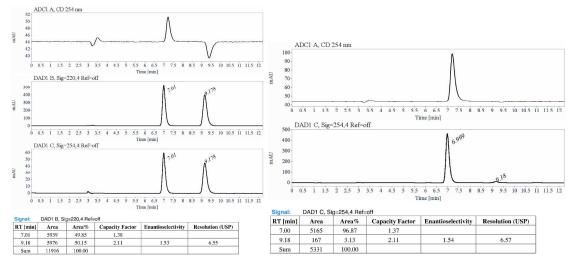
This compound was isolated as a white solid (88 mg, 92%); **mp** = 163-165 °C; **R***f* = 0.35 (ethyl acetate/petroleum ether 3:7); **dr** (*trans/cis*) > 20:1; **HPLC** (Lux-Cellulose-4, Heptane/ethanol = 50/50, flow rate = 1.0 mL/min, λ = 254 nm): t_{major} = 6.68 min, t_{minor} = 9.41 min, ee = 96%; $[\alpha]_D^{25}$ (CHCl₃, *c* = 1.0) = +489; ¹**H NMR** (400 MHz, CDCl₃) δ 8.17 (1H, brs, ArH), 7,84 (1H, d, *J* = 9.1 Hz, ArH), 7,80 (1H, d, *J* = 8.2 Hz, ArH), 7.56 (1H, brs, ArH), 7.39


(1H, dd, J = 7.6, 7.6 Hz, ArH), 7.28-7.22 (1H, m, ArH), 6.27 (1H, d, J = 3.5 Hz, CH), 5.49 (1H, brs, CH), 3.90 (3H, s, CH₃), 2.83-2.65 (2H, m), 2.37-2.03 (4H, m). ¹³C NMR (100 MHz, CDCl₃) δ 193.5, 175.1, 155.6, 132.7, 130.8, 129.6, 128.9, 127.6, 124.0, 122.6, 117.9, 115.3, 113.3, 111.4, 56.5, 45.9, 37.0, 23.6, 21.8. **HRMS** (ESI+): [M+H]⁺ calcd for C₁₉H₁₈NO₅⁺ 340.1179, found 340.1179.


(2*S*,3*S*)-3-(2-methoxynaphthalen-1-yl)-6-methyl-2-nitro-2,3-dihydro-4*H*-furo[3,2*c*]pyran-4-one (3c).

This compound was isolated as a white solid (92 mg, 93%); **mp** = 156-157 °C; **R**f = 0.37 (ethyl acetate/petroleum ether 1:1); **dr** (*trans/cis*) > 20:1; **HPLC** (Lux-Cellulose-4, Heptane/ethanol = 50/50, flow rate = 1.0 mL/min, λ = 254 nm): t_{major} = 6.13 min, t_{minor} = 9.36 min, ee = 94%; $[\alpha]_D^{25}$ (CHCl₃, c = 1.0) = +381; ¹**H NMR** (400 MHz, CDCl₃) δ 8.16 (1H, brs, ArH), 7,88 (1H, d, J = 9.0

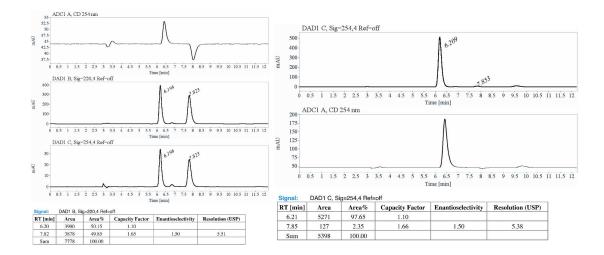
Hz, ArH), 7,82 (1H, d, J = 8.3 Hz, ArH), 7.58 (1H, brs, ArH), 7.40 (1H, dd, J = 7.8, 6.6 Hz, ArH), 7.24 (1H, d, J = 9.0 Hz, ArH), 6.38 (1H, d, J = 3.3 Hz, CH), 6.23 (1H, s, CH), 5.62 (1H, brs, CH), 3.83 (3H, s, CH₃), 2.31 (3H, s, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 167.2, 159.6, 155.6, 132.8, 131.3, 129.5, 129.0, 127.9, 124.1, 122.2, 116.6, 113.0, 111.9, 101.3, 95.0, 56.3, 45.4, 20.7. HRMS (ESI+): [M+H]⁺ calcd for C₁₉H₁₆NO₆⁺ 354.0972, found 354.0977.



(2*S*,3*S*)-3-(2-methoxynaphthalen-1-yl)-2-nitro-2,3-dihydro-4*H*-furo[3,2-*c*]chromen-4-one (3d).

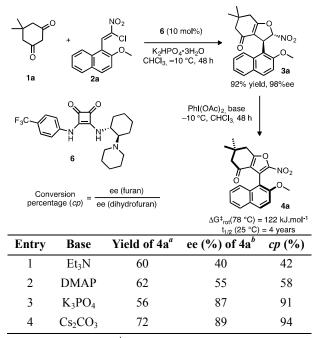
This compound was isolated as a white solid (102 mg, 94%); **mp** = 210-215 °C; **Rf** = 0.65 (ethyl acetate/petroleum ether 3:7); **dr** (*trans/cis*) > 20:1; **HPLC** (Lux-Cellulose-4, Heptane/ethanol = 50/50, flow rate = 1.0 mL/min, λ

= 254 nm): t_{major} = 7.01 min, t_{minor} = 9.18 min, ee = 94%; $[\alpha]_D^{25}$ (CHCl₃, c = 1.0) = +499; ¹**H NMR** (400 MHz, DMSO- d_6) δ 8.40 (1H, d, J = 9.1 Hz, ArH), 8.02 (1H, d, J = 9.1 Hz, ArH), 7,99-7.93 (2H, m, ArH), 7.81-7.76 (1H, m, ArH), 7.62 (1H, dd, J = 9.1, 7.1 Hz, ArH), 7.56-7.51 (2H, m, ArH), 7.49-7.43 (2H, m, ArH), 7.09 (1H, d, J = 3.5 Hz, CH), 6.10 (1H, d, J = 3.5 Hz, CH), 3.72 (3H, s, CH₃). ¹³C **NMR** (100 MHz, DMSO- d_6) δ 164.2, 157.2, 155.9, 154.4, 133.5, 132.6, 130.6, 128.8, 128.5, 127.2, 125.0, 123.7, 122.9, 122.5, 117.0, 114.0, 111.6, 111.0, 104.5, 56.5, 44.8. **HRMS** (ESI+): [M+H]⁺ calcd for C₂₂H₁₆NO₆⁺ 390.0972, found 390.0969.

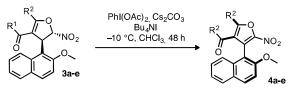

(2*S*,3*S*)-3-(2-methoxynaphthalen-1-yl)-5-methyl-2-nitro-3,5-dihydrofuro[3,2-*c*]quinolin-4(2*H*)-one (3e).

Mel

3e


This compound was isolated as a white solid (100 mg, 89%); **mp** = 210-215 °C; **R**f = 0.50 (ethyl acetate/petroleum ether 1:1); **dr** (*trans/cis*) > 20:1; **HPLC** (Lux-Cellulose-4, Heptane/ethanol = 50/50, flow rate = 1.0 mL/min, λ = 254 nm): t_{major} = 6.20 min, t_{minor} = 7.82 min, ee = 95%; $[\alpha]_D^{25}$ (CHCl₃, c= 1.0) = +520; ¹**H NMR** (400 MHz, DMSO- d_6) δ 8.43 (1H, d, J = 9.0 Hz, ArH), 8.01-7.91 (3H, m, ArH), 7,79-7.73 (1H, m, ArH), 7.64-7.57 (2H, m,

ArH), 7.48-7.40 (3H, m, ArH), 7.56-7.51 (2H, m, ArH), 7.49-7.43 (2H, m, ArH), 6.95 (1H, d, J = 3.1 Hz, CH), 5.97 (1H, d, J = 3.1 Hz, CH), 3.66 (3H, s, CH₃), 3.48 (3H, s, CH₃). ¹³C **NMR** (100 MHz, DMSO-*d*₆) δ 160.3, 158.2, 155.7, 140.4, 132.7, 131.9, 130.2, 128.8, 128.3, 126.9, 123.5, 123.4, 122.3, 118.2, 115.5, 114.1, 111.7, 110.6, 109.3, 56.4, 46.2, 30.7, 28.6. **HRMS** (ESI+): [M+H]⁺ calcd for C₂₃H₁₉N₂O₅⁺ 403.1288, found 403.1288.

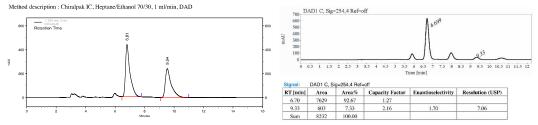

4. General procedure for the oxidation of dihydrofuran 3a-e to furan atropisomers 4a-e

Optimization of the reaction conditions

^aIsolated yield after column chromatography. ^bDetermined by HPLC analysis on chiral stationary phase.

General procedure

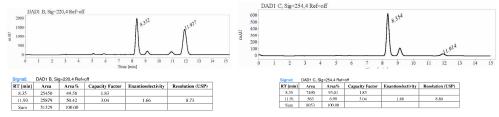
The mixture of enantioenriched 2,3-dihydrofuran **3a-3e** (0.27 mmol, 1.0 equiv), $PhI(OAc)_2$ (210 mg, 0.65 mmol, 2.4 equiv), and Cs_2CO_3 (132 mg, 0.41 mmol, 1.6 equiv) in CHCl₃ (6


mL) was treated with Bu_4NI (120 mg, 0.32 mmol, 1.2 equiv) at -5 °C. The reaction was allowed to stir at same temperature for 48 h. Upon completion as shown by TLC, the reaction mixture was washed with saturated $Na_2S_2O_3$ (20 mL) and extracted using dichloromethane (3 x 5 mL). The organic layer was dried over Na_2SO_4 and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (MeOH/CH₂Cl₂) to provide corresponding furan **4a-e**.

(*aS*)-3-(2-methoxynaphthalen-1-yl)-6,6-dimethyl-2-nitro-6,7-dihydrobenzofuran-4(5*H*)one (4a)

This compound was isolated as an orange solid (71 mg, 72%); **mp** = 165-166 °C; **R***f* = 0.34 (ethyl acetate/petroleum ether 3:7); **HPLC** (Chiralpak IC, Heptane/ethanol = 70/30, flow rate = 1.0 mL/min, λ = 254 nm): t_{major} = 6.81 min, t_{minor} = 9.54 min, ee = 85%; **Chirality conversion percentage** = 94%; $[\alpha]_D^{25}$ (CHCl₃, *c* = 1.0) = -60; ¹**H NMR** (400 MHz, CDCl₃) δ 7.97 (1H, d, *J* =

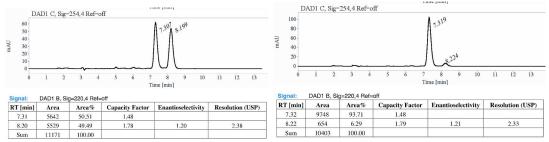
9.1 Hz, ArH), 7.84 (1H, dd, J = 7.6, 1.8 Hz, ArH), 7.40-7.28 (4H, m, ArH), 3.84 (3H, s, OCH₃), 2.95 (2H, d, J = 1.0 Hz, CH₂), 2.40 (2H, s, CH₂), 1.22 (3H, s, CH₃), 1.21 (3H, s, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 191.5, 165.9, 155.0, 149.2, 132.1, 131.6, 128.8, 128.7, 127.3, 123.9, 123.5, 122.0, 119.8, 112.8, 110.7, 56.5, 52.6, 37.6, 35.0, 28.7, 28.6. HRMS (ESI+): [M+H]⁺ calcd for C₂₁H₁₉NO₅⁺ 366.1336, found 366.1338.



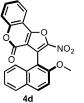
(aS)-3-(2-methoxynaphthalen-1-yl)-2-nitro-6,7-dihydrobenzofuran-4(5H)-one (4b)

This compound was isolated as a yellow solid (46 mg, 51%); **mp** = 203-204 °C; **Rf** = 0.35 (ethyl acetate/petroleum ether 3:7); **HPLC** (Lux-Cellulose-2, Heptane/ethanol = 50/50, flow rate = 1.0 mL/min, λ = 254 nm): t_{major} = 8.35 min, t_{minor} = 11.93 min, ee = 86%; **Chirality conversion percentage** = 90%; $[\alpha]_D^{25}$ (CHCl₃, c = 1.0) = -20; ¹**H NMR** (400 MHz, CDCl₃) δ 7.97 (1H, d, J =

9.1 Hz, ArH), 7.85-7.82 (1H, m, ArH), 7.38-7.28 (4H, m, ArH), 3.85 (3H, s, OCH₃), 3.11 (2H, t, J = 6.3 Hz, CH₂), 2.52 (2H, dd, J = 7.4, 5.1 Hz, CH₂), 2.30 (2H, pent, J = 6.3, CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 191.8, 166.8, 155.0, 132.2, 131.7, 128.9, 128.7, 127.3, 123.9, 123.5, 123.0, 119.9, 112.9, 110.8, 56.6, 38.4, 23.9, 21.9. HRMS (ESI+): [M+H]⁺ calcd for C₁₉H₁₆NO₅⁺ 338.1023, found 338.1023.

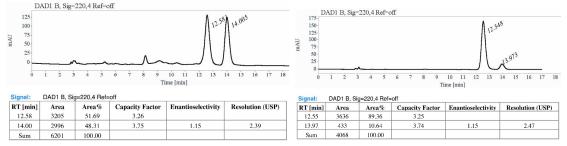


(aS)-3-(2-methoxynaphthalen-1-yl)-6-methyl-2-nitro-4H-furo[3,2-c]pyran-4-one (4c)

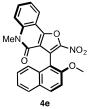


This compound was isolated as a yellow solid (76 mg, 80%); **mp** = 227-229 °C; **Rf** = 0.45 (ethyl acetate/petroleum ether 3:7); **HPLC** (Chiralpak AZ-H, Heptane/ethanol = 50/50, flow rate = 1.0 mL/min, λ = 254 nm): t_{major} = 7.31 min, t_{minor} = 8.20 min, ee = 87%; **Chirality conversion percentage** = 92%; $[\alpha]_D^{25}$ (CHCl₃, c = 1.0) = -158; ¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (1H, d, J

= 9.1 Hz, ArH), 7.86 (1H, dd, J = 7.72, 1.76 Hz, ArH), 7.43-7.31 (4H, m, ArH), 6.54 (1H, s, CH), 3.90 (3H, s, OCH₃), 2.39 (3H, s, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 160.6, 156.7, 155.4, 148.5, 132.4, 132.0, 128.9, 127.7, 124.2, 123.3, 121.2, 112.8, 110.3, 109.3, 95.1, 56.6, 29.9, 21.0. HRMS (ESI+): [M+H]⁺ calcd for C₁₉H₁₄NO₆⁺ 352.0816, found 352.0815.

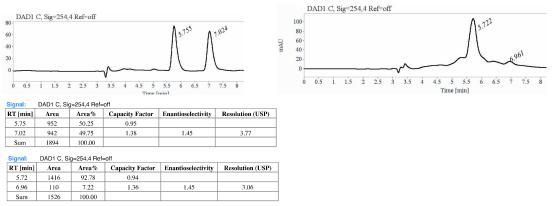


(aS)-3-(2-methoxynaphthalen-1-yl)-2-nitro-4H-furo[3,2-c]chromen-4-one (4d)

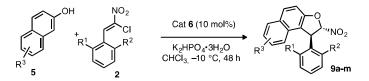


This compound was isolated as an orange solid (91 mg, 87%); **mp** = 227-229 °C; **R***f* = 0.72 (ethyl acetate/petroleum ether 3:7); **HPLC** (Lux-Cellulose-2, Heptane/ethanol = 50/50, flow rate = 1.0 mL/min, λ = 254 nm): t_{major} = 12.54 min, t_{minor} = 13.97 min, ee = 79%; **Chirality conversion percentage** = 81%; $[\alpha]_D^{25}$ (CHCl₃, *c* = 1.0) = -174; ¹**H NMR** (400 MHz, CD₂Cl₂) δ 8.15 (1H, td, *J* = 7.3, 1.6 Hz, ArH), 8.10 (1H, dd, *J* = 8.8, 1.8 Hz, ArH), 7.96-7.91 (1H, m,

ArH), 7.76-7.70 (1H, m, ArH), 7.55-7.39 (6H, m, ArH), 3.90 (3H, s, OCH₃), 2.39 (3H, s, CH₃). ¹³C NMR (100 MHz, CD₂Cl₂) δ 142.7, 141.4, 141.3, 140.4, 135.5, 119.7, 118.1, 117.9, 114.7, 114.6, 113.6, 111.4, 110.1, 109.2, 108.2, 107.5, 103.7, 98.8, 98.4, 97.2, 95.2, 42.5. HRMS (ESI+): [M+H]⁺ calcd for C₂₂H₁₄NO₆⁺ 388.0816, found 388.0818.

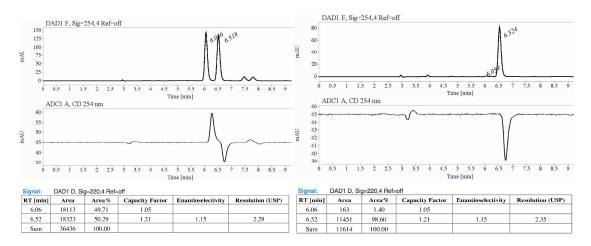


(aS)-3-(2-methoxynaphthalen-1-yl)-5-methyl-2-nitrofuro[3,2-c]quinolin-4(5H)-one (4e)


This compound was isolated as an orange solid (75 mg, 69%). This product proved to be very insoluble in most organic solvents; mp = 312-314 °C; Rf = 0.50 (ethyl acetate/petroleum ether 1:1); HPLC (Chiralpak IB, Heptane/ethanol/chloroform = 50/40/10, flow rate = 1.0 mL/min, $\lambda = 254$

nm): $t_{major} = 5.72 \text{ min}, t_{minor} = 6.96 \text{ min}, ee = 86\%$; **Chirality conversion percentage** = 90%; $[\alpha]_D^{25}$ (CHCl₃, c = 1.0) = +9; ¹**H NMR** (400 MHz, DMSO- d_6) δ 8.21 (1H, d, J = 7.9, ArH), 8.12 (1H, d, J = 9.0 Hz, ArH), 7.96 (1H, d, J = 7.8 Hz, ArH), 7.84 (1H, ddd, J = 8.7, 7.8, 1.1 Hz, ArH), 7.72 (1H, d, J = 8.6 Hz, ArH), 7.58 (1H, d, J = 9.2 Hz, ArH), 7.55-7.49 (2H, m, ArH), 7.41-7.32 (2H, m, ArH), 3.81 (3H, s, OCH₃), 3.56 (3H, s, CH₃). **HRMS** (ESI+): [M+H]⁺ calcd for C₂₃H₁₇N₂O₅⁺ 401.1132, found 401.1132.

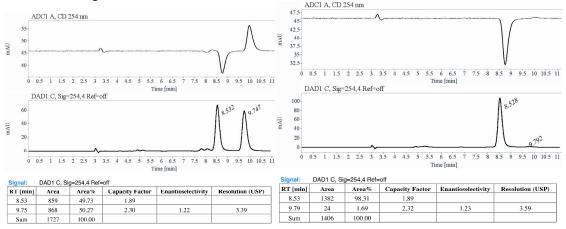
5. General procedure for the enantioselective synthesis of dihydrofurans 10a-10m


The synthesis of racemic dihydrofuran was accomplished using the following procedure: Triethylamine (2.0 equiv) was added to a solution of chloronitroalkene **2** (1.0 equiv) and 2naphthol derivative **5** (1.2 equiv) in chloroform ($C = 0.1 \text{ mol.L}^{-1}$). The reaction was stirred at room temperature until TLC showed consumption of stating materials. Purification by flash column chromatography affords the desired product.

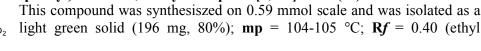
A solution of the corresponding α -chloronitroalkenes (0.38 mmol, 1.0 equiv) and catalyst **6** (10 mol %) in CHCl₃ (0.1 M, 4 mL) was cooled at 0 °C. Then, 2-naphthol derivative (0.49 mmol, 1.3 equiv) and K₂HPO₄ (0.95 mmol, 2.5 equiv) were added sequentially. The reaction mixture was stirred at same temperature for 48-72 hours. When the reaction was complete as indicated by TLC analysis, the crude product was directly purified by flash column chromatography on silica gel.

