Supporting Information

Two-Dimensional SnS: A Phosphorene Analogue with Strong In-Plane Electronic Anisotropy

Zhen Tian, ${ }^{1,2,3}$ Chenglei Guo, ${ }^{1,2,3}$ Mingxing Zhao, ${ }^{2,3}$ Ranran Li, ${ }^{2,3}$ and Jiamin Xue ${ }^{1,2,3,4^{*}}$
${ }^{1}$ Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
${ }^{2}$ School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
${ }^{3}$ University of Chinese Academy of Sciences, Beijing 100049, China
${ }^{4}$ Center for Excellence in Superconducting Electronics (CENSE), Chinese Academy of Sciences, Shanghai 200050, China
*xuejm@shanghaitech.edu.cn

density of dangling bonds:

$2 / c>2 / b>2 / d$

Figure S1. Procedure for calculating the density of dangling bonds at different planes. At the (010) plane, we can see that every two bonds take a length of c . While for the (001) and (011) planes, every two bonds take a length of b and d, respectively. Since c, b and d form a right triangle, we have $d^{2}=c^{2}+b^{2}$. Then the density of dangling bonds at the (011) planes is the lowest, hence thermodynamically most stable.

Figure S2. (a, d) OM and AFM images of a 13.3 nm SnS FET device on $300 \mathrm{~nm} \mathrm{SiO}_{2}$ substrate. (b, c) Raman spectra of the SnS FET device shown in (a) and (d) with the polarization of incident and scattered light parallel (b) and perpendicular (c), respectively. (e, f) The $I_{d s}-V_{d s}$ plots at various T along the armchair and zigzag directions respectively with the back gate grounded.
(g, h) The channel sheet conductivity σ versus $V_{b g}$ at different T along the armchair and zigzag directions. Again it is easy to see that the zigzag direction has the higher mobility.

Figure S3. (a, b) The mobility μ and the four-terminal sheet conductivity σ extracted from Figures $\mathrm{S} 2(\mathrm{~g})$ and (h) at zero gate voltage. (c) The ratios of μ, σ and two-terminal conductivity $\sigma_{2 t}$ between zigzag and armchair directions at various T. (d) $\ln n T^{-3 / 4}$ as a function of $1000 / T$. The solid lines are linear fits of the data with activation energy E_{a} of $43 \pm 2 \mathrm{meV}$ along the armchair direction and $41 \pm 2 \mathrm{meV}$ along the zigzag direction.

