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General Method 
 
Adrenocorticotropic hormone (ACTH), β-amyloid, kassinin, glucagon, and octreotide were 

purchased from GenScript USA Inc., and reconstituted according to the instructions. Other 

oligopeptides were purchased from GL Biochem (Shanghai) Ltd. All other reagents and solvents 

were of ACS-certified grade or higher, and were used as received from the commercial suppliers. 

Routine 1H and 13C NMR spectra were recorded on a Bruker DRX-400 or on a Varian VXR-400 

spectrometer. ESI-MS mass was recorded on Shimadzu LCMS-2010 mass spectrometer. 

Fluorescence spectra were recorded at ambient temperature on a Varian Cary Eclipse Fluorescence 

spectrophotometer.  ITC was performed using a MicroCal VP-ITC Microcalorimeter with Origin 7 

software and VPViewer2000 (GE Healthcare, Northampton, MA). 

Chart S1. Structures of peptides used in the study. 
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Synthesis 
 
 
Typical procedure for the synthesis of MINPs.1  To a micellar solution of compound 1 (9.3 mg, 

0.02 mmol) in D2O (2.0 mL), divinylbenzene (DVB, 2.8 µL, 0.02 mmol), WWGG (10 µL of a 21.1 

mg/mL, 0.0004 mmol) in D2O, and 2,2-dimethoxy-2-phenylacetophenone (DMPA,10 µL of a 12.8 

mg/mL, 0.0005 mmol) in DMSO were added. (D2O instead of H2O was used to allow the reaction 

progress to be monitored by 1H NMR spectroscopy.) The mixture was subjected to ultrasonication 

for 10 min before compound 2 (4.1 mg, 0.024 mmol), CuCl2 (10 µL of a 6.7 mg/mL, 0.0005 mmol) 

in D2O, and sodium ascorbate (10 µL of a 99 mg/mL solution, 0.005 mmol) in D2O were added. 

After the reaction mixture was stirred slowly at room temperature for 12 h, compound 3 (10.6 mg, 

0.04 mmol), CuCl2 (10 µL of a 6.7 mg/mL solution, 0.0005 mmol), and sodium ascorbate (10 µL of 

a 99 mg/mL solution, 0.005 mmol) in D2O were added. The  reaction mixture was stirred for another 

6 h at room temperature and transferred to a glass vial, purged with nitrogen for 15 min, then sealed 

with a rubber stopper and irradiated in a Rayonet reactor for 12 h. 1H NMR spectroscopy was used to 

monitor the progress of reaction. The reaction mixture was poured into acetone (8 mL). The 

precipitate was collected by centrifugation and washed with a mixture of acetone/water (5 mL/1 mL) 

three times, followed by methanol/acetic acid (5 mL/0.1 mL) three times. The product was dried in 

air to afford the final MINPs (~80%). 

 
 

 

 

                                                
1 Awino, J. K.; Zhao, Y. J. Am. Chem. Soc. 2013, 135, 12552. 
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 Figure S1. 1H NMR spectra of (a) Compound 1 in CDCl3, (b) alkynyl-SCM in D2O, and (c) 

MINP(WWGG) in D2O. 

 

 

 

 

 
 
 
Figure S2. Distribution of the hydrodynamic diameters of the nanoparticles in water as determined 

by DLS for (a) alkynyl-SCM, (b) surface-functionalized SCM, and (c) MINP(WWGG) after 

purification.  
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Figure S3. Distribution of the molecular weights and the correlation curves for MINP(WWGG) from 

the DLS. The PRECISION DECONVOLVE program assumes the intensity of scattering is 

proportional to the mass of the particle squared. If each unit of building block for the MINP(WWGG) 

is assumed to contain one molecule of compound 1 (MW = 465 g/mol), 1.2 molecules of compound 

2 (MW = 172 g/mol), one molecule of DVB (MW = 130 g/mol), and 0.8 molecules of compound 3 

(MW = 264 g/mol), the molecular weight of MINP(WWGG) translates to 50 [= 50600 / (465 + 

1.2×172 + 130 + 0.8×264] of such units.   
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 Figure S4. 1H NMR spectra of (a) Compound 1 in CDCl3, (b) alkynyl-SCM in D2O, and (c) 

MINP(GWWG) in D2O. 