(1R,2S)-1-(2-bromophenyl)-2-nitro-1,2-dihydronaphtho[2,1-b]furan (9a)

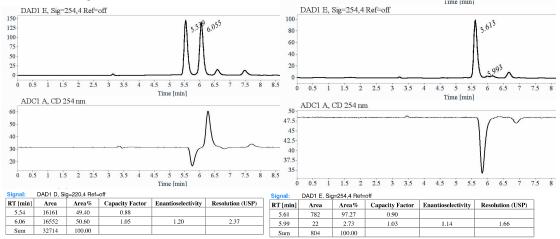
This compound was isolated as a white solid (105 mg, 75%); **mp** = 115-117 °C; **Rf** = 0.42 (ethyl acetate/petroleum ether 1:9); **dr** (*trans/cis*) > 20:1; **HPLC** (Lux-Cellulose 2, Heptane/ethanol = 90/10, flow rate = 1.0 mL/min, $\lambda = 254$ nm): t_{major} = 6.52 min, t_{minor} = 6.06 min, ee = 97%; $[\alpha]_D^{25}$ (CHCl₃, c **9a** = 1.0) = +201; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (1H, d, J = 8.8 Hz, ArH), 7.91-7.87 (1H, m, ArH), 7.73 (1H, dd, J = 7.9, 1.5 Hz, ArH), 7.46 (1H, d, J = 8.8 Hz, ArH), 7.42-7.34 (3H, m, ArH), 7.17 (1H, ddd, J = 7.6, 7.6, 2.2 Hz, ArH), 7.14-7.08 (1H, m, ArH), 6.63 (1H, brd, J = 6.5 Hz, ArH), 6.11 (1H, s, CH), 5.91 (1H, s, CH). ¹³C NMR (100 MHz, CDCl₃) δ 156.7, 137.0, 133.7, 131.8, 131.1, 130.1, 129.5, 129.4, 129.2, 128.5, 128.1, 124.8, 124.1, 123.2, 118.9, 112.1, 112.0, 53.9. HRMS (ESI+): [M+Ag]⁺ calcd for C₁₈H₁₂BrNO₃Ag⁺ 475.9046, found 475.9046.

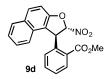

(1R,2S)-1-(2-chlorophenyl)-2-nitro-1,2-dihydronaphtho[2,1-b]furan (9b)

9h

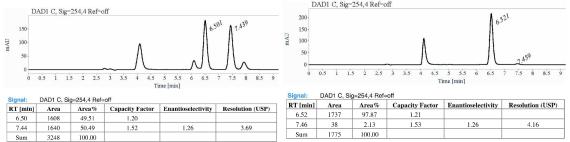

9c

This compound was isolated as a white solid (101 mg, 82%); **mp** = 112-114 °C; **Rf** = 0.57 (ethyl acetate/petroleum ether 1:9); **dr** (*trans/cis*) > 20:1; **HPLC** (Lux-Amylose 2, Heptane/ethanol = 90/10, flow rate = 1.0 mL/min, $\lambda = 254$ nm): t_{major} = 8.53 min, t_{minor} = 9.79 min, ee = 97%; $[\alpha]_D^{25}$ (CHCl₃, c = 1.0) = +185; ¹**H** NMR (400 MHz, CDCl₃) δ 7.94 (1H, d, J = 9.0 Hz,


ArH), 7.91-7.87 (1H, m, ArH), 7.54 (1H, d, J = 7.7, ArH), 7.45 (1H, d, J = 9.0 Hz, ArH), 7.42-7.33 (3H, m, ArH), 7.28-7.23 (1H, m, ArH), 7.07 (1H, dd, J = 7.7, 7.7 Hz, ArH), 6.64 (1H, brd, J = 7.7 Hz, ArH), 6.11 (1H, d, J = 1.2 Hz, CH), 5.88 (1H, s, CH). ¹³C NMR (100 MHz, CDCl₃) δ 156.7, 135.2, 133.8, 131.8, 131.1, 130.4, 129.9, 129.6, 129.3, 129.2, 128.1, 127.9, 124.8, 123.1, 118.9, 112.1, 112.0, 51.4. HRMS (ESI+): [M+Ag]⁺ calcd for C₁₈H₁₂CINO₃Ag⁺ 431.9551, found 431.9558.


(1*R*,2*S*)-1-(2-iodophenyl)-2-nitro-1,2-dihydronaphtho[2,1-*b*]furan (9c)

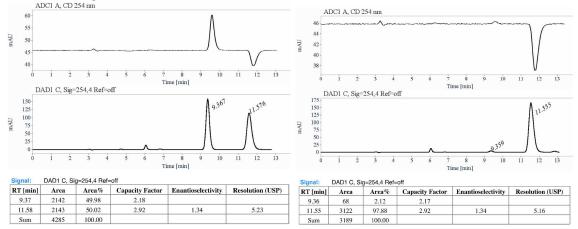
acetate/petroleum ether 1:9); **dr** (*trans/cis*) > 20:1; **HPLC** (Chiralpak IB, Heptane/ethanol = 90/10, flow rate = 1.0 mL/min, $\lambda = 254$ nm): $t_{major} = 5.61$ min, $t_{minor} = 5.99$ min, ee = 97%; $[\alpha]_D^{25}$ (CHCl₃, c = 1.0) = +221; ¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (1H, dd, J = 7.9, 1.1 Hz, ArH), 7.93 (1H, d, J = 9.0 Hz, ArH), 7.88 (1H, dd, J = 7.3, 1.6 Hz, ArH), 7.45 (1H, d, J = 8.9 Hz, ArH), 7.44-7.32 (3H, m, ArH), 7.18-7.11 (1H, m, ArH), 6.99 (1H, ddd, J = 7.8, 7.8, 1.6 Hz, ArH), 6.59 (1H, d, J = 7.2 Hz, ArH), 6.06 (1H, s, CH), 5.82 (1H, s, CH). ¹³C **NMR** (100 MHz, CDCl₃) δ 156.6, 140.6, 140.5, 131.9, 131.1, 130.3, 129.5, 129.4, 129.2, 128.8, 128.1, 127.5, 124.9, 123.5, 119.7, 112.3, 112.0, 58.8. **HRMS** (ESI+): [M+Ag]⁺ calcd for C₁₈H₁₂INO₃Ag⁺ 523.8907, found 523.8912.



Methyl 2-((1*S*,2*S*)-2-nitro-1,2-dihydronaphtho[2,1-*b*]furan-1-yl)benzoate (9d)

This compound was isolated as a white solid (91 mg, 69%); **mp** = 165-167 °C; **R**f = 0.47 (ethyl acetate/petroleum ether 1:9); **dr** (*trans/cis*) > 20:1; **HPLC** (Lux-Cellulose 2, Heptane/ethanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm): t_{major} = 6.52 min, t_{minor} = 7.46 min, ee = 96%; [α]_D²⁵ (CHCl₃, c = 1.0) = +194; ¹**H NMR** (400 MHz, CDCl₃) δ 8.07 (1H, d, J =

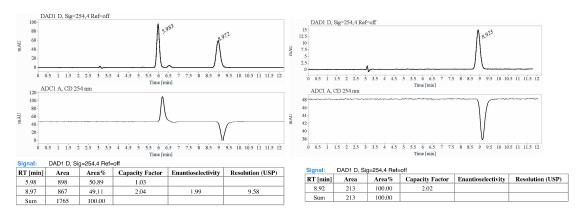
7.8 Hz, ArH), 7.92 (1H, d, J = 8.9 Hz, ArH), 7.92-7.87 (1H, m, ArH), 7.44-7.26 (6H, m, ArH), 6.73 (1H, d, J = 6.1 Hz, ArH), 6.42 (1H, s, CH), 6.14 (1H, s, CH), 4.02 (3H, s, OCH₃). ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 156.9, 138.6, 133.1, 131.5, 131.4, 131.0, 129.8, 129.7, 129.2, 129.1, 128.5, 127.8, 124.6, 123.4, 119.1, 113.7, 111.9, 52.9, 50.3. HRMS (ESI+): [M+Ag]⁺ calcd for C₂₀H₁₅NO₅Ag⁺ 455.9996, found 456.0002.

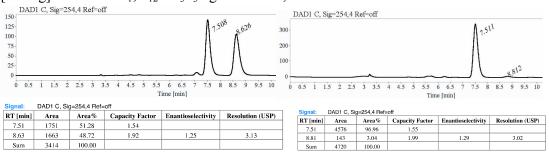


(1S,2S)-2-nitro-1-(2-nitrophenyl)-1,2-dihydronaphtho[2,1-b]furan (9e)

This compound was synthesized on 0.62 mmol and isolated as a white solid (193 mg, 93%); **mp** = 95-97 °C; **R**f = 0.42 (ethyl acetate/petroleum ether 2:8); **dr** (*trans/cis*) > 20:1; **HPLC** (Chiralpak AZ-H, Heptane/ethanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm): t_{major} = 11.56 min, t_{minor} = 9.36 min, ee = 96%; $[\alpha]_D^{25}$ (CHCl₃, c = 1.0) = +230; ¹**H NMR** (400 MHz,

CDCl₃) δ 8.08 (1H, d, J = 8.1 Hz, ArH), 7.96 (1H, d, J = 8.9 Hz, ArH), 7.93-7.88 (1H, m, ArH), 7.50 (1H, ddd, J = 8.1, 7.1, 1.6 Hz, ArH), 7.46-7.37 (4H, m, ArH), 7.33-7.28 (1H, m, ArH), 6.80 (1H, d, J = 6.3 Hz, ArH), 6.20 (1H, s, CH), 6.06 (1H, s, CH). ¹³C NMR (100 MHz, CDCl₃) δ 157.1, 149.0, 134.2, 132.3, 132.0, 131.1, 130.3, 129.8, 129.4, 129.3, 128.3, 125.5, 125.0, 122.9, 117.5, 112.4, 111.9, 49.2. HRMS (ESI+): [M+Ag]⁺ calcd for C₁₈H₁₂N₂O₅Ag⁺ 442.9792, found 442.9791.

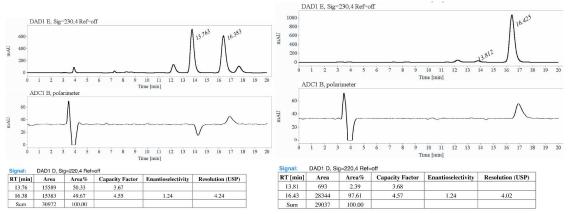

(1*S*,2*S*)-2-Nitro-1-(6-nitrobenzo[*d*][1,3]dioxol-5-yl)-1,2-dihydronaphtho[2,1-*b*]furan (9f).


9g

This compound was isolated as a slightly brown solid (556 mg, 83%); **mp** = 201 °C; **Rf** = 0.45 (ethyl acetate/petroleum ether 1:4); **dr** (*trans/cis*) > 20:1; **HPLC** (Chiralpak IE, Heptane/ethanol = 50/50, flow rate = 1.0 mL/min, λ = 254 nm): t_{major} = 8.97 min, t_{minor} = 5.98 min, ee > 99%; $[\alpha]_D^{25}$ (CHCl₃, *c* = 1.6) = +234; ¹**H NMR** (400 MHz, CDCl₃) δ 7.95 (1H, d, *J* = 9.0 Hz, ArH),

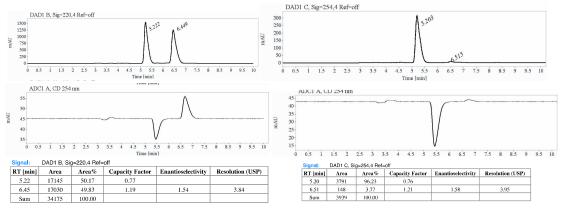
7.92-7.88 (1H, m, ArH), 7.59 (1H, s, ArH), 7.44-7.38 (3H, m, ArH), 7.37-7.31 (1H, m, ArH), 6.16 (1H, s, ArH), 6.13 (2H, s, CH₂), 6.06 (1H, s, CH), 6.02 (1H, s, CH). ¹³C NMR (100 MHz, CDCl₃) δ 157.1, 152.7, 148.3, 143.0, 132.3, 131.2, 129.5, 129.4, 128.9, 128.3, 125.0, 122.9, 117.7, 112.7, 112.0, 108.7, 106.3, 103.5, 49.3. HRMS (ESI+): [M+NH₄]⁺ calcd for C₁₉H₁₆N₃O₇⁺ 398.0983, found 398.0982.

(1*S*,2*S*)-2-nitro-1-(2-(trifluoromethyl)phenyl)-1,2-dihydronaphtho[2,1-b]furan (9g). This compound was isolated as a white solid (72 mg, 53%); mp = 87-89 °C; $\mathbf{R}f = 0.30$ (ethyl acetate/petroleum ether 1:9); dr (*trans/cis*) > 20:1; HPLC (Lux- CF_3 Amylose-2, Heptane/ethanol = 95/5, flow rate = 1.0 mL/min, $\lambda = 254$ nm): $t_{major} = 7.51 \text{ min}, t_{minor} = 8.81 \text{ min}, ee = 94\%; [\alpha]_D^{25} (CHCl_3, c = 1.0) = +204; {}^{1}H NMR (400 MHz, CDCl_3) \delta 7.96 (1H, d, J = 9.0 Hz, ArH), 7.92-7.81 (2H, m, ArH), 7.50-7.31 (6H, m, ArH), 6.76 (1H, d, J = 7.8 Hz, ArH), 6.07 (1H, s, CH), 5.80 (1H, s, CH). {}^{13}C NMR (100 MHz, CDCl_3) \delta 156.8, 136.1, 133.2, 132.1, 131.2, 129.6, 129.4, 129.3, 128.8, 128.4, 128.2, 126.7 (q, J = 5.8 Hz), 126.3, 124.9, 122.8, 119.1, 112.3, 111.8, 50.0. HRMS (ESI+): [M+Ag]^+ calcd for C₁₉H₁₂NO₃F₃Ag⁺ 465.9815, found 465.9810.$



(2-((1*R*,2*S*)-2-nitro-1,2-dihydronaphtho[2,1-*b*]furan-1-yl)phenyl)diphenylphosphine oxide (9h).

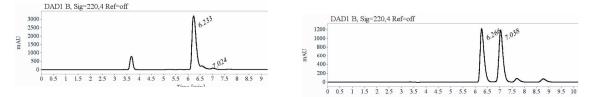
9h

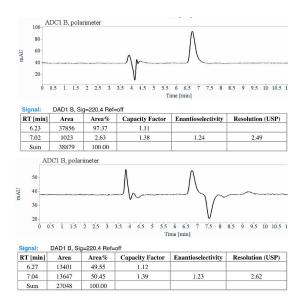

This compound was synthesized on 0.59 mmol and was isolated as a white solid (211 mg, 73%); **mp** = 174-176 °C; **Rf** = 0.47 (ethyl acetate/petroleum ether 1:1); **dr** (*trans/cis*) > 20:1; **HPLC** (Lux-Cellulose-4, Heptane/ethanol = 95/5, flow rate = 1.0 mL/min, $\lambda = 254$ nm): $t_{major} = 16.43$ min, $t_{minor} = 13.81$ min, ee = 95%; $[\alpha]_D^{25}$ (CHCl₃, *c* =

1.0) = +393; ¹H NMR (400 MHz, CDCl₃) δ 7.86-7.74 (6H, m, ArH), 7.66-7.52 (6H, m, ArH), 7.34-7.14 (7H, m, ArH), 6.74 (1H, dd, J = 7.7, 4.0 Hz, ArH), 6.44 (1H, s, CH), 6.11 (1H, s, CH). ¹³C NMR (100 MHz, CDCl₃) δ 156.5, 142.8 (d, J = 7.0 Hz), 133.8 (d, J = 12.7 Hz), 133.0, 132.6, 132.5, 132.4 (d, J = 9.9 Hz), 132.0, 131.5 (d, J = 5.4 Hz), 131.3, 131.0, 130.0 (d, J = 8.9 Hz), 129.8, 129.0 (d, J = 12.1 Hz), 128.9, 126.7 (d, J = 12.1 Hz), 127.6, 124.5, 123.9, 120.2, 113.5, 111.8, 49.9. ³¹P NMR (162 MHz, CDCl₃) δ 31.8. HRMS (ESI+): [M+Ag]⁺ calcd for C₃₀H₂₂NO₄F₃Ag⁺ 598.0332, found 598.0342.

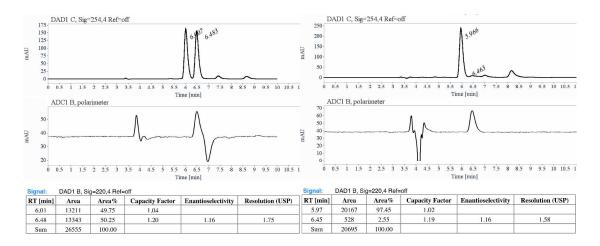
(1*S*,2*S*)-2-nitro-1-(*o*-tolyl)-1,2-dihydronaphtho[2,1-*b*]furan (9i). This compound was isolated as a white solid (165 mg, 89%); mp = 127-128 °C; R*f* = 0.60 (ethyl acetate/petroleum ether 1:9); dr (*trans/cis*) > 20:1; HPLC (Chiralpak AD-H, Heptane/ethanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm): t_{major} =

5.20 min, $t_{minor} = 6.52$ min, ee = 93%; $[\alpha]_D^{25}$ (CHCl₃, c = 1.0) = +131; ¹H NMR (400 MHz, CDCl₃) δ 7.98-7.86 (2H, m, ArH), 7.48 (1H, d, J = 8.7, ArH), 7.41-7.32 (3H, m, ArH), 7.28-7.18 (2H, m, ArH), 7.00 (1H, dd, J = 7.9, 7.3 Hz, ArH), 6.52 (1H, d, J = 7.2 Hz, ArH), 6.05 (1H, d, J = 1.5 Hz, CH), 5.55 (1H, s, CH), 2.76 (3H, s, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 156.7, 136.2, 135.9, 131.5, 131.4, 131.1, 129.6, 129.2, 128.5, 127.9, 127.6, 127.1, 124.7, 123.1, 119.1, 112.4, 112.0, 51.8, 20.3. HRMS (ESI+): [M+Ag]⁺ calcd for C₁₉H₁₅NO₃Ag⁺ 412.0097, found 412.0096.



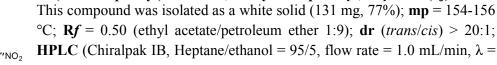

(1R,2S)-8-bromo-1-(2-bromophenyl)-2-nitro-1,2-dihydronaphtho[2,1-b]furan (9j)

This compound was isolated as a white solid (140 mg, 82%); mp = 166-167 °C; Rf = 0.40 (ethyl acetate/petroleum ether 1:9); dr (*trans/cis*) > 20:1; HPLC (Chiralpak IB, Heptane/ethanol = 95/5, flow rate = 1.0 mL/min, λ = 254 nm): t_{major} = 6.23 min, t_{minor} = 7.02 min, ee = 96%; [α]_D²⁵ (CHCl₃, *c* = 1.0) = +128; ¹H NMR (400 MHz, CDCl₃) δ 7.88 (1H, d, *J* = 8.9 Hz, ArH),

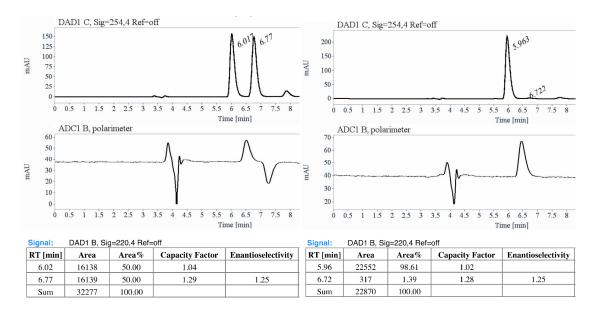

7.76-7.70 (2H, m, ArH), 7.50 (1H, d, J = 1.6 Hz, ArH), 7.46-7.41 (2H, m, ArH), 7.21-7.09 (2H, m, ArH), 6.57 (1H, brs, ArH), 6.08 (1H, s, CH), 5.81 (1H, s, CH). ¹³C NMR (100 MHz, CDCl₃) δ 157.5, 136.5, 134.0, 131.9, 130.9, 130.8, 130.4, 129.5, 129.2, 128.7, 128.5, 125.5, 124.1, 122.7, 118.2, 112.4, 112.0, 53.6. HRMS (ESI+): [M+NH₄]⁺ calcd for C₁₈H₁₅Br₂N₂O₃ 466.9425, found 466.9425.

