Supporting Information

Two-Dimensional SnS: A Phosphorene Analogue with Strong In-Plane Electronic Anisotropy

Zhen Tian,^{1,2,3} Chenglei Guo,^{1,2,3} Mingxing Zhao,^{2,3} Ranran Li,^{2,3} and Jiamin Xue^{1,2,3,4*}

¹Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China

²School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China

³University of Chinese Academy of Sciences, Beijing 100049, China

⁴Center for Excellence in Superconducting Electronics (CENSE), Chinese Academy of Sciences, Shanghai 200050, China

*xuejm@shanghaitech.edu.cn

density of dangling bonds:

2/c > 2/b > 2/d

Figure S1. Procedure for calculating the density of dangling bonds at different planes. At the (010) plane, we can see that every two bonds take a length of c. While for the (001) and (011) planes, every two bonds take a length of b and d, respectively. Since c, b and d form a right triangle, we have $d^2 = c^2 + b^2$. Then the density of dangling bonds at the (011) planes is the lowest, hence thermodynamically most stable.

Figure S2. (a, d) OM and AFM images of a 13.3 nm SnS FET device on 300 nm SiO₂ substrate. (b, c) Raman spectra of the SnS FET device shown in (a) and (d) with the polarization of incident and scattered light parallel (b) and perpendicular (c), respectively. (e, f) The I_{ds} - V_{ds} plots at various *T* along the armchair and zigzag directions respectively with the back gate grounded.

(g, h) The channel sheet conductivity σ versus V_{bg} at different T along the armchair and zigzag directions. Again it is easy to see that the zigzag direction has the higher mobility.

Figure S3. (a, b) The mobility μ and the four-terminal sheet conductivity σ extracted from Figures S2(g) and (h) at zero gate voltage. (c) The ratios of μ , σ and two-terminal conductivity σ_{2t} between zigzag and armchair directions at various *T*. (d) $\ln nT^{-3/4}$ as a function of 1000/*T*. The solid lines are linear fits of the data with activation energy E_a of 43 ± 2 meV along the armchair direction and 41 ± 2 meV along the zigzag direction.