
Supporting Information  

Water Interaction in Faujasite Probed by In Situ X-ray Powder Diffraction 

Carlos A. C. Pereza*, Neuman S. de Resendea*; Vera M. M. Salima; Martin Schmala  

a Universidade Federal do Rio de Janeiro, Chemical Engineering Program (PEQ), NUCAT, 

 Centro de Tecnologia, Ilha do Fundão, Rio de Janeiro, 21941-914, RJ, Brazil. 

 

Electron densities from X-ray powder diffraction 

Electron densities within a solid will determine its X-ray scattering pattern. In a nanoporous 

material that can sorb molecules within its pores and channels, one can identify a ‘clean 

state’, when its pores are free from sorbate molecules. For this state, the corresponding 

electron densities would be exclusively atomic in character, due to the framework atoms 

and/or charge compensating cations and could be reasonably modeled by a sum of atomic 

contributions. Once a starting model for the framework structure is known, one can refine its 

x-ray scattering pattern by conventional structural methods, i.e. by using the Rietveld method, 

for example. This procedure will provide a set of atomic coordinates representing the void or 

desorbed nanoporous solid. 

When the nanoporous solid adsorbs molecules its electron density shows also contributions 

from the sorbate in addition to those from the framework. As sorption can be experimentally 

made in arbitrarily ‘small’ quantities, the sorbate contribution will affect the X-ray scattering 

in an almost continuous way. This fact points to the possibly to treat the sorbate contribution 

as a perturbative effect, at least in the initial stages of sorption.  

Let us suppose that we know a model for a desorbed 3D ordered nanoporous solid. Its 

electron density can be described as a sum of atomic contributions: 



 

 

Where the summation runs over the framework atoms and extra-framework cations inside 

crystal unit cell:  

The corresponding structure factors ���ℎ���	are related to the electron density by a Fourier 

transform: 
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The (hkl) are the Miller indices and the bracket around ���
, �, ��	means a ‘site- time-and 

multiple-unit-cell average of the atomic densities, including thermal  motions and/or first type 

‘disorder’, those that can be described by displacement of atoms from their equilibrium 

position. Once we know the set of atomic positions, ‘thermal’ and cell parameters for the 

structure from published crystal data or refined the desorbed material X-ray or neutron 

pattern, we can calculate the set of complex quantities ���ℎ���.  
From an X-ray diffraction experiment, one can obtain from a peak area the module of a 

structure factor |F(hkl)|, if that peak doesn’t overlap with one another. The information about 

the structure factor’s phase angle is lost. This is referred in crystallography as ‘the phase 

problem’. In the frequent case of dealing with centrosymmetric structures, their electron 

density are even function of coordinates, and according to the formula (3), the structure 

factors will be real and their phase angles will be 0 (+ sign) or 180 degrees (- sign). Even in 

the case of dealing with a structure with inversion symmetry, one cannot retrieve their 

structure factors signs from diffraction data alone.  
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A powder X-ray pattern from a known nanoporous structure (assuming it is a 

centrosymmetric one) can be obtained experimentally after interacting it with an arbitrary 

‘small’ amount of sorbate molecules. From an isolated peak I(hkl), measured after sorption, 

we can calculate the corresponding structure factor |F(hkl)|. If it changes its sign upon 

sorption, then at some sorbent dose, the corresponding peak intensity would vanish, because 

F(hkl) will be close to zero. With this hint in mind, we propose a recursive way to guess the 

modules and signs of {F(hkl)} as a function of dose, starting from the desorbed structure and 

its set {Ff(hkl)}, letting the solid sorb a known dose and looking at the peak intensities. If 

some structure factor changes sign upon sorption, its corresponding peak intensity will 

decrease until zero value. Otherwise, it will retain the sign of the clean structure. This 

procedure may be applied sequentially for analyzing diffraction data from subsequent sorbate 

doses.  

In some cases, the low angle side of the X-ray diffraction pattern contains a set of well-

resolved peaks. In these favorable cases, one can try to recover an electron density 

‘representation’ of the structure by Fourier transform of the F(hkl). Thus, we could also 

estimate an approximation for the excess electron density �+�
, �, ��	due to the sorbate, as the 

transform of the difference between structure factors of the sorbed and framework material: 

 �+�
, �, �� ≅ 1
5$���ℎ��� − ���ℎ������������������

���
 (4) 

In order to obtain a faithful representation of the sorbate densities, the sum (4) does not need 

to go to high h,k,l numbers, i.e., it does not need to include high terms in reciprocal space, 

because sorbate species densities have a broad distribution in real space. Some drawbacks of 

the proposed method may arise due to incompleteness of the set {F(hkl)}, because powder 

diffraction peaks eventually overlap. But in favorable cases, powder diffraction provides a set 

of isolated peaks at low angle side of the pattern. In that case, it is possible to perform the 

Fourier transformation of eq. (4).  



The Maximum Entropy Method (MEM), that is based on information theory, can also be used 

to invert equation (4), once some independent phased structure factors {F(hkl)-Ff(hkl)}, their 

respective uncertainties {6���} and the number of excess electrons N=(F(000)-Ff(000)) are 

known. Basically, the maximum entropy algorithm searches for a distribution �+�
, �, �� that 

maximizes the information entropy contained in the m unit cell pixels, labeled by i: 
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A  being the normalized pixel density in the sense that ∑ �9�: = 1*�(> . Observed 

phased structure factors impose constraints on the maximization of the functional 7[�9�:]. 
They can be included by the technique of Lagrange multipliers as a kind of constraint upon a 

statistical knowledge of F-values within uncertainties, defining:  
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In this work, the 0th order single-pixel approximation1 was employed. We performed a test of 

the feasibility of the maximum entropy method, trying to recover the faujasite framework 

electron density from 29 non-overlapped peaks obtained from experimental powder 

diffraction of the clean NaY support, limiting the resolution to 2Å, i.e., using X-ray powder 

data below 2θ = 45 deg. As shown in figure S1a, the recovered 3-D electron density map 

shows an X-ray ‘image’ of the framework (figure S1b), although the resolution is not enough 

to provide details about the T-O bond electronic distribution. It is possible to see where the 

charge compensation cations sit, as they are evidenced by sites where excess electron are 

found at I, I’ and II in figure S1a. For dehydrated NaY, the excess electron distribution is 

atomic and its X-ray scattering can be easily modeled by a sum of atomic or ionic form 

factors. Since the 2Å resolution is enough to reveal some of the framework features, it will be 



enough to ‘image’ the extra-framework electron distribution, since this contribution is less 

sharp defined in real space.  

 

Figure S1. a) Limited resolution electron density of dehydrated NaY; b) Model as a sum of 

atomic/ionic contributions. 
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