(1*R*,2*S*)-7-bromo-1-(2-bromophenyl)-2-nitro-1,2-dihydronaphtho[2,1-*b*]furan (9j)

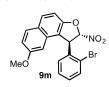
This compound was isolated as a white solid (136 mg, 80%); $\mathbf{mp} = 145$ - $H^{1} \sim \mathbb{N}_{O_2}$ $H^{1} \sim \mathbb{C}$; $\mathbf{Rf} = 0.45$ (ethyl acetate/petroleum ether 1:9); \mathbf{dr} (*trans/cis*) > 20:1; **HPLC** (Chiralpak IB, Heptane/ethanol = 95/5, flow rate = 1.0 mL/min, $\lambda = 254$ nm): $t_{major} = 5.97$ min, $t_{minor} = 6.46$ min, ee = 95%; $[\alpha]_D^{25}$ (CHCl₃, c = 1.0) = +128; ¹**H NMR** (400 MHz, CDCl₃) δ 8.05 (1H, d, J = 1.8 Hz, ArH), 7.84 (1H, d, J = 8.9 Hz, ArH), 7.73 (1H, dd, J = 8.0, 1.3 Hz, ArH), 7.49-7.44 (2H, m, ArH), 7.27-7.09 (3H, m, ArH), 6.58 (1H, brs, ArH), 6.11 (1H, s, CH), 5.87 (1H, s, CH). ¹³C **NMR** (100 MHz, CDCl₃) δ 156.9, 136.7, 133.8, 132.2, 131.4, 131.2, 131.0, 130.4, 129.3, 128.7, 128.1, 124.9, 124.1, 119.3, 118.6, 113.1, 112.0, 53.7. **HRMS** (ESI+): [M+Na]⁺ calcd for C₁₈H₁₁Br₂NO₃Na⁺ 471.8978, found 471.8980.



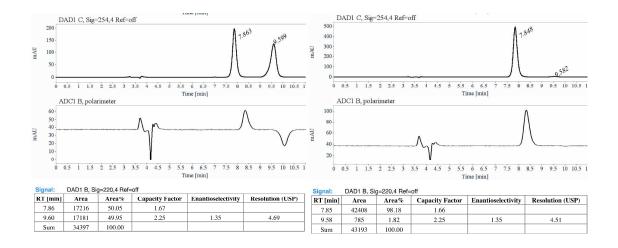
(1R,2S)-7-bromo-1-(2-bromophenyl)-2-nitro-1,2-dihydronaphtho[2,1-b]furan (9j)


B

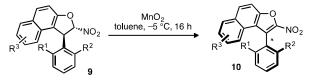
91


Br

254 nm): $t_{major} = 5.96 \text{ min}, t_{minor} = 6.72 \text{ min}, ee = 97\%; [\alpha]_D^{25} (CHCl_3, c = 1.0) = +152; {}^{1}\mathbf{H}$ NMR (400 MHz, CDCl_3) δ 8.14 (1H, s, ArH), 7.86-7.81 (1H, m, ArH), 7.76 (1H, dd, J = 7.7, 1.5 Hz, ArH), 7.46-7.39 (2H, m, ArH), 7.37-7.32 (1H, m, ArH), 7.24-7.13 (2H, m, ArH), 6.67 (1H, brs, ArH), 6.18 (1H, s, CH), 6.00 (1H, s, CH). {}^{13}C NMR (100 MHz, CDCl_3) \delta 153.8, 136.4, 133.9, 133.7, 132.1, 130.4, 129.4, 128.7, 128.5, 128.4, 128.3, 125.8, 124.0, 123.3, 120.4, 111.4, 104.4, 54.8. HRMS (ESI+): [M+NH₄]⁺ calcd for C₁₈H₁₅Br₂N₂O₃⁺ 466.9425, found 466.9427.



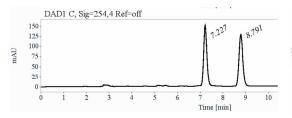
(1*R*,2*S*)-1-(2-bromophenyl)-8-methoxy-2-nitro-1,2-dihydronaphtho[2,1-*b*]furan (9m)



This compound was isolated as a white solid (133 mg, 88%); **mp** = 161-162 °C; **R***f* = 0.42 (ethyl acetate/petroleum ether 1:9); **dr** (*trans/cis*) > 20:1; **HPLC** (Chiralpak IB, Heptane/ethanol = 95/5, flow rate = 1.0 mL/min, $\lambda = 254$ nm): t_{major} = 7.85 min, t_{minor} = 9.58 min, ee = 96%; $[\alpha]_D^{25}$ (CHCl₃, *c* = 1.0) = +227; ¹**H NMR** (400 MHz, CDCl₃) δ 7.82 (1H, d, *J* =

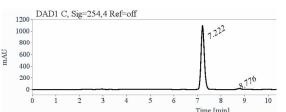
8.9 Hz, ArH), 7.75 (1H, d, J = 8.9 Hz, ArH), 7.73-7.69 (1H, m, ArH), 7.29 (1H, d, J = 8.9 Hz, ArH), 7.19-7.14 (1H, m, ArH), 7.01 (1H, dd, J = 8.9, 2.5 Hz, ArH), 6.74 (1H, brs, ArH), 6.68 (1H, d, J = 2.5 Hz, ArH), 6.12 (1H, s, CH), 5 .86 (1H, s, CH). ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 156.9, 137.2, 133.5, 131.4, 130.9, 130.7, 130.1, 129.3, 128.8, 126.4, 123.9, 118.6, 117.6, 112.1, 109.2, 101.6, 55.6, 53.9. HRMS (ESI+): [M+Na]⁺ calcd for C₁₉H₁₄BrNO₄Na⁺ 421.9998, found 421.0000.

General procedure for the oxidation of dihydrofuran 9a-m to furan atropisomers 10a-m

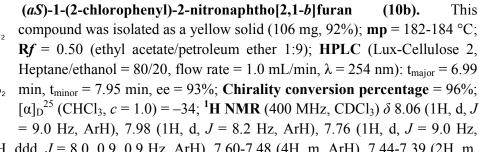


MnO₂ (20 equiv) was added in a clear solution of the corresponding enantioenriched 2,3dihydrofuran in toluene **9a-m** at -5 °C and reaction mass stirred for 16 h at same temperature. The progress of the reaction was monitored by TLC. After completion of the reaction, the crude product was directly purified by means of flash silica gel column chromatography using pad of celite on the top of silica in column to give the desired furan **10a-m**.

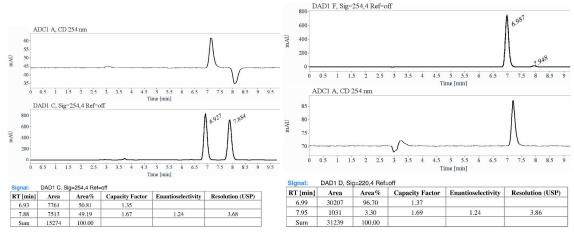
(*aS*)-1-(2-bromophenyl)-2-nitronaphtho[2,1-*b*]furan (10a). This compound was isolated as a yellow solid (32 mg, 84%); mp = 140-142 °C; Rf = 0.36 (ethyl acetate/petroleum ether 1:9); HPLC (Lux-Cellulose 2, Heptane/ethanol = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm): $t_{major} = 7.23$


min, $t_{minor} = 8.79$ min, ee = 97%; Chirality conversion percentage = 100%; $[\alpha]_D^{25}$ (CHCl₃, c = 1.0) = -9; ¹H NMR (400 MHz, CDCl₃) δ 8.06 (1H, d, J = 9.0 Hz, ArH), 7.98 (1H, d, J = 8.1 Hz, ArH), 7.88-7.84 (1H, m, ArH), 7.59 (1H, s, ArH), 7.76 (1H, d, J = 9.0 Hz, ArH), 7.58-7.46 (4H, m, ArH), 7.44-7.35 (2H, m, ArH). ¹³C NMR (100 MHz, CDCl₃) δ 150.6, 148.2, 133.5, 132.9, 132.1, 131.4, 131.1, 130.7, 129.8, 128.6, 128.4, 128.3, 126.4, 123.5, 123.2, 122.8, 121.5, 112.4. HRMS (ESI+): [M+H]⁺ calcd for C₁₈H₁₁NO₃Br⁺ 367.9917, found 367.9917.

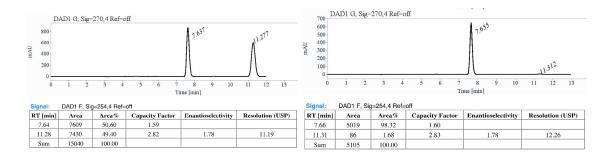
10a


Signal:	DAD1 B, Sig=220,4 Ref=off					
RT [min]	Area	Area%	Capacity Factor	Enantioselectivity		
7.23	9459	50.10	1.45			
8.79	9420	49.90	1.98	1.37		
Sum	18879	100.00				

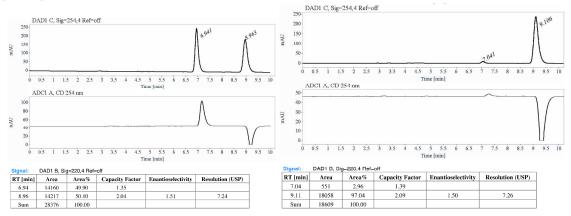
10c



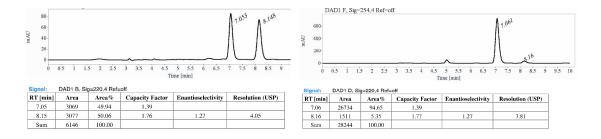
Signal: DAD1 C. Sig=254 4 Ref=off


Dr.D. 1 0, 0.9 20 1, 1 101 011						
RT [min]	Area	Area%	Capacity Factor	Enantioselectivity		
7.22	10686	98.68	1.45			
8.78	143	1.32	1.97	1.36		
Sum	10829	100.00				

ArH), 7.68 (1H, ddd, J = 8.0, 0.9, 0.9 Hz, ArH), 7.60-7.48 (4H, m, ArH), 7.44-7.39 (2H, m, ArH). ¹³C NMR (100 MHz, CDCl₃) δ 150.6, 148.3, 133.9, 132.8, 131.4, 131.0, 130.8, 130.3, 129.9, 129.8, 128.6, 128.3, 127.7, 126.4, 122.7, 121.6, 121.4, 112.4. **HRMS** (ESI+): [M+H]⁺ calcd for C₁₈H₁₁NO₃Cl⁺ 324.0422, found 324.0421.

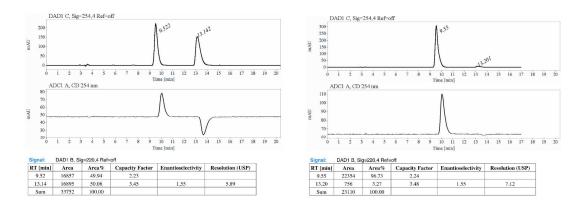


(*aS*)-1-(2-iodoophenyl)-2-nitronaphtho[2,1-*b*]furan (10c). This compound was isolated as a dark-green solid (447 mg, 90%); **mp** = 180-181 °C; **R***f* = 0.40 (ethyl acetate/petroleum ether 1:9); **HPLC** (Lux-Cellulose 2, Heptane/ethanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm): t_{major} = 7.66 min, t_{minor} = 11.31 min, ee = 97%; **Chirality conversion percentage** = 100%; [α]_D²⁵ (CHCl₃, *c* = 1.0) = -3; ¹**H NMR** (400 MHz, CDCl₃) δ 8.12 (1H, dd, *J* = 8.2, 1.1 Hz, ArH), 8.07 (1H, d, *J* = 9.1 Hz, ArH), 7.99 (1H, d, *J* = 8.2 Hz, ArH), 7.76 (1H, d, *J* = 9.1 Hz, ArH), 7.62-7.52 (2H, m, ArH), 7.47-7.38 (2H, m, ArH), 7.35-7.28 (2H, m, ArH). ¹³C **NMR** (100 MHz, CDCl₃) δ 150.6, 148.0, 139.8, 136.3, 132.9, 131.4, 131.0, 129.9, 129.8, 129.1, 128.6, 128.4, 126.5, 126.3, 122.9, 121.4, 112.4, 98.5. **HRMS** (ESI+): [M+H]⁺ calcd for C₁₈H₁₁NO₃I⁺ 415.9778, found 415.9780.


10d NO₂ NO₂ CO₂Me (*aS*)-methyl 2-(2-nitronaphtho[2,1-*b*]furan-1-yl)benzoate (10d). This compound was isolated as a yellow solid (100 mg, 89%); mp = 156-159 °C; R*f* = 0.45 (ethyl acetate/petroleum ether 1:9); HPLC (Lux-Cellulose 4, Heptane/ethanol = 60/40, flow rate = 1.0 mL/min, λ = 254 nm): t_{major} = 6.95 min ee = 95%: Chirality conversion percentage = 99%: [a]p²⁵

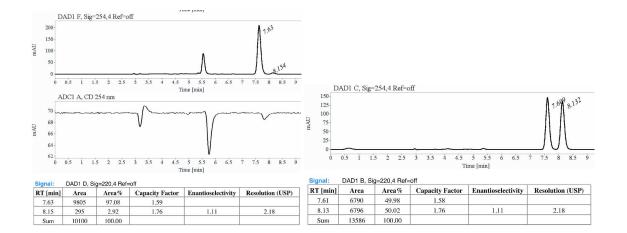
8.94 min, $t_{minor} = 6.95$ min, ee = 95%; Chirality conversion percentage = 99%; $[\alpha]_D^{25}$ (CHCl₃, c = 1.0) = +102; ¹H NMR (400 MHz, CDCl₃) δ 8.34 (1H, dd, J = 7.7, 1.7 Hz, ArH), 8.04 (1H, d, J = 9.1 Hz, ArH), 7.97 (1H, d, J = 8.2 Hz, ArH), 7.79-7.68 (3H, m, ArH), 7.51-7.47 (2H, m, ArH), 7.35 (1H, ddd, J = 8.2, 7.0, 1.4 Hz, ArH), 7.26 (1H, d, J = 8.2 Hz, ArH). ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 150.6, 147.8, 133.3, 132.6, 132.4, 131.7, 131.4, 130.5, 129.8, 129.7, 129.6, 128.7, 128.1, 126.2, 124.8, 122.8, 122.2, 112.5, 52.4. HRMS (ESI+): [M+H]⁺ calcd for C₂₀H₁₄NO₅⁺ 348.0866, found 348.0866.

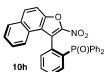
(*aS*)-2-nitro-1-(2-nitrophenyl)naphtho[2,1-*b*]furan (10e). This compound was isolated as a yellow solid (90 mg, 87%); mp = 222-224 °C; $\mathbf{R}f = 0.35$ (ethyl acetate/petroleum ether 1:4); HPLC (Chiralpak IC, Heptane/ethanol = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm): $t_{major} = 7.06$ min, $t_{minor} = 8.16$ min, ee = 89%; Chirality conversion percentage = 93%;


[α]_D²⁵ (CHCl₃, c = 1.0) = +110; ¹H NMR (400 MHz, CDCl₃) δ 8.45 (1H, dd, J = 8.0, 1.6 Hz, ArH), 8.07 (1H, d, J = 9.0 Hz, ArH), 7.99 (1H, d, J = 8.3 Hz, ArH), 7.87 (1H, ddd, J = 7.3, 7.3, 1.6 Hz, ArH), 7.82 (1H, ddd, J = 7.6, 7.6, 1.6 Hz, ArH), 7.76 (1H, d, J = 9.0 Hz, ArH), 7.58 (1H, dd, J = 7.3, 1.8 Hz, ArH), 7.53 (1H, ddd, J = 7.6, 7.3, 1.3 Hz, ArH), 7.37 (1H, ddd, J = 8.3 Hz, ArH). ¹³C NMR (100 MHz, CDCl₃) δ 150.9, 148.1, 147.5, 134.5, 133.1, 131.7, 131.5, 130.9, 130.1, 128.4, 128.3, 126.6, 126.5, 125.9, 122.4, 121.6, 121.1, 112.5. HRMS (ESI+): [M+H]⁺ calcd for C₁₈H₁₁N₂O₅⁺ 335.0662, found 335.0661.

(aS)-2-Nitro-1-(6-nitrobenzo[d][1,3]dioxol-5-yl)naphtho[2,1-b]furan (10f). This

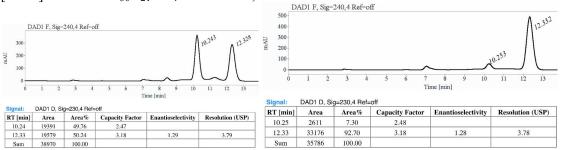
compound was isolated as a yellow-brown solid (200 mg, 85%); **mp** = 203-204 °C; **Rf** = 0.41 (ethyl acetate/petroleum ether 1:4); **HPLC** (Chiralpak IB, Heptane/ethanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm): t_{major} = 9.52 min, t_{minor} = 13.14 min, ee = 93%; **Chirality conversion percentage** = 93%; $[\alpha]_D^{25}$ (CHCl₃, c = 1.0) = +91.7; ¹**H NMR** (400 MHz, CDCl₃) δ 8.06


(1H, d, J = 9.0 Hz, ArH), 7.99 (1H, d, J = 8.3 Hz, ArH), 7.92 (1H, s, ArH), 7.59 (1H, s, ArH), 7.75 (1H, d, J = 9.0 Hz, ArH), 7.55 (1H, ddd, J = 8.2, 6.6, 1.6 Hz, ArH), 7.47-7.39 (2H, m, ArH), 6.87 (1H, s, ArH), 6.32 (1H, d, J = 1.0 Hz, CHH), 6.28 (1H, d, J = 1.0 Hz, CHH). ¹³C **NMR** (100 MHz, CDCl₃) δ 152.8, 150.7, 149.3, 142.2, 132.8, 131.3, 129.8, 128.3, 128.2, 126.3, 122.3, 122.2, 121.3, 121.2, 112.3, 109.8, 106.4, 103.8. **HRMS** (ESI+): [M+H]⁺ calcd for C₁₉H₁₁N₂O₇⁺ 379.0561, found 379.0563.

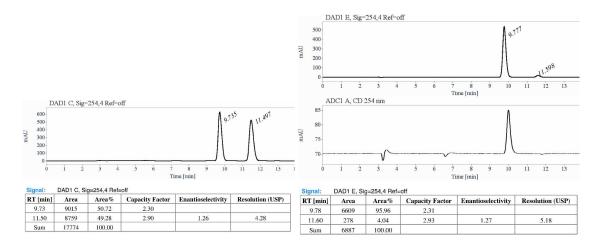

(aS)-2-nitro-1-(2-(trifluoromethyl)phenyl)naphtho[2,1-b]furan (10g).

This compound was isolated as a yellow solid (113 mg, 83%); **mp** = 170-172 °C; **Rf** = 0.27 (ethyl acetate/petroleum ether 1:9); **HPLC** (Lux-Cellulose-2, Heptane/ethanol = 90/10, flow rate = 1.0 mL/min, λ = 254 nm): t_{major} = 7.63 min, t_{minor} = 8.15 min, ee = 97%; **Chirality conversion**

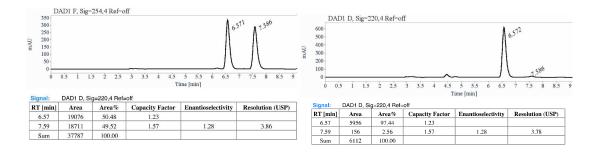
percentage = 100%; $[α]_D^{25}$ (CHCl₃, c = 1.0) = +152; ¹H NMR (400 MHz, CDCl₃) δ 8.06 (1H, d, J = 9.1 Hz, ArH), 8.01-7.95 (2H, m, ArH), 7.82-7.71 (3H, m, ArH), 7.55-7.49 (2H, m, ArH), 7.36 (1H, ddd, J = 8.5, 7.0, 1.3 Hz, ArH), 7.17 (1H, d, J = 8.4 Hz, ArH). ¹³C NMR (100 MHz, CDCl₃) δ 150.4, 148.4, 132.9, 132.8, 131.5, 130.6, 129.8, 129.7, 129 (q, J = 30.5 Hz), 128.4, 128.2, 127.1 (q, J = 5.1 Hz), 126.4, 125.1, 122.9, 122.4, 122.3, 120.9, 112.3. HRMS (ESI+): [M+H]⁺ calcd for C₁₉H₁₁NO₃F₃⁺ 358.0686, found 358.0683.

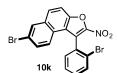

(aS)-(2-(2-nitronaphtho[2,1-b]furan-1-yl)phenyl)diphenylphosphine oxide (10h).

10h P^{(O)Ph₂} nm): t_{major} = 12.33 min, t_{minor} = 10.25 min, ee = 85%; Chirality conversion percentage = 89%; $[\alpha]_D^{25}$ (CHCl₃, c = 1.0) = +17; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (1H, d, J = 9.1 Hz, ArH), 7.87 (1H, d, J = 8.2 Hz, ArH), 7.80-7.71 (1H, m, ArH), 7.68-7.60 (2H, m, ArH), 7.59-7.37 (8H, m, ArH), 7.30-7.23 (3H, m, ArH), 7.18 (1H, d, J = 8.3 Hz, ArH), 7.15-7.09 (1H, m, ArH), 7.04-6.97 (2H, m, ArH). ¹³C NMR (100 MHz, CDCl₃) δ 149.8, 148.8, 135.4 (d, J = 6.7 Hz), 134.5 (d, J = 11.1 Hz), 132.7, 132.0 (d, J = 9.8 Hz), 131.9, 131.6 (d, J = 9.6 Hz), 131.4, 131.2, 130.9 (d, J = 9.2 Hz), 129.4, 129.0 (d, J = 12.0 Hz), 128.7, 128.3 (d, J = 12.2 Hz), 128.1 (d, J = 12.2 Hz), 127.5, 126.0, 123.4, 122.5, 122.1 (d, J = 4.3 Hz), 112.2. ³¹P NMR (162 MHz, CDCl₃) δ 26.8. HRMS (ESI+): [M+H]⁺ calcd for C₃₀H₂₁NO₄P⁺ 490.1203, found 490.1207.


This compound was isolated as a dark green solid (65 mg, 85%); mp = 169-170 °C; Rf = 0.22 (ethyl acetate/petroleum ether 1:1); HPLC (Lux-

Cellulose-2, Heptane/ethanol = 50/50, flow rate = 1.0 mL/min, $\lambda = 254$


(*aS*)-2-nitro-1-(*o*-tolyl)naphtho[2,1-*b*]furan (10i). This compound was isolated as a yellow solid (113 mg, 83%); mp = 140-142 °C; Rf = 0.57 (ethyl acetate/petroleum ether 1:9); HPLC (Lux-Cellulose-2, Heptane/isopropanol = 95/5, flow rate = 1.0 mL/min, λ = 254 nm): t_{major} =

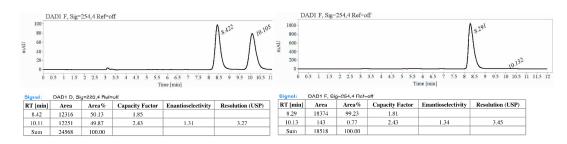

9.78 min, $t_{minor} = 11.60$ min, ee = 92%; Chirality conversion percentage = 100%; $[\alpha]_D^{25}$ (CHCl₃, c = 1.0) = -36; ¹H NMR (400 MHz, CDCl₃) δ 8.06 (1H, d, J = 9.1 Hz, ArH), 7.97 (1H, d, J = 8.3 Hz, ArH), 7.76 (1H, d, J = 9.1 Hz, ArH), 7.55-7.45 (3H, m, ArH), 7.43-7.33 (4H, m, ArH), 2.17 (3H, s, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 150.6, 148.2, 136.7, 132.8, 131.3, 130.7, 130.0, 129.7, 128.9, 128.3, 126.7, 126.3, 124.1, 122.6, 121.7, 112.4, 20.0. HRMS (ESI+): [M+H]⁺ calcd for C₁₉H₁₄NO₃⁺ 304.0968, found 304.0969.

(*aS*)-8-bromo-1-(2-bromophenyl)-2-nitronaphtho[2,1-*b*]furan (10j). This compound was isolated as a dark-green solid (48 mg, 98%); **mp** = 233-234 °C; **R**f = 0.50 (ethyl acetate/petroleum ether 1:9); **HPLC** (Lux-Cellulose-4, Heptane/isopropanol = 80/20, flow rate = 1.0 mL/min, λ = 254

nm): $t_{major} = 6.57 \text{ min}, t_{minor} = 7.58 \text{ min}, ee = 95\%$; **Chirality conversion percentage** = 100%; $[\alpha]_D^{25}$ (CHCl₃, c = 1.0) = -17; ¹H NMR (400 MHz, CDCl₃) δ 8.02 (1H, d, J = 9.1 Hz, ArH), 7.88 (1H, dd, J = 7.9, 1.3 Hz, ArH), 7.83 (1H, d, J = 8.7 Hz, ArH), 7.77 (1H, d, J = 9.1 Hz, ArH), 7.64-7.59 (1H, m, ArH), 7.57 (1H, dd, J = 7.5, 1.3 Hz, ArH), 7.54-7.44 (3H, m, ArH). ¹³C NMR (100 MHz, CDCl₃) δ 150.6, 148.1, 133.4, 132.2, 131.1, 131.1, 131.0, 130.5, 129.7, 129.6, 129.5, 128.2, 125.3, 123.3, 122.7, 122.6, 120.5, 112.7. HRMS (ESI+): [M+H]⁺ calcd for C₁₈H₁₀NO₃Br₂⁺ 447.9003, found 447.9004.

(*aS*)-7-bromo-1-(2-bromophenyl)-2-nitronaphtho[2,1-*b*]furan (10k). This compound was isolated as a dark-green solid (47 mg, 96%); mp = 168-169 °C; R*f* = 0.47 (ethyl acetate/petroleum ether 1:9); HPLC (Lux-Cellulose-4, Heptane/isopropanol = 80/20, flow rate = 1.0 mL/min, λ =

254 nm): $t_{major} = 6.63 \text{ min}$, $t_{minor} = 7.48 \text{ min}$, ee = 92%; **Chirality conversion percentage** = 97%; $[\alpha]_D^{25}$ (CHCl₃, c = 1.0) = -52; ¹**H NMR** (400 MHz, CDCl₃) δ 8.13 (1H, d, J = 2.1 Hz, ArH), 7.96 (1H, d, J = 9.1 Hz, ArH), 7.85 (1H, dd, J = 7.9, 1.5 Hz, ArH), 7.79 (1H, d, J = 9.1 Hz, ArH), 7.58-7.44 (4H, m, ArH), 7.23 (1H, d, J = 9.1 Hz, ArH). ¹³**C NMR** (100 MHz, CDCl₃) δ 150.4, 148.3, 133.6, 132.7, 131.8, 131.7, 131.6, 131.5, 131.3, 130.7, 128.4, 127.2,


124.3, 123.5, 122.7, 121.6, 120.4, 113.7. **HRMS** (ESI+): $[M+H]^+$ calcd for $C_{18}H_{10}NO_3Br_2^+$ 447.9003, found 447.9000.

1400 - 1200 - 1000 - 800 - 400 - 200 - 0 -	0AD1 F, Sig=		3 3.5 4 4.5	6 5 5.5 6 6.5 me [min]	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $					1,481	
Signal:	DAD1 F, Sig	g=254,4 Ref=	off			Signal:	DAD1 E. Sid	q=254,4 Ref=	off		
RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)	RT [min]		Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
6.63	11760	49.99	1.25			6.63	4221	96.12	1.25		
7.50	11765	50.01	1.54	1.24	3.54	7.48	170	3.88	1.54	1.23	2.95
Sum	23524	100.00				Sum	4391	100.00			

(*aS*)-4-bromo-1-(2-bromophenyl)-2-nitronaphtho[2,1-*b*]furan (10). This compound was isolated as a dark-green solid (48 mg, 96%); mp = 246-247 °C; Rf = 0.47 (ethyl acetate/petroleum ether 1:9); HPLC (Lux-Cellulose-4, Heptane/isopropanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm): t_{major} = 8.29 min, t_{minor} = 10.13 min, ee = 98%; Chirality conversion

percentage = 100%; $[\alpha]_D^{25}$ (CHCl₃, c = 1.0) = -29; ¹H NMR (400 MHz, CDCl₃) δ 8.25 (1H, s, ArH), 7.91 (1H, d, J = 8.2 Hz, ArH), 7.86 (1H, dd, J = 7.9, 1.2 Hz, ArH), 7.60-7.39 (5H, m, ArH), 7.33 (1H, d, J = 8.2 Hz, ArH). ¹³C NMR (100 MHz, CDCl₃) δ 148.3, 147.5, 134.4, 133.6, 132.4, 131.6, 131.4, 130.7, 128.9, 128.6, 128.4, 127.8, 127.2, 123.5, 123.3, 122.9, 122.5, 104.6. HRMS (ESI+): [M+H]⁺ calcd for C₁₈H₁₀NO₃Br₂⁺ 447.9003, found 447.8999.

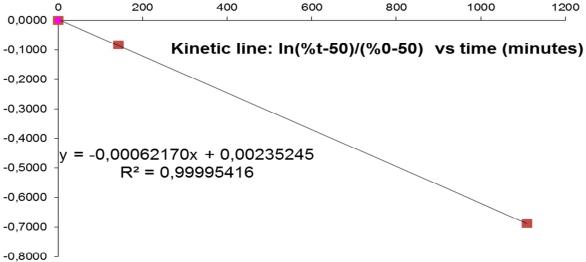
10

(*aS*)-1-(2-bromophenyl)-8-methoxy-2-nitronaphtho[2,1-*b*]furan (10m). This compound was isolated as a dark-green solid (51 mg, 98%); mp = 181-182 °C; R*f* = 0.40 (ethyl acetate/petroleum ether 1:9); HPLC (Lux-Cellulose-4, Heptane/isopropanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm): t_{major} = 7.45 min, t_{minor} = 8.65 min, ee = 95%; Chirality conversion percentage = 99%; [α]_D²⁵ (CHCl₃, *c* = 1.0) = -6; ¹H NMR (400 MHz, CDCl₃) δ 7.97 (1H, d, *J* = 9.0 Hz, ArH), 7.89-7.82 (2H, m, ArH), 7.62-7.42 (4H, m, ArH), 7.14 (1H, dd, *J* = 9.0, 2.5 Hz, ArH). ¹³C NMR (100 MHz, CDCl₃) δ 159.5, 151.3, 147.9, 133.4, 132.5, 132.4, 131.1, 131.0, 130.9, 130.2, 128.2, 126.2, 123.7, 123.2, 120.8, 118.2, 109.7, 102.4, 55.0. HRMS (ESI+): [M+H]⁺ calcd for C₁₉H₁₃NO₄Br⁺ 398.0022, found 398.0023.

						D	AD1 F, Sig=	254,4 Ref=o	ff		
100- 80- 0- 10- 10- 20- 0- 0-	80- DP 60- E 40-				$\begin{array}{c} 400\\ 300\\ 200\\ 100\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $				<u>8.662</u>		
Signal:								g=220,4 Ref=			
RT [min] Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)	RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
7.43	6685	49.99	1.52			7.45	24177	97.69	1.52		
8.63	6686	50.01	1.92	1.27	4.23	8.65	572	2.31	1.93	1.27	4.42
Sum	13370	100.00				Sum	24749	100.00			

6. Enantiomerisation barrier determination.

The enantiomerisation barrier, corresponding to barrier to rotation for the following atropisomers, was obtained by kinetic of racemisation of an enantiomer. The slope of the first-order kinetic line gives the racemisation constant (k_{racemisation} = 2 x k_{enantiomerisation}). Eyring equation gives the enantiomerisation barrier ($\Delta G^{\neq}_{enantiomerisation}$) from enantiomerisation constant (k_{enantiomerisation}), R = 8.31451 J.K⁻¹.mol⁻¹, h = 6.62608 10⁻³⁴ J.s and k_B = 1.38066 10⁻²³ J.K⁻¹.

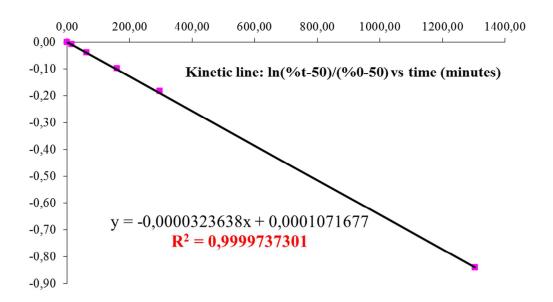

The calculated values of $\Delta G^{\neq}_{enantiomerisation}$ are ± 0.5 kJ/mol.

The half-life time $t_{1/2}$, given in the following pages of supplementary material, is $t_{1/2}$ at the temperature used for the kinetic. The half-life time $t_{1/2}$, given in the article, is the half-life time at 25°C, calculated with the hypothesis that the enantiomerisation barrier $\Delta G^{\neq}_{enantiomerisation}$ is independent of temperature.

Enantiomerisation barrier for (4a)

About 3 mg of enantio-enriched (**4a**) were refluxed in 15 mL of ethanol. Samples of 10 μ L of this solution were injected on Chiralpak IC (heptane / ethanol 70/30, 1 mL/min, UV detection at 254 nm) to monitor the percentage decrease of the second eluted enantiomer over time.

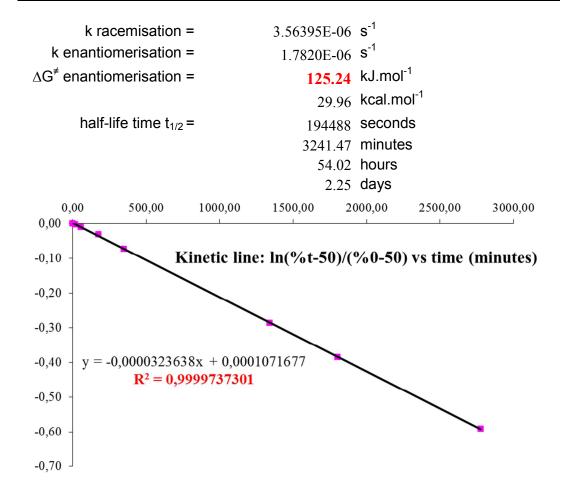
Solven	Solvent :		l			
Tempe	Temperature =		78.29	°C		
	Time (min)		econd eluted ntiomer (%t)	ln ((%	t-50)/(%0-50))
	0		99.210		0.0000	
	142		95.280		-0.0832	
	1110		74.730		-0.6881	
ke	k racemisation =		1.03617E-05 5.1808E-06			
	enantiomerisation =		122.12	kJ.mol⁻¹		
			29.22	kcal.mol ⁻¹		
	half-life time $t_{1/2}$ =		66895	seconds		
			1114.92	minutes		
			18.58	hours		
			0.77	days		
0	200	400	600	800	1000	1200
		1				



Enantiomerisation barrier for (4b)

About 3 mg of enantio-enriched (4b) were refluxed in 15 mL of ethanol. Samples of 10 µL of this solution were injected on Lux-Cellulose-2 (heptane / ethanol 50/50, 1 mL/min, UV detection at 254 nm) to monitor the percentage decrease of the second eluted enantiomer over time.

Solvent :	ethanol			
Temperature =	78.29 °C			
Time (min)	% second eluted enantiomer (%t)	In ((%t-50)/(%0-50))		
0.00	91.08	0.0000		
15.00	90.73	-0.0086		
62.00	89.54	-0.0382		
160.00	87.23	-0.0984		
297.00	84.23	-0.1824		
1304.00	67.73	-0.8403		

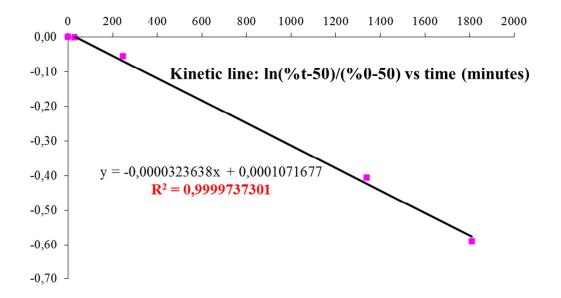

k racemisation =	1.07597E-05	s⁻¹
k enantiomerisation =	5.3799E-06	s⁻¹
ΔG^{\neq} enantiomerisation =	122.01	kJ.mol ⁻¹
	29.19	kcal.mol ⁻¹
half-life time $t_{1/2}$ =	64420	seconds
	1073.67	minutes
	17.89	hours
	0.75	days

Enantiomerisation barrier for (4c)

About 3 mg of enantio-enriched (4c) were refluxed in 15 mL of ethanol. Samples of 10 µL of this solution were injected on Chiralpak AZ-H (heptane / ethanol 50/50, 1 mL/min, UV detection at 254 nm) to monitor the percentage decrease of the second eluted enantiomer over time.

Solvent :	ethanol			
Temperature =	78.29 °C			
Time (min)	% second eluted enantiomer (%t)	In ((%t-50)/(%0-50))		
0	94.34	0.0000		
16	94.17	-0.0038		
57	93.84	-0.0113		
175	92.97	-0.0314		
350	91.22	-0.0730		
1340	83.30	-0.2863		
1804	80.14	-0.3860		
2777	74.55	-0.5912		

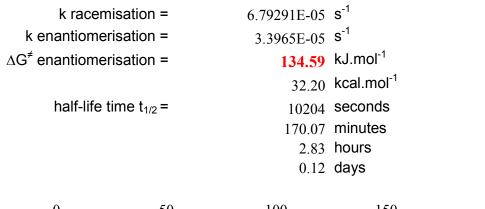
Enantiomerisation barrier for (4d)

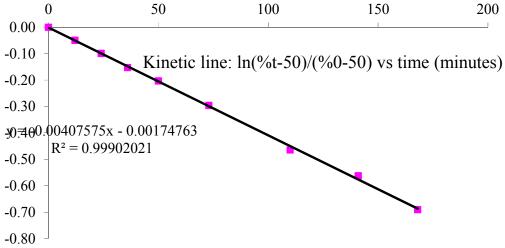

~ .

.

About 3 mg of enantio-enriched (**4d**) were refluxed in 15 mL of ethanol. Samples of 10 μ L of this solution were injected on Lux-Cellulose-2 (heptane / ethanol 50/50, 1 mL/min, UV detection at 220 nm) to monitor the percentage decrease of the second eluted enantiomer over time.

Solvent :	ethanol	
Temperature =	78.29	°C
Time (min)	% second eluted enantiomer (%t)	In ((%t-50)/(%0-50))
0	90.03	0.0000
30	89.95	-0.0020
247	87.86	-0.0557
1340	76.66	-0.4065
1811	72.18	-0.5904

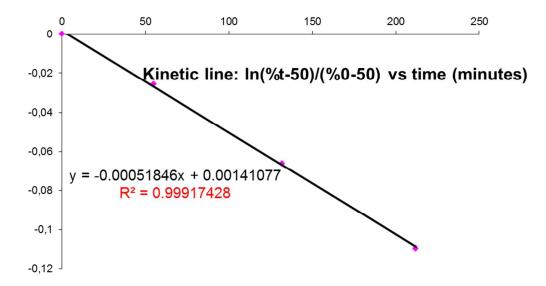

k racemisation =	5.41033E-06	s ⁻¹
k enantiomerisation =	2.7052E-06	s ⁻¹
ΔG^{\neq} enantiomerisation =	123.91	kJ.mol⁻¹
	29.64	kcal.mol ⁻¹
half-life time t _{1/2} =	128115	seconds
	2135.26	minutes
	35.59	hours
	1.48	days



Enantiomerisation barrier for (4e)

About 3 mg of enantio-enriched (**4e**) were refluxed in 15 mL of chlorobenzene. Samples of 10 μ L of this solution were injected on Chiralpak IB (heptane / ethanol/ chloroform 50/40/10, 1 mL/min, UV detection at 290 nm) to monitor the percentage decrease of the second eluted enantiomer over time.

Solvent : chlorobenzene 131 °C Temperature = % second eluted Time (min) In ((%t-50)/(%0-50)) enantiomer (%t) 0 89.64 0.0000 12 -0.0499 87.71 85.89 -0.099424 -0.1526 36 84.03 50 82.34 -0.2035 73 79.49 -0.2958 110 74.91 -0.4646 72.59 -0.5623 141 168 69.88 -0.6901



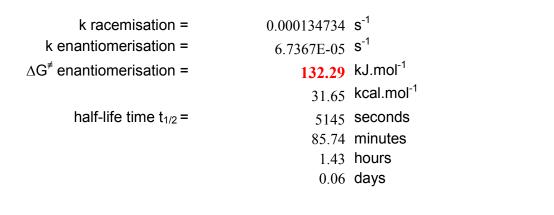
Enantiomerisation barrier for (10a)

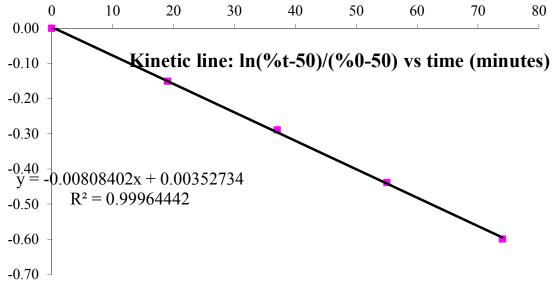
About 3 mg of enantio-enriched (**10a**) were refluxed in 15 mL of ethanol. Samples of 10 μ L of this solution were injected on Lux-Cellulose-2 (heptane / ethanol 80/20, 1 mL/min, UV detection at 220 nm) to monitor the percentage decrease of the second eluted enantiomer over time.

Solvent :	ethanol	
Temperature =	78.29	°C
Time (min)	% second eluted enantiomer (%t)	In ((%t-50)/(%0-50))
0	99.02	0
55	97.78	-0.025621236
132	95.88	-0.066199086
212	93.94	-0.109403311
k racemisation = k enantiomerisation =	8.64105E-06 4.3205E-06	

K enantiomensation -	4.3205E-06	3
∆G [≠] enantiomerisation =	122.64	kJ.mol⁻¹
	29.34	kcal.mol⁻¹
half-life time t _{1/2} =	80216	seconds
	1336.93	minutes
	22.28	hours
	0.928421669	days

Enantiomerisation barrier for (10b)


About 3 mg of enantio-enriched (**10b**) were refluxed in 15 mL of ethanol. Samples of 10 μ L of this solution were injected on Lux-Cellulose-2 (heptane / ethanol 80/20, 1 mL/min, UV detection at 205 nm) to monitor the percentage decrease of the second eluted enantiomer over time.

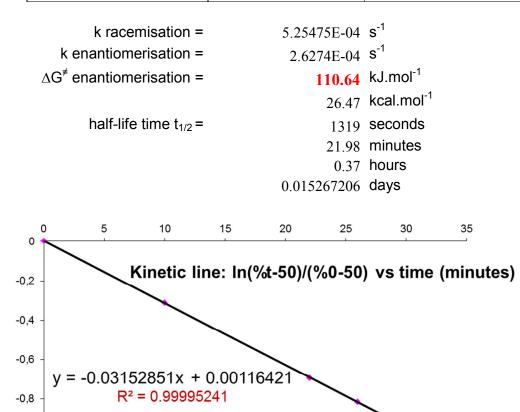

Solvent :		ethanol				
Tempera	ature =		78.29	°C		
Т	ïme (min)	% second enantiome		In ((%t-	-50)/(%0-50))	
	0	93.89			0	
	13	90.09		-0.090559577		
	26	86.65	5	-0.1	80273075	
	39	83.49	83.49		-0.270439617	
	52	80.63	3	-0.3	59706583	
	65	78.03		-0.448411139		
	78	75.63	3	-0.5	37922963	
	91	73.42		-0.628096146		
	k racemisation =		4884E-04			
k ena	antiomerisation =	5	.7442E-05			
∆G [≠] ena	antiomerisation =		115.08	kJ.mol⁻¹		
			27.53	kcal.mol⁻¹		
ł	half-life time $t_{1/2}$ =		6033	seconds		
			100.56	minutes		
			1.68	hours		
		0.0	69831894	days		
0	20	40	60	80	100	
-0,1 -	Kinetic	: line: ln(%t-	·50)/(%0·	-50) vs tin	ne (minutes)	
-0,2 -						
-0,3 -						
-0,4 -	y = -0.00689301 R ² = 0.99					
-0,5 -	11 0.00					
-0,6 -					~	
-0,7						

Enantiomerisation barrier for (10c)

About 3 mg of enantio-enriched (**10c**) were refluxed in 15 mL of chlorobenzene. Samples of 10 μ L of this solution were injected on Chiralpak IC (heptane / isopropanol 95/5, 1 mL/min, UV detection at 300 nm) to monitor the percentage decrease of the second eluted enantiomer over time.

Solvent :	chlorobenzene	
Temperature =	131	°C
Time (min)	% second eluted enantiomer (%t)	In ((%t-50)/(%0-50))
0	89.77	0.0000
19	84.22	-0.1503
37	79.78	-0.2893
55	75.64	-0.4390
74	71.84	-0.5994

Enantiomerisation barrier for (10d)


~ .

-1

-1,2 -

About 3 mg of enantio-enriched (**10d**) were refluxed in 15 mL of ethanol. Samples of 10 μ L of this solution were injected on Lux-Cellulose-4 (heptane / ethanol 60/40, 1 mL/min, UV detection at 220 nm) to monitor the percentage decrease of the second eluted enantiomer over time.

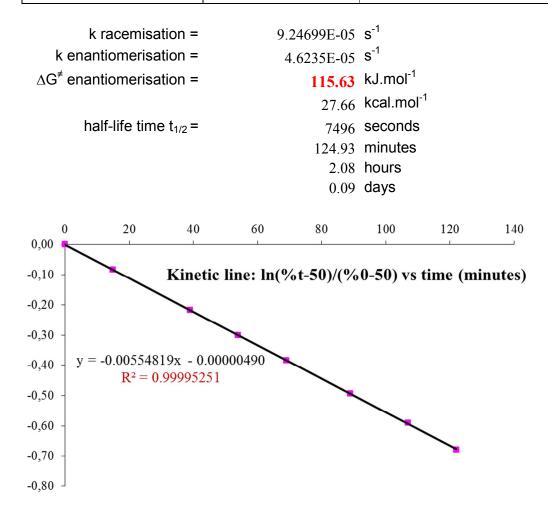
Solvent :	ethanol	
Temperature =	78.29	°C
Time (min)	% second eluted enantiomer (%t)	In ((%t-50)/(%0-50))
0	86.4	0
10	76.66	-0.31140446
22	68.14	-0.69644933
26	66.1	-0.815749503
33	62.87	-1.039669753

Enantiomerisation barrier for (10e)

About 3 mg of enantio-enriched (**10e**) were refluxed in 15 mL of ethanol. Samples of 10 μ L of this solution were injected on Chiralpak IC (heptane / ethanol 80/20, 1 mL/min, UV detection at 254 nm) to monitor the percentage decrease of the second eluted enantiomer over time.

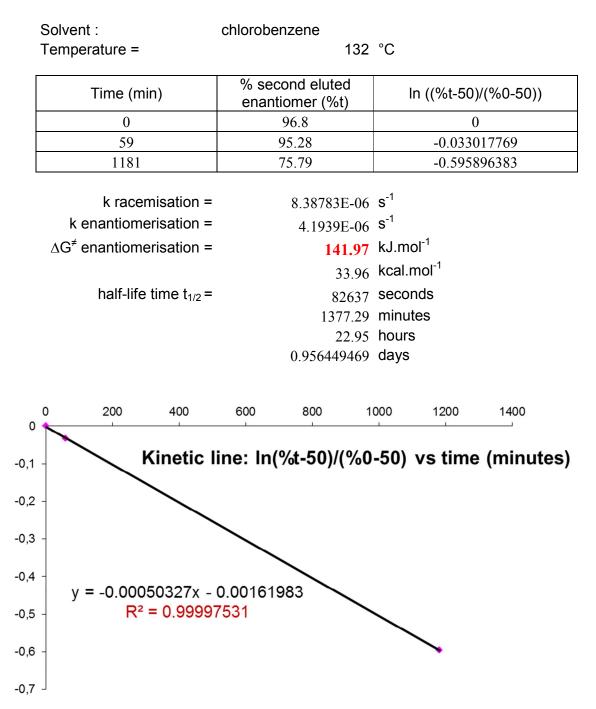
Solv	vent :	ethanol		
Ten	nperature =	78.29	°C	
	Time (min)	% second eluted enantiomer (%t)	In ((%t-50)/(%0-50))	
	0	88.68	0	
	15	78.29	-0.312814285	
	30	70.74	-0.0	623258468
	44	65.52	-0.913193156	
	k racemisation = k enantiomerisation =	3.45814E-04 1.7291E-04	s⁻¹	
$\Delta \mathbf{C}$	G [≠] enantiomerisation =		kJ.mol⁻¹	
		26.76	kcal.mol ⁻¹	
	half-life time $t_{1/2}$ =	2004	seconds	
		33.41	minutes	
		0.56	hours	
		0.023199002	days	
•	10 :	20 30	40	50
-0,1 -	Kinetic lin	ne: In(%t-50)/(%0-50)	vs time ((minutes)
-0,2 -			vo unic (, minutes y
-0,3 -				
-0,4 -				
-0,5 -				
-0,6 -				
-0,7 -	$R^2 = 0.99999$			
-0,8 -				
-0,9 -				
-1			•	

Enantiomerisation barrier for (10f)


~ .

.

About 3 mg of enantio-enriched (**10f**) were refluxed in 15 mL of ethanol. Samples of 10 μ L of this solution were injected on Chiralpak IB (heptane / ethanol 80/20, 1 mL/min, UV detection at 220 nm) to monitor the percentage decrease of the second eluted enantiomer over time.


...

Solvent :	ethanol	
Temperature =	78.29	°C
Time (min)	% second eluted enantiomer (%t)	In ((%t-50)/(%0-50))
0	96.18	0.0000
15	92.51	-0.0828
39	87.18	-0.2168
54	84.21	-0.3000
69	81.46	-0.3838
89	78.20	-0.4932
107	75.59	-0.5903
122	73.41	-0.6794

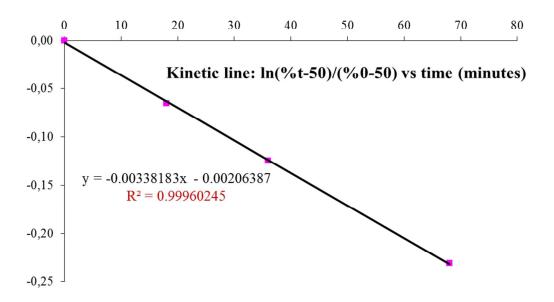
Enantiomerisation barrier for (10g)

About 3 mg of enantio-enriched (**10g**) were refluxed in 15 mL of chlorobenzene. Samples of 10 μ L of this solution were injected on (*S*,*S*)-Whelk-O1 (heptane / isopropanol 95/5, 1 mL/min, UV detection at 220 nm) to monitor the percentage decrease of the second eluted enantiomer over time.

Enantiomerisation barrier for (10h)

About 3 mg of enantio-enriched (**10h**) were refluxed in 15 mL of 1,2dichlorobenzene. Samples of 10 μ L of this solution were injected on (*S*,*S*)-Whelk-O1 (heptane / ethanol 50/50, 1 mL/min, UV detection at 230 nm) to monitor the percentage decrease of the second eluted enantiomer over time.

Solvent :


1,2-dichlorobenzene

Temperature =

182 °C

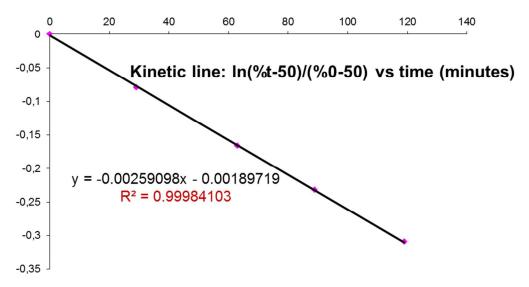
Time (min)	% second eluted enantiomer (%t)	In ((%t-50)/(%0-50))
0	91.39	0.0000
18	88.77	-0.0654
36	86.55	-0.1244
68	82.85	-0.2311

k racemisation =	5.63638E-05	S ⁻¹
k enantiomerisation =	2.8182E-05	s⁻¹
ΔG^{\neq} enantiomerisation =	152.73	kJ.mol⁻¹
	36.54	kcal.mol⁻¹
half-life time $t_{1/2}$ =	12298	seconds
	204.96	minutes
	3.42	hours
	0.14	days

Enantiomerisation barrier for (10i)

About 3 mg of enantio-enriched (**10i**) were refluxed in 15 mL of ethanol. Samples of 10 μ L of this solution were injected on Lux-Cellulose-2 (heptane / isopropanol 95/5, 1 mL/min, UV detection at 220 nm) to monitor the percentage decrease of the second eluted enantiomer over time.

Solvent :	
Temperature =	

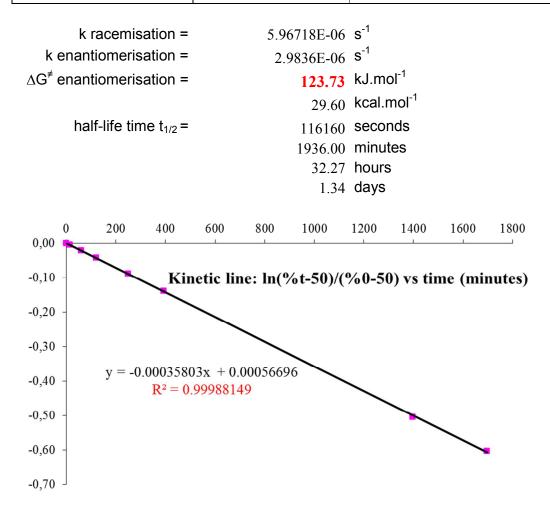

. .

78.29 °C

Time (min)	% second eluted enantiomer (%t)	In ((%t-50)/(%0-50))
0	93.95	0
29	90.61	-0.079038282
63	87.22	-0.166206373
89	84.85	-0.231999487
119	82.25	-0.309534581

k racemisation =	4.31829E-05	s⁻¹
k enantiomerisation =	2.1591E-05	s⁻¹
ΔG^{\neq} enantiomerisation =	117.94	kJ.mol⁻¹
	28.22	kcal.mol⁻¹
half-life time $t_{1/2}$ =	16051	seconds
	267.52	minutes
	4.46	hours
	0.185780272	days

Ethanol

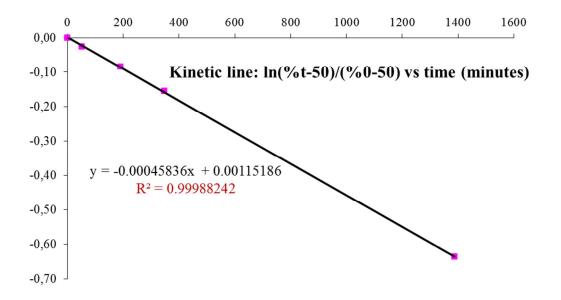


Enantiomerisation barrier for (10j)

. .

About 3 mg of enantio-enriched (**10***j*) were refluxed in 15 mL of ethanol. Samples of 10 μ L of this solution were injected on Lux-Cellulose-4 (heptane / ethanol 80/20, 1 mL/min, UV detection at 220 nm) to monitor the percentage decrease of the second eluted enantiomer over time.

Solvent :	ethanol	
Temperature =	78.29	°C
Time (min)	% second eluted enantiomer (%t)	In ((%t-50)/(%0-50))
0	97.77	0.0000
14	97.56	-0.0044
60	96.77	-0.0212
120	95.80	-0.0421
249	93.76	-0.0877
393	91.56	-0.1393
1397	78.83	-0.5050
1697	76.14	-0.6029

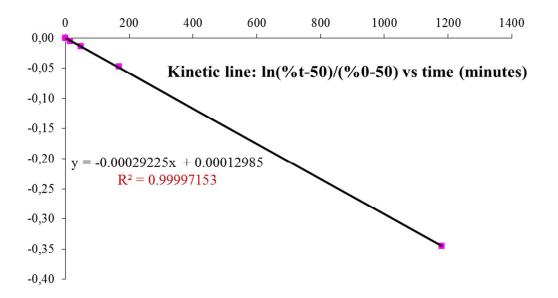


Enantiomerisation barrier for (10k)

About 3 mg of enantio-enriched (**10k**) were refluxed in 15 mL of ethanol. Samples of 10 μ L of this solution were injected on Lux-Cellulose-4 (heptane / ethanol 80/20, 1 mL/min, UV detection at 220 nm) to monitor the percentage decrease of the second eluted enantiomer over time.

Solvent : Temperature =	Ethanol 78.29	°C
Time (min)	% second eluted enantiomer (%t)	In ((%t-50)/(%0-50))
0	96.15	0.0000
52	94.96	-0.0261
190	92.43	-0.0840
348	89.54	-0.1546
1387	74.44	-0.6357

k racemisation =	7.63939E-06	s⁻ ¹
k enantiomerisation =	3.8197E-06	S ⁻¹
ΔG^{\neq} enantiomerisation =	123.01	kJ.mol⁻¹
	29.43	kcal.mol⁻¹
half-life time t _{1/2} =	90733	seconds
	1512.22	minutes
	25.20	hours
	1.05	days



Enantiomerisation barrier for (10I)

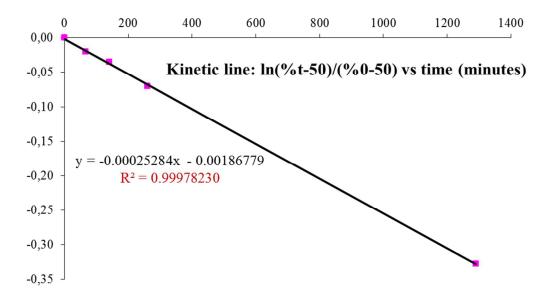
About 3 mg of enantio-enriched (**10I**) were refluxed in 15 mL of ethanol. Samples of 10 μ L of this solution were injected on Lux-Cellulose-3 (heptane / ethanol 80/20, 1 mL/min, UV detection at 220 nm) to monitor the percentage decrease of the second eluted enantiomer over time.

Solvent : Temperature =	Ethanol 78.29	°C
Time (min)	% second eluted enantiomer (%t)	In ((%t-50)/(%0-50))
0	97.72	0.0000
15	97.48	-0.0050
48	97.05	-0.0141
168	95.50	-0.0476
1180	83.80	-0.3449

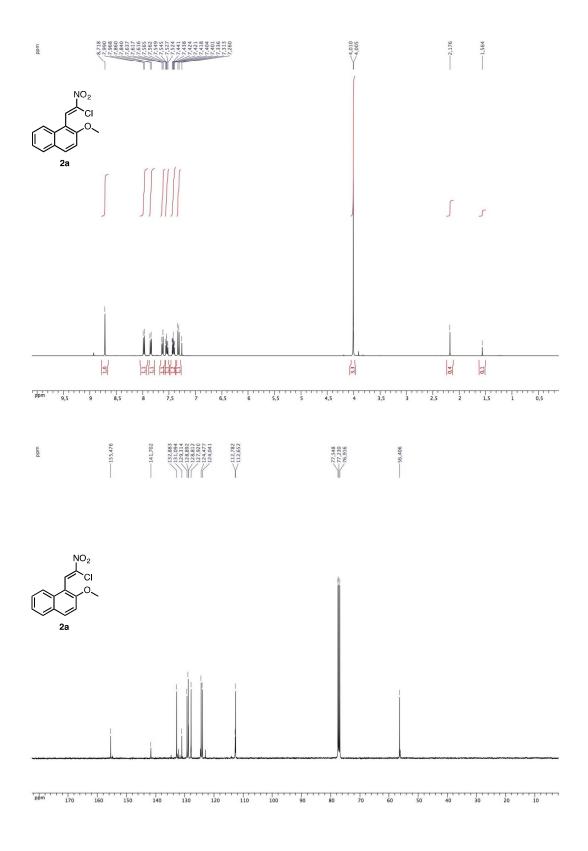
k racemisation =	4.87077E-06	s⁻¹
k enantiomerisation =	2.4354E-06	S ⁻¹
ΔG^{\neq} enantiomerisation =	124.33	kJ.mol⁻¹
	29.74	kcal.mol⁻¹
half-life time $t_{1/2}$ =	142308	seconds
	2371.79	minutes
	39.53	hours
	1.65	days

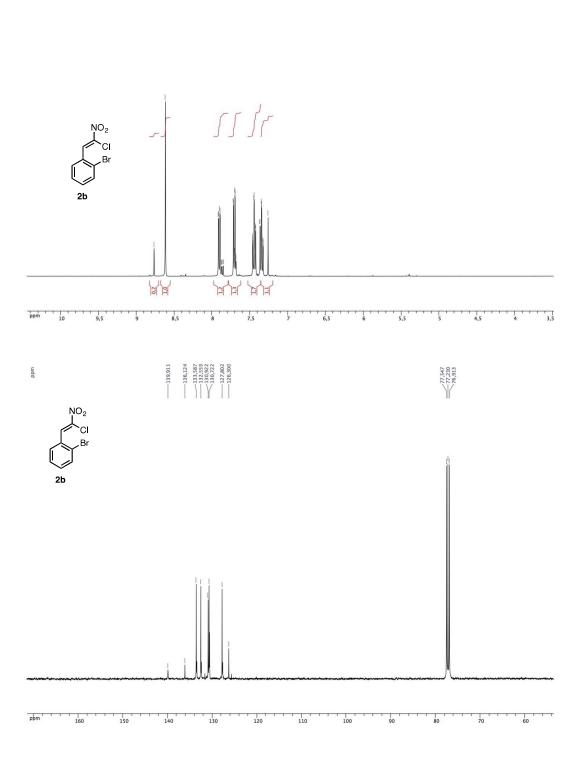
Enantiomerisation barrier for (10m)

-..

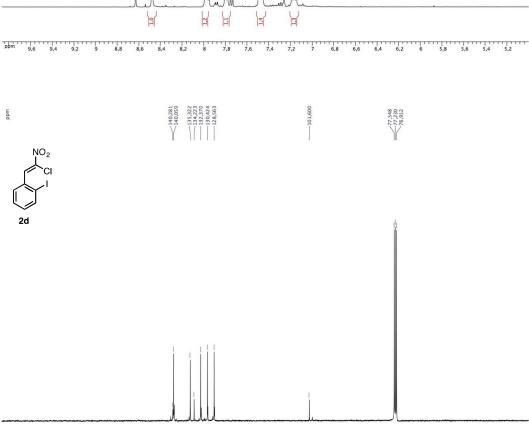

~ .

.

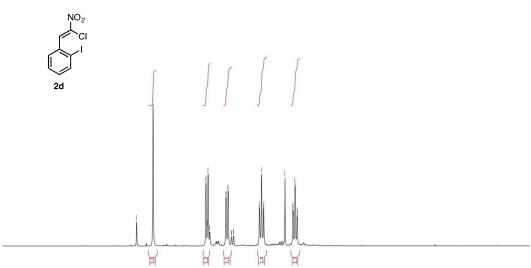

About 3 mg of enantio-enriched (**10m**) were refluxed in 15 mL of ethanol. Samples of 10 μ L of this solution were injected on Lux-Cellulose-4 (heptane / ethanol 80/20, 1 mL/min, UV detection at 220 nm) to monitor the percentage decrease of the second eluted enantiomer over time.


Solvent :	Ethanol		
Temperature =	78.29 °C		
Time (min)	% second eluted enantiomer (%t)	In ((%t-50)/(%0-50))	
0	97.93	0.0000	
66	96.98	-0.0200	
140	96.26	-0.0355	
260	94.68	-0.0702	
1290	84.54	-0.3276	

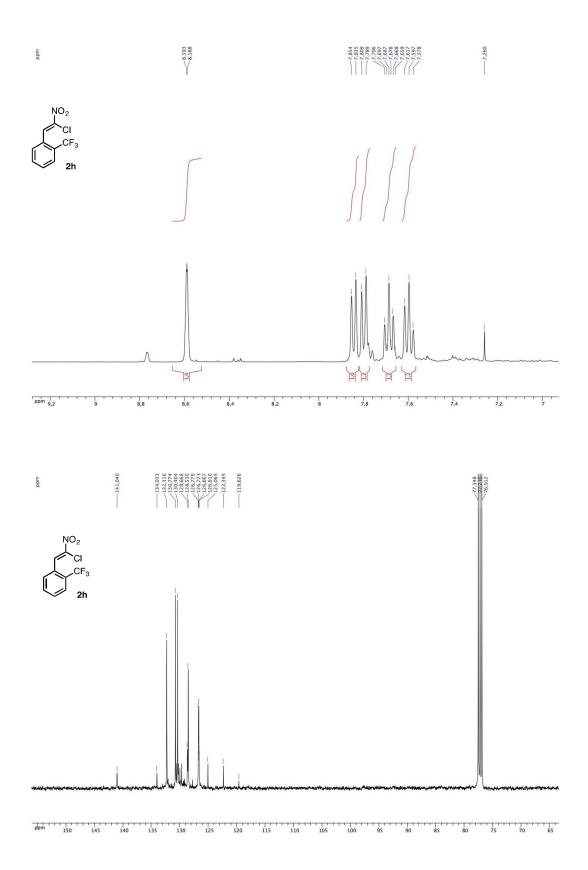
k racemisation =	4.21397E-06	s ⁻¹
k enantiomerisation =	2.1070E-06	s⁻¹
ΔG^{\neq} enantiomerisation =	124.75	kJ.mol⁻¹
	29.84	kcal.mol ⁻¹
half-life time t _{1/2} =	164488	seconds
	2741.47	minutes
	45.69	hours
	1.90	days

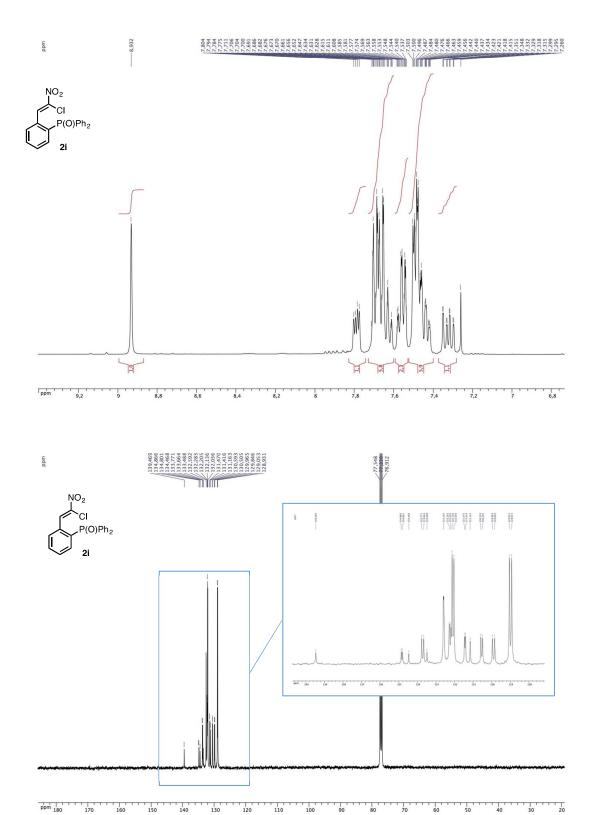


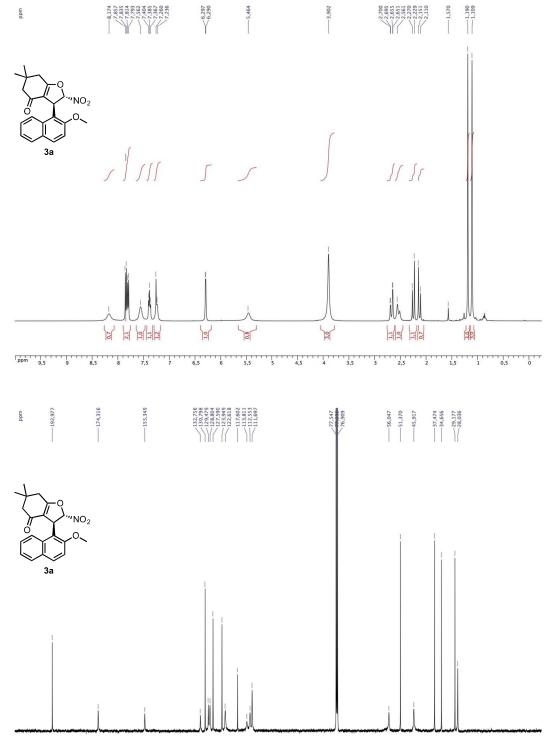
7. ¹H and ¹³C NMR spectra



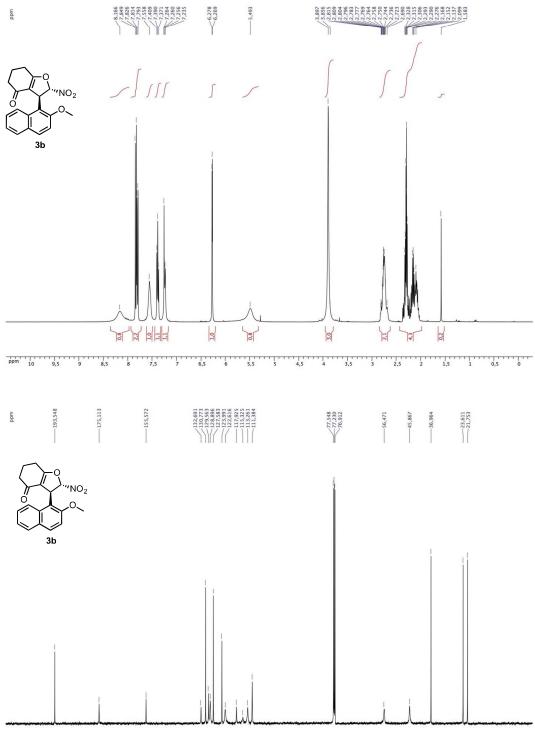
00022

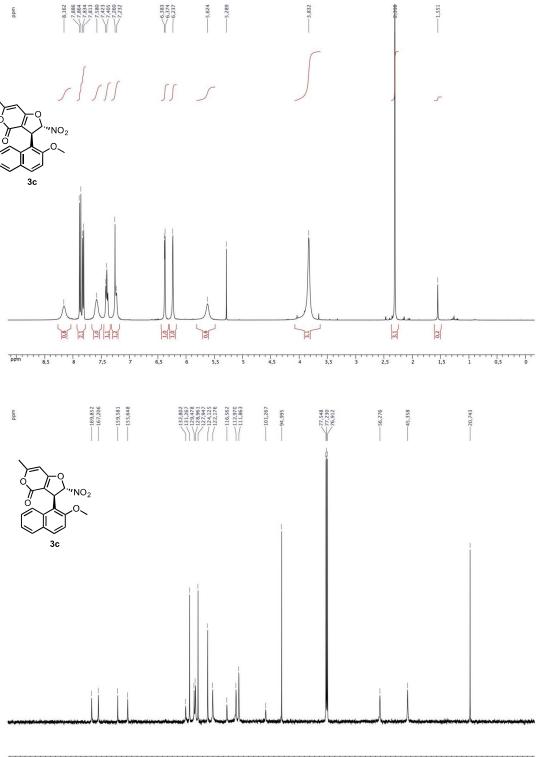


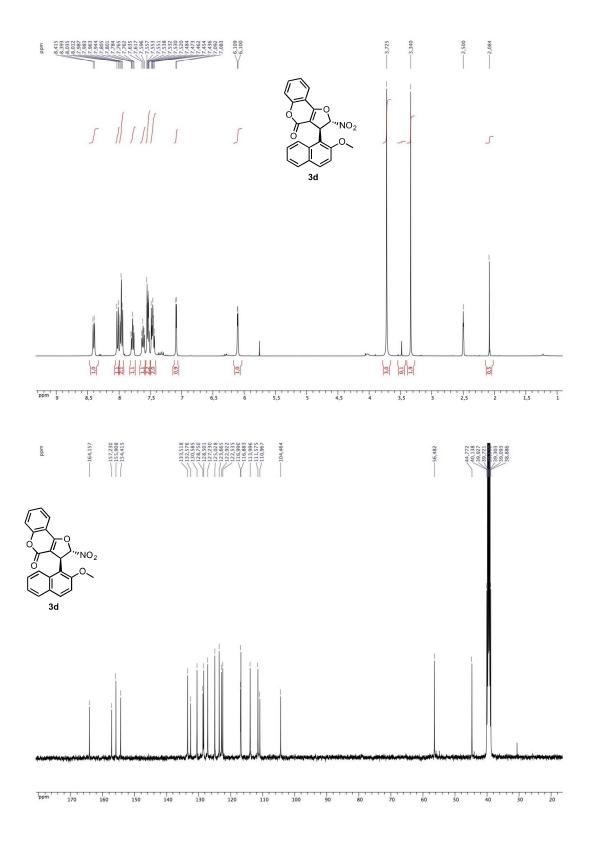

ppm 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40

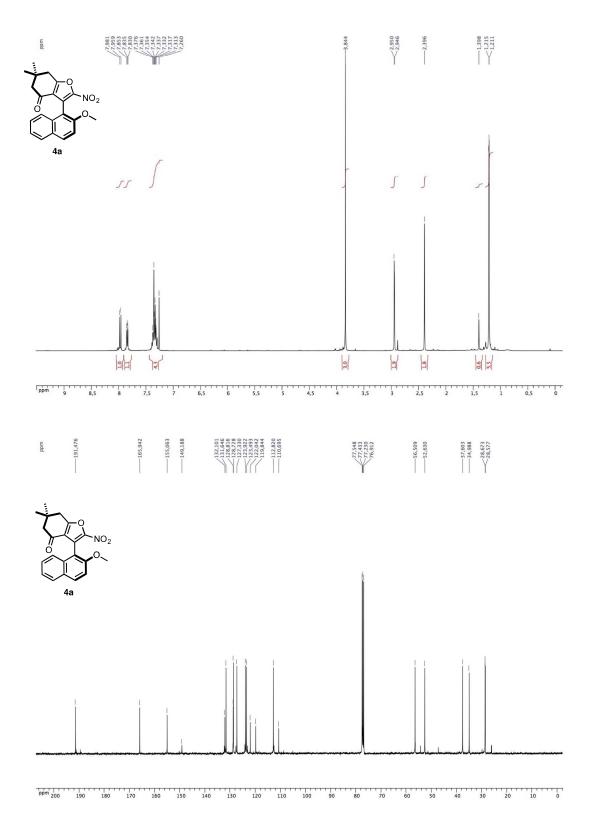

8,631

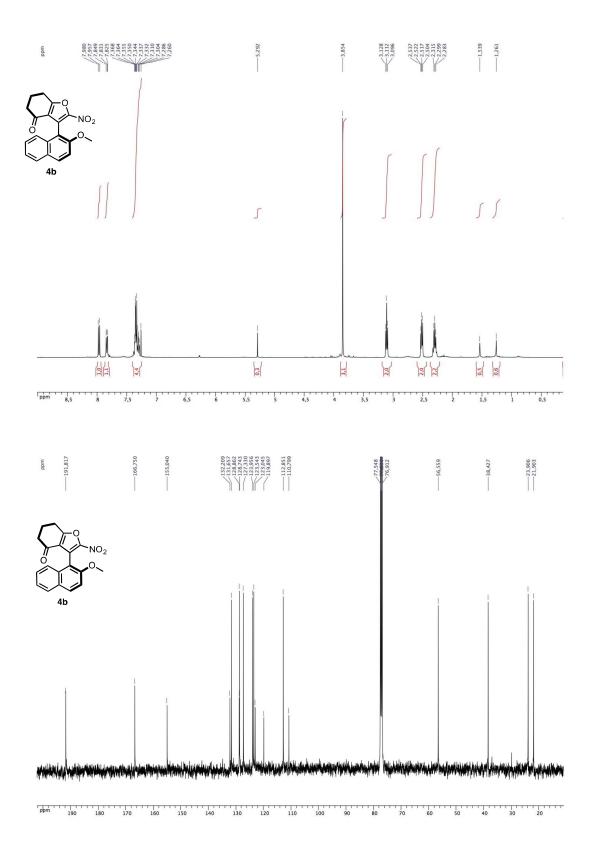
bpm

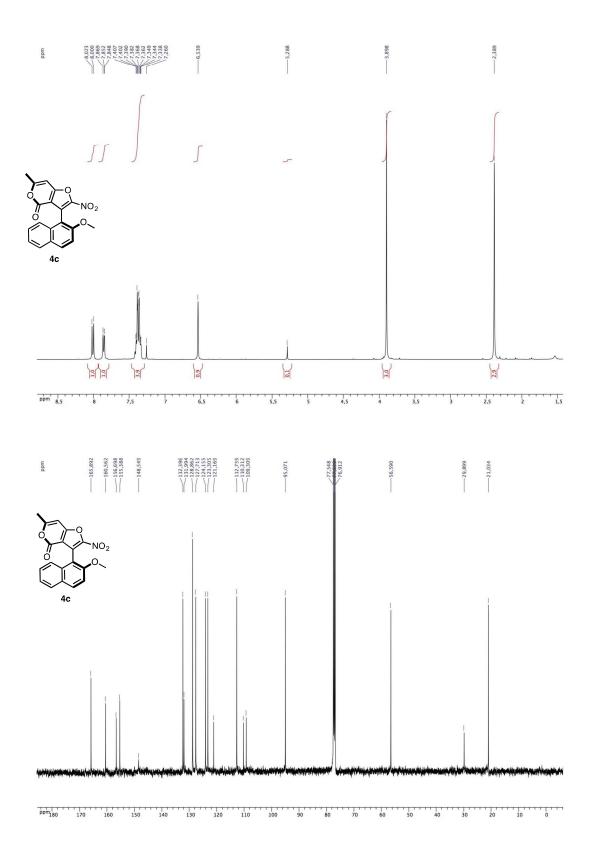


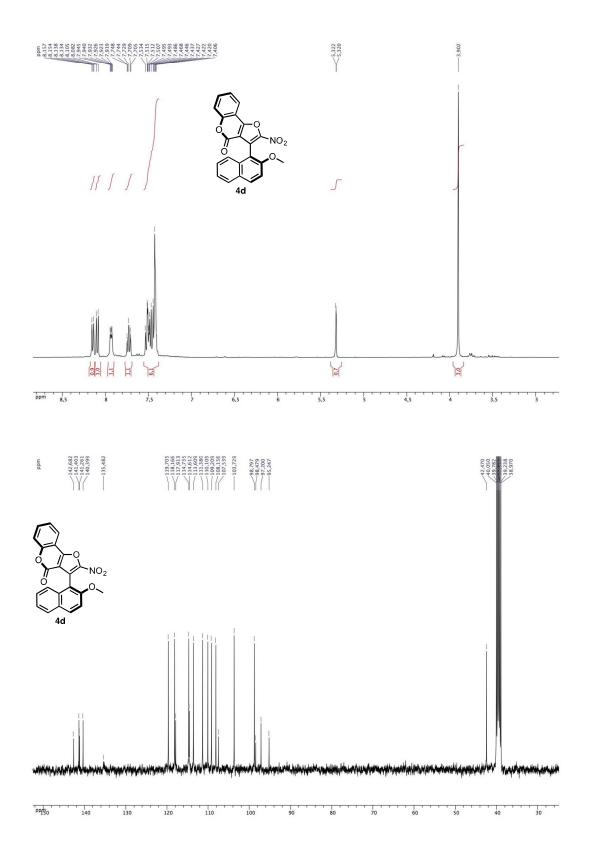

120 110

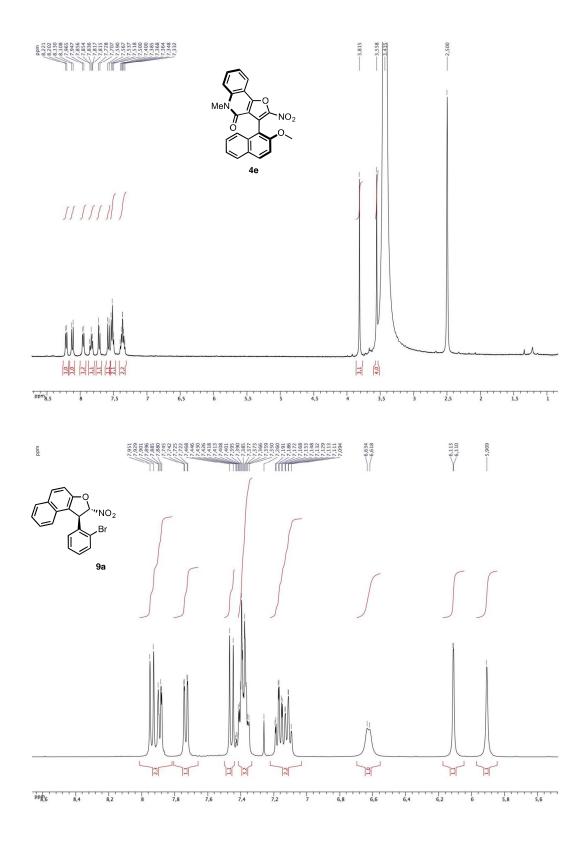

ppm 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

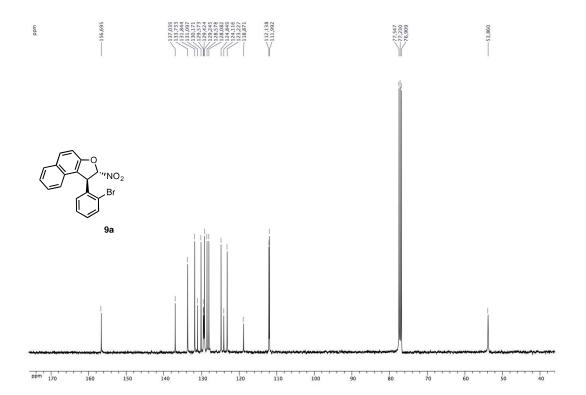


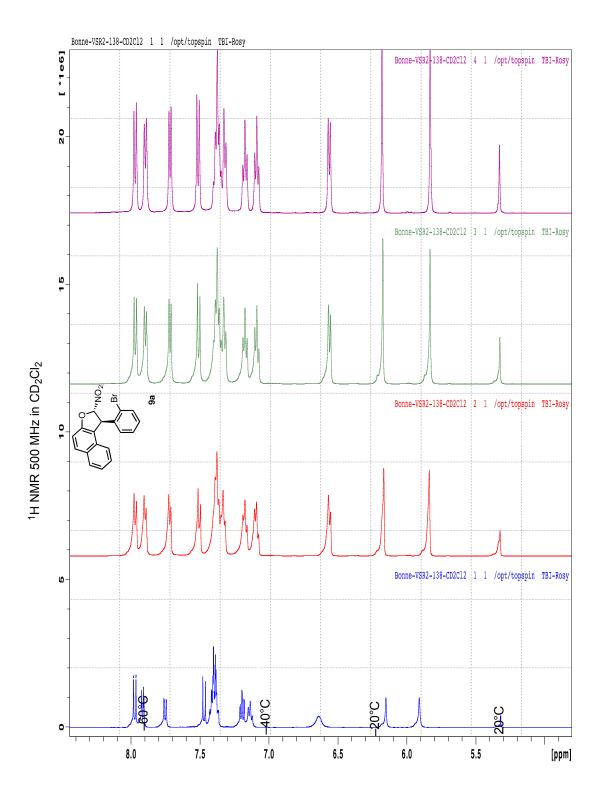

ppm 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

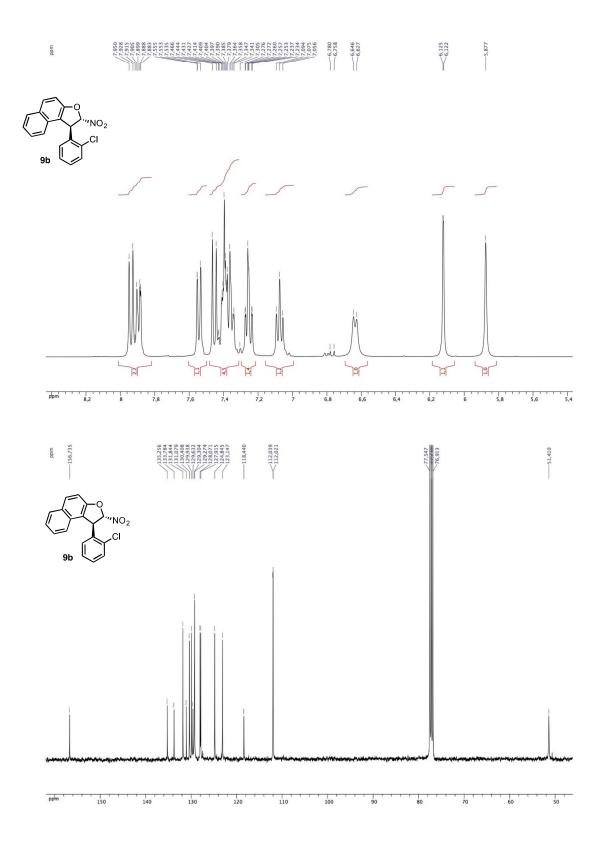


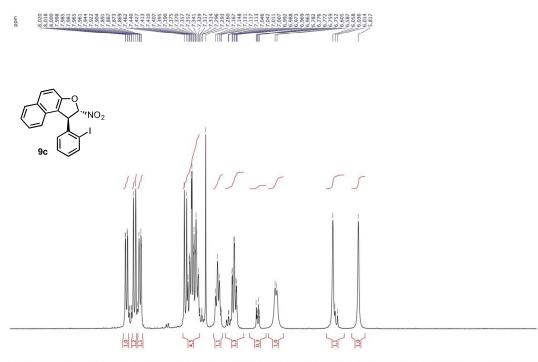

p^{pm} 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

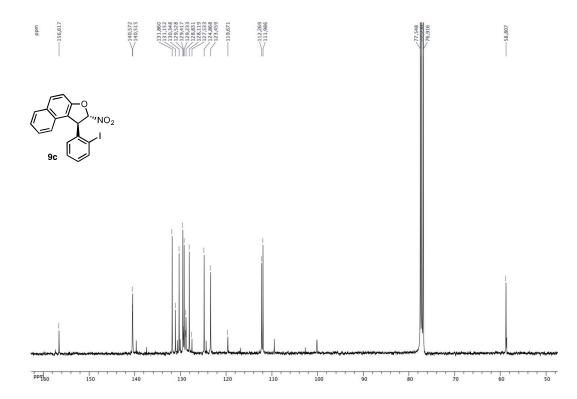


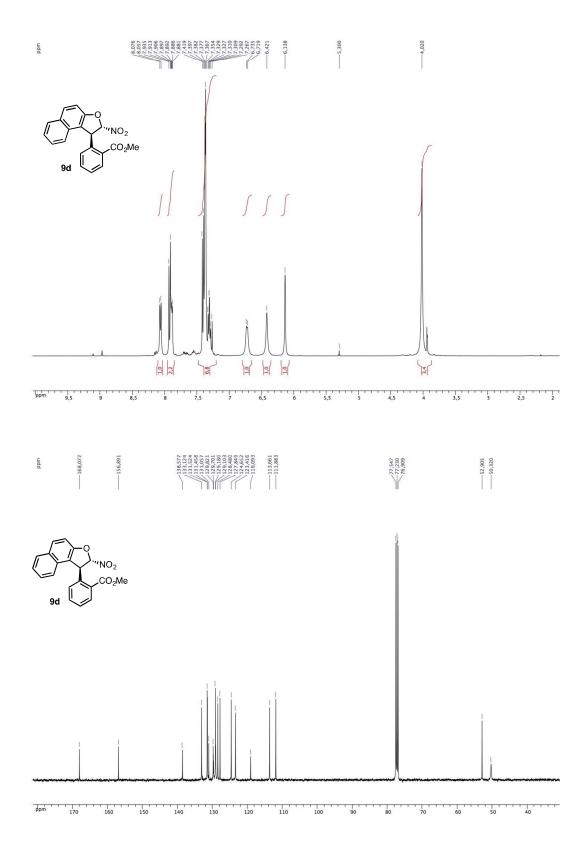


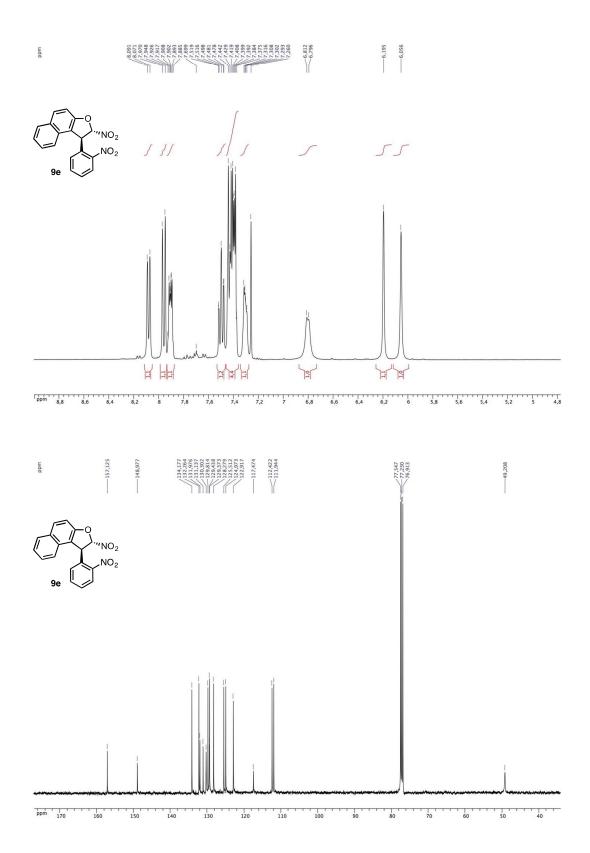


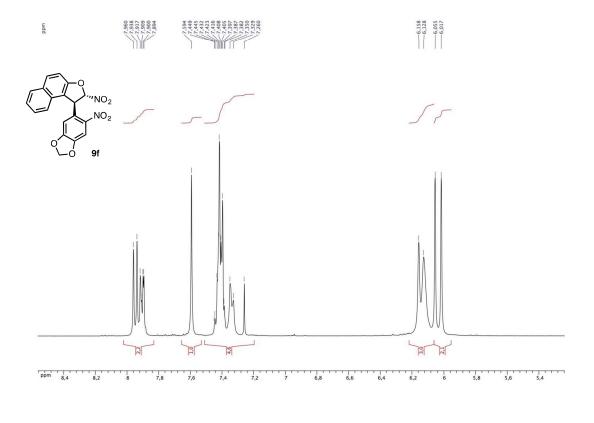


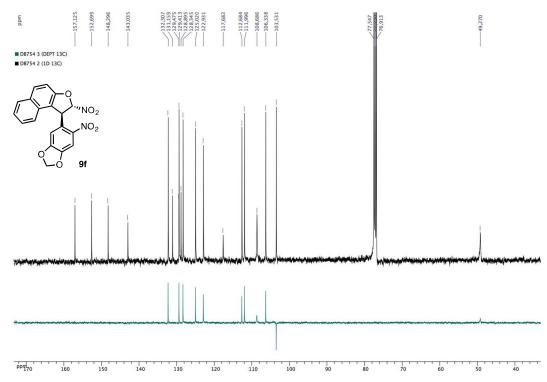


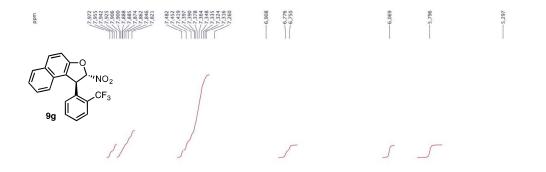


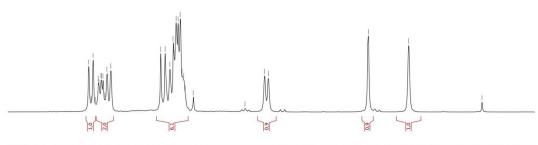


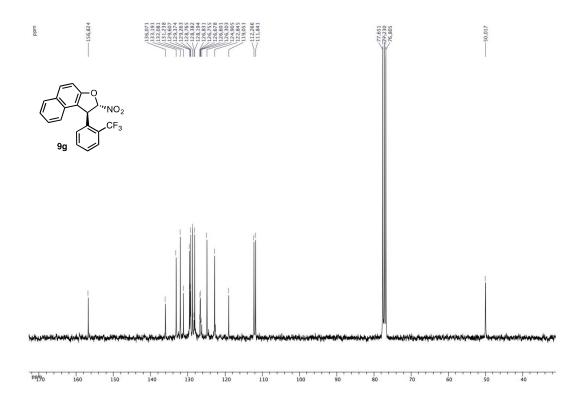


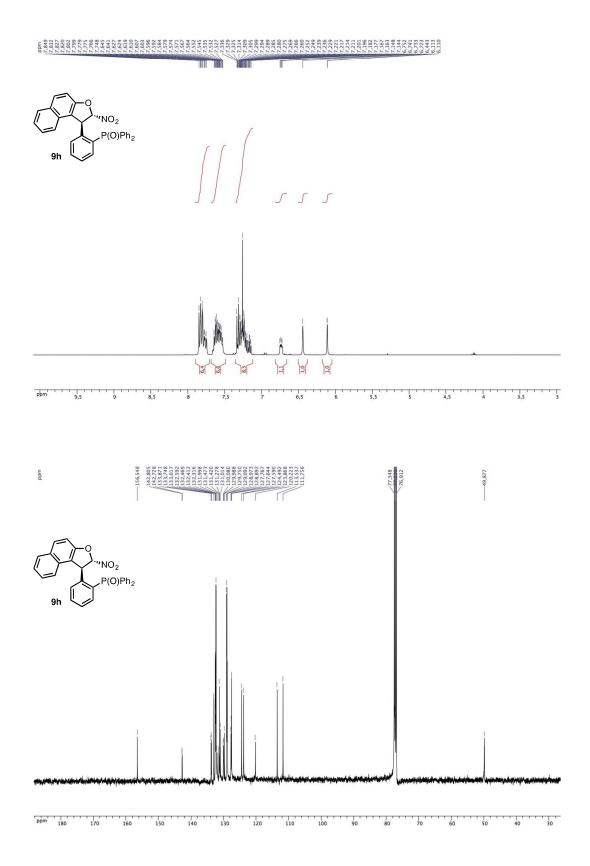


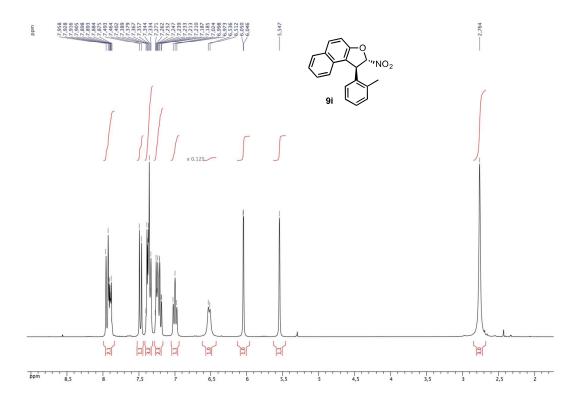

ppmg 8,8 8,6 8,4 8,2 8 7,8 7,6 7,4 7,2 7 6,8 6,5 6,4 6,2 6 5,8 5,6 5,4 5,2 5 4,8 4,6 4,4 4,2



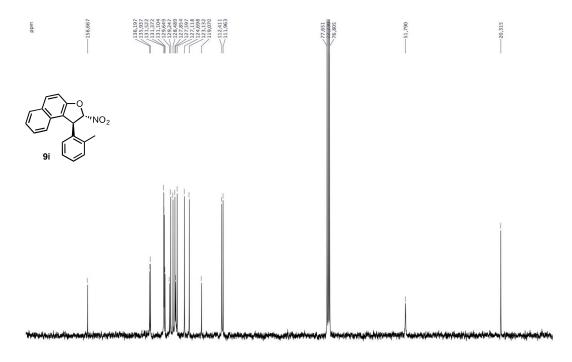




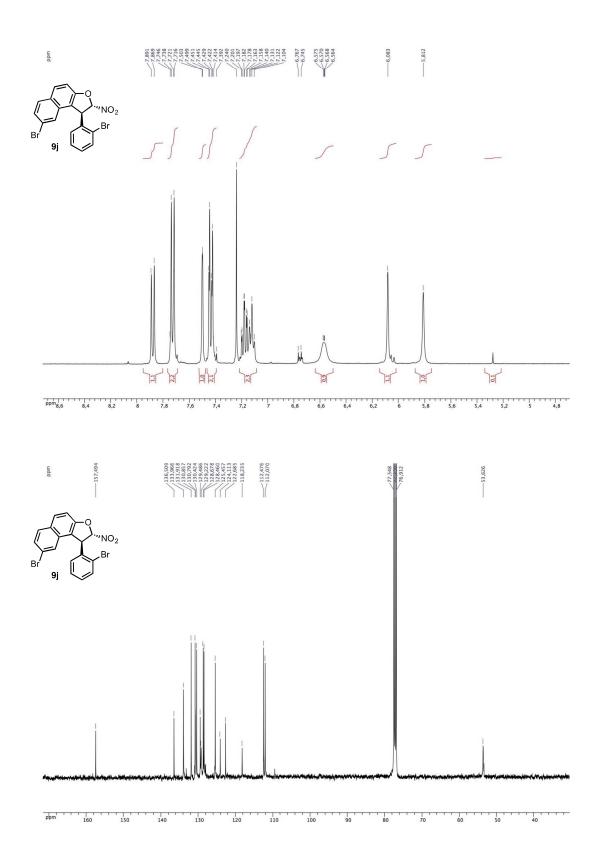


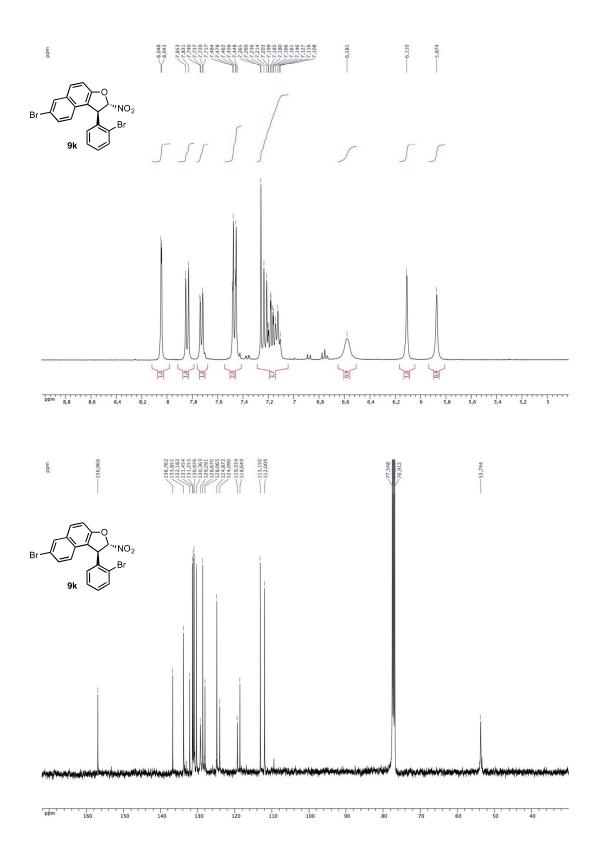


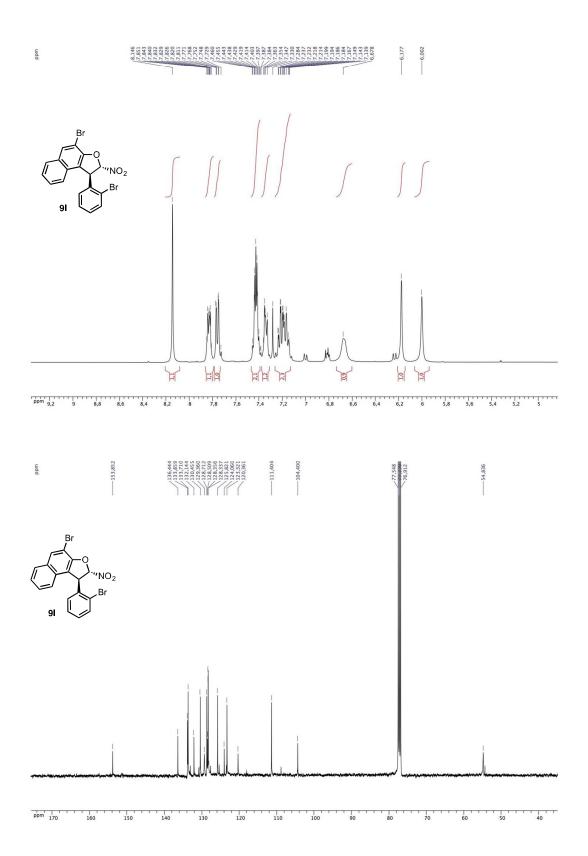

ppm 8,4 8,2 8 7,8 7,6 7,4 7,2 7 6,8 6,6 6,4 6,2 6 5,8 5,6 5,4 5,2 5

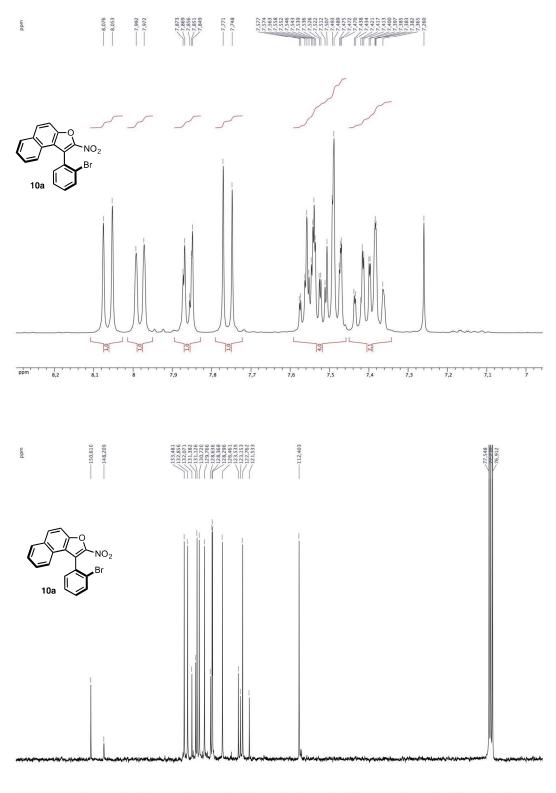


P¶¶20 120 100 80 60 40 20 0 −20 −40 −60 −80 −100 −120 −140 −160 −180 −200 −220 −240

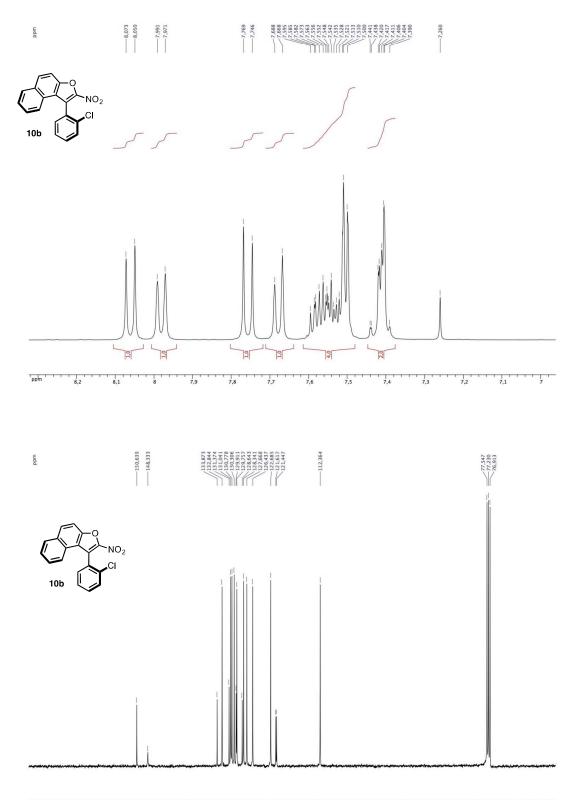


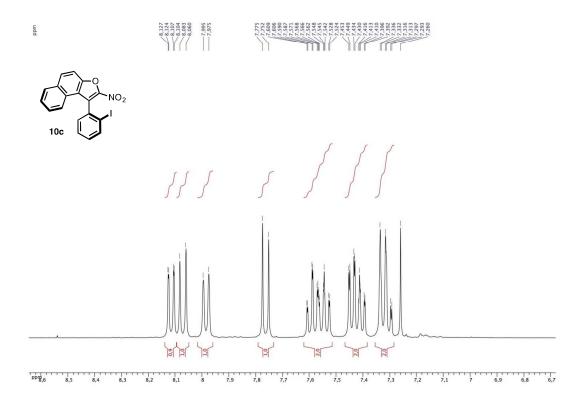

bpm

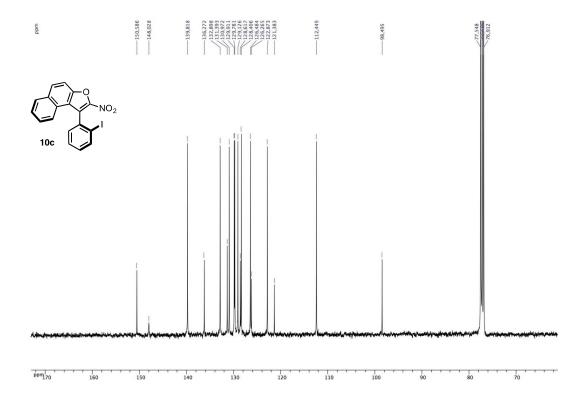

518'tE-----

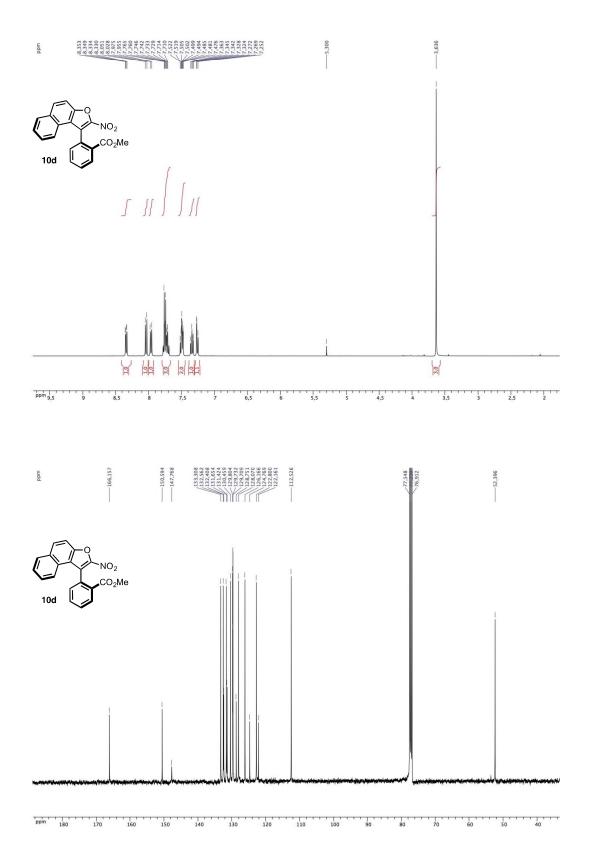


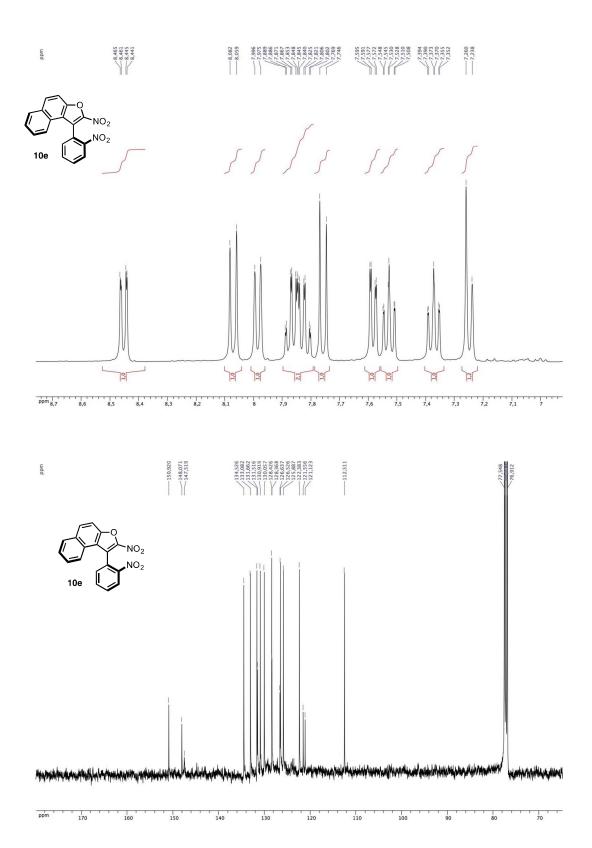
ppm 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10

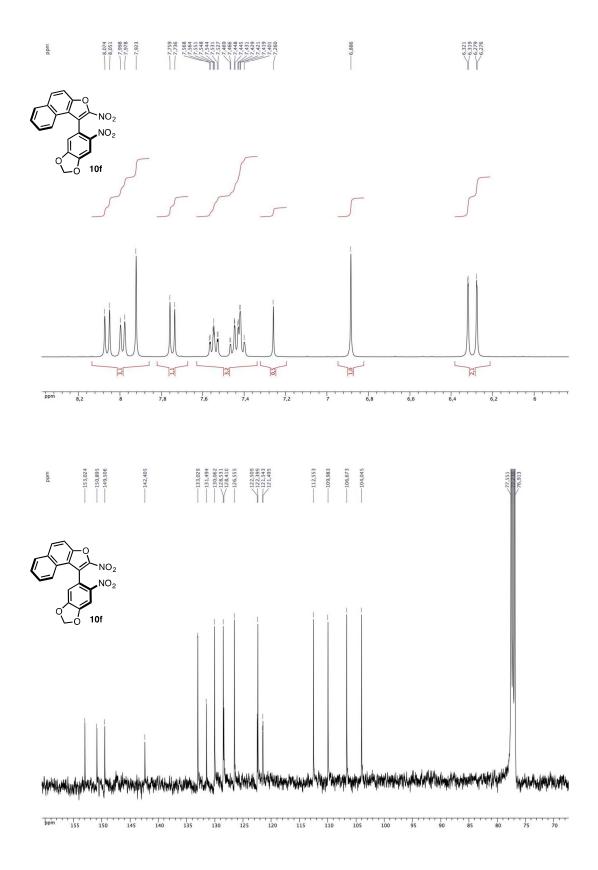


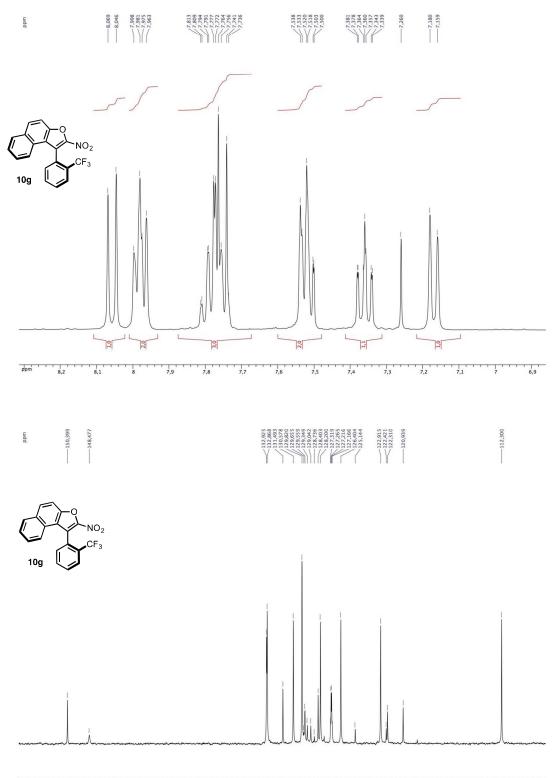


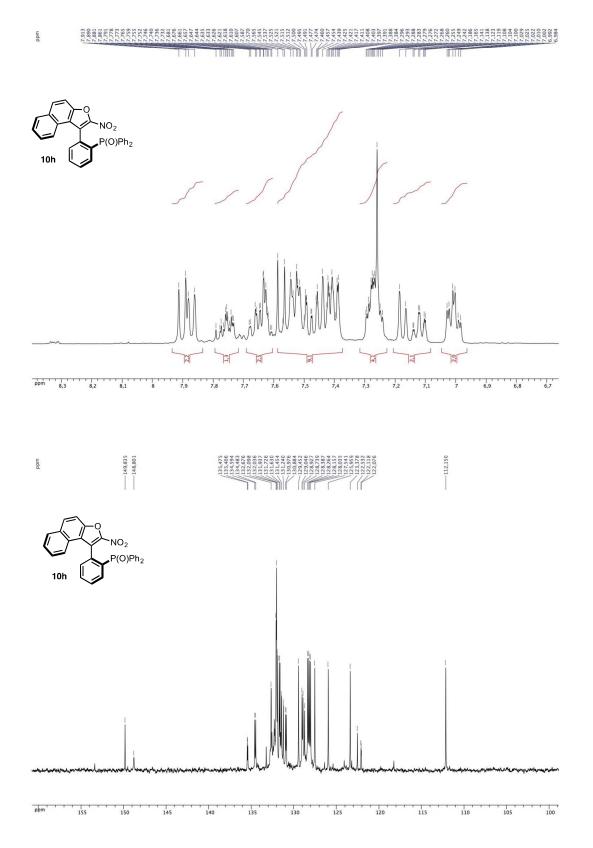


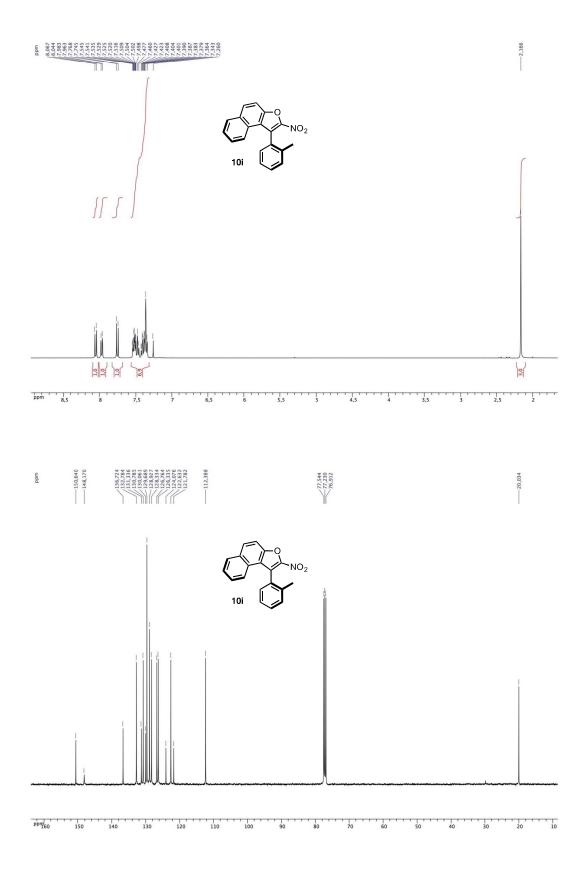

ppm 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70

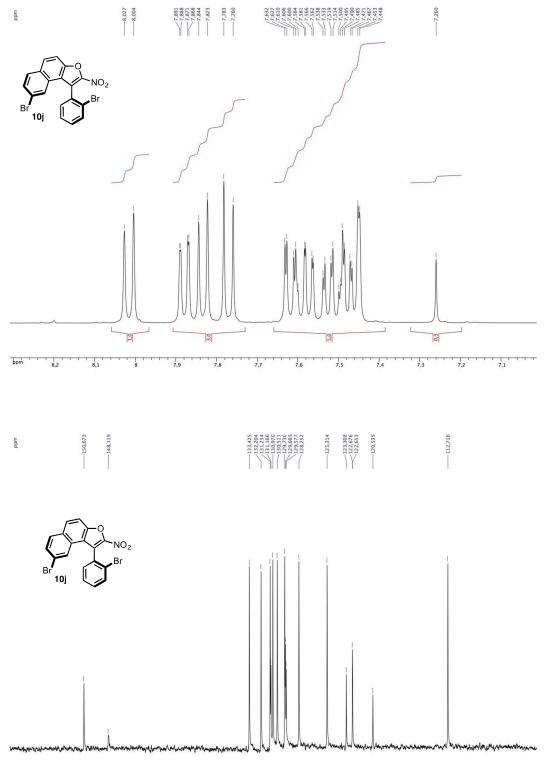


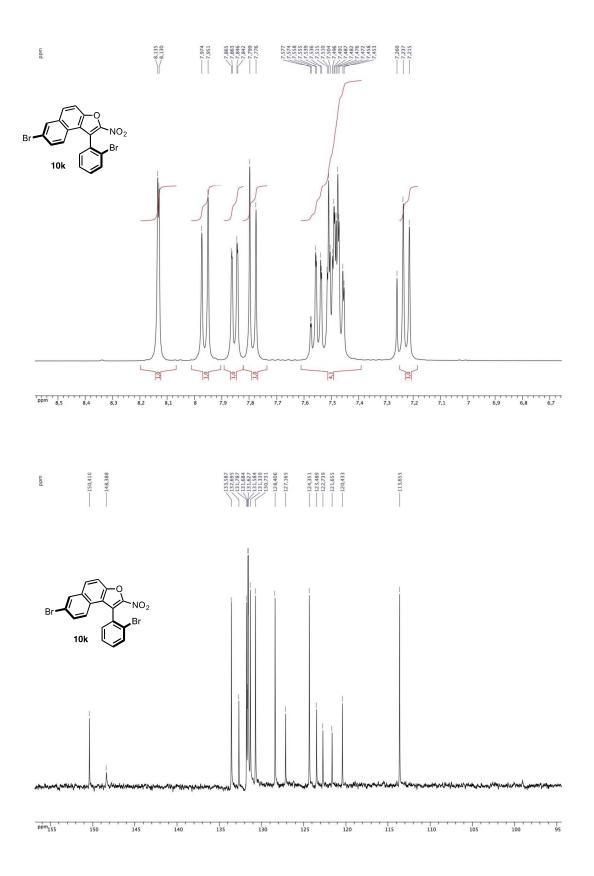

ppm170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65

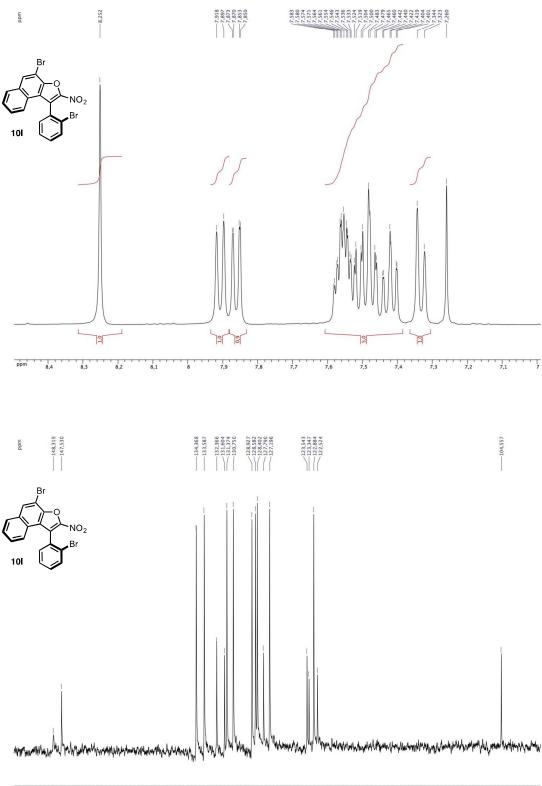


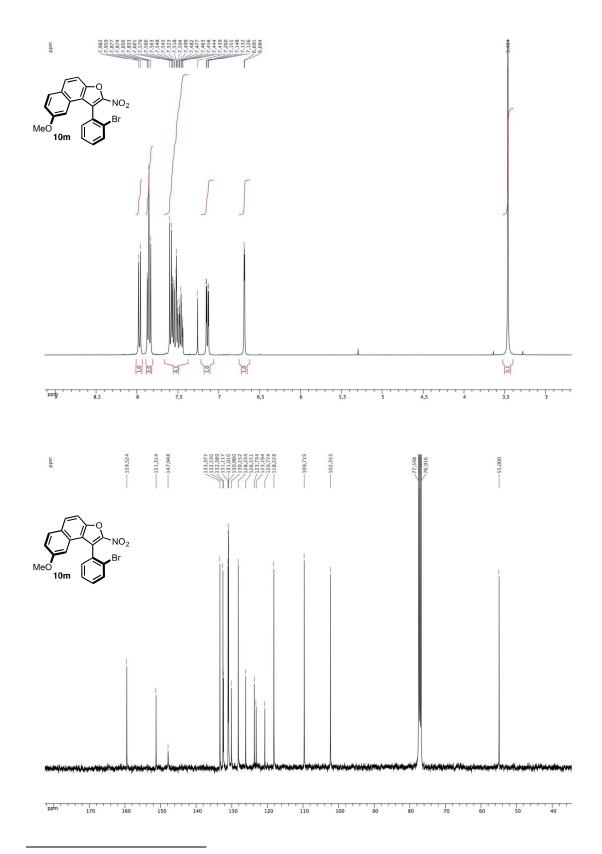







ppm 152 150 148 146 144 142 140 138 136 134 132 130 128 126 124 122 120 118 116 114 112 110





p^{pm} 156 154 152 150 148 146 144 142 140 138 136 134 132 130 128 126 124 122 120 118 116 114 112 110 108 106 104

ppm 150 148 146 144 142 140 138 136 134 132 130 128 126 124 122 120 118 116 114 112 110 108 106 104 102

(1) Dauzonne, D.; Royer, R. Synthesis 1987, 1020.

⁽²⁾ Bauvois, B.; Puiffe, M.-L.; Bongui, J.-B.; Paillat, S.; Monneret, C.; Dauzonne, D. J. Med. Chem. 2003, 46, 3900.

⁽³⁾ Zhu, Y.; Malerich, J. P.; Rawal, V. R. Angew. Chem. Int. Ed. 2010, 49, 153–156.
(4) Xie, J.-W.; Wang, T.; Zhou, F.T. Tetrahedron Lett. 2011, 52, 2379–2382.