 

 

 

 
 
 
 

Figure S5. Distribution of the hydrodynamic diameters of the nanoparticles in water as determined 

by DLS for (a) alkynyl-SCM, (b) surface-functionalized SCM, and (c) MINP(GWWG) after 

purification.  
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Figure S6. Distribution of the molecular weights and the correlation curves for MINP(GWWG) from 

the DLS. The PRECISION DECONVOLVE program assumes the intensity of scattering is 

proportional to the mass of the particle squared. If each unit of building block for the MINP(GWWG) 

is assumed to contain one molecule of compound 1 (MW = 465 g/mol), 1.2 molecules of compound 

2 (MW = 172 g/mol), one molecule of DVB (MW = 130 g/mol), and 0.8 molecules of compound 3 

(MW = 264 g/mol), the molecular weight of MINP(GWWG) translates to 50 [= 50500 / (465 + 

1.2×172 + 130 + 0.8×264] of such units.   
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 Figure S7. 1H NMR spectra of (a) Compound 1 in CDCl3, (b) alkynyl-SCM in D2O, and (c) 

MINP(WGWG) in D2O. 

 

 

 

 
 
 
 

Figure S8. Distribution of the hydrodynamic diameters of the nanoparticles in water as determined 

by DLS for (a) alkynyl-SCM, (b) surface-functionalized SCM, and (c) MINP(WGWG) after 

purification.  
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Figure S9. Distribution of the molecular weights and the correlation curves for MINP(WGWG) from 

the DLS. The PRECISION DECONVOLVE program assumes the intensity of scattering is 

proportional to the mass of the particle squared. If each unit of building block for the MINP(WGWG) 

is assumed to contain one molecule of compound 1 (MW = 465 g/mol), 1.2 molecules of compound 

2 (MW = 172 g/mol), one molecule of DVB (MW = 130 g/mol), and 0.8 molecules of compound 3 

(MW = 264 g/mol), the molecular weight of MINP(WGWG) translates to 50 [= 50400 / (465 + 

1.2×172 + 130 + 0.8×264] of such units.   
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 Figure S10. 1H NMR spectra of (a) Compound 1 in CDCl3, (b) alkynyl-SCM in D2O, and (c) 

MINP(WGGW) in D2O. 

 

 

 

 
 
 
 

Figure S11. Distribution of the hydrodynamic diameters of the nanoparticles in water as determined 

by DLS for (a) alkynyl-SCM, (b) surface-functionalized SCM, and (c) MINP(WGGW) after 

purification.  
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Figure S12. Distribution of the molecular weights and the correlation curves for MINP(WGGW) 

from the DLS. The PRECISION DECONVOLVE program assumes the intensity of scattering is 

proportional to the mass of the particle squared. If each unit of building block for the MINP(WGGW) 

is assumed to contain one molecule of compound 1 (MW = 465 g/mol), 1.2 molecules of compound 

2 (MW = 172 g/mol), one molecule of DVB (MW = 130 g/mol), and 0.8 molecules of compound 3 

(MW = 264 g/mol), the molecular weight of MINP(WGGW) translates to 50 [= 50200 / (465 + 

1.2×172 + 130 + 0.8×264] of such units.   
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Figure S13. 1H NMR spectra of (a) Compound 1 in CDCl3, (b) alkynyl-SCM in D2O, and (c) 

MINP(Boc-FF) in D2O. 

 

Figure S14. Distribution of the hydrodynamic diameters of the nanoparticles in water as determined 

by DLS for (a) alkynyl-SCM, (b) surface-functionalized SCM, and (c) MINP(Boc-FF) after 

purification. 
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Figure S15. Distribution of the molecular weights and the correlation curves for MINP(Boc-FF) 

from the DLS. The PRECISION DECONVOLVE program assumes the intensity of scattering is 

proportional to the mass of the particle squared. If each unit of building block for the MINP(Boc-FF) 

is assumed to contain one molecule of compound 1 (MW = 465 g/mol), 1.2 molecules of compound 

2 (MW = 172 g/mol), one molecule of DVB (MW = 130 g/mol), and 0.8 molecules of compound 3 

(MW = 264 g/mol), the molecular weight of MINP(Boc-FF) translates to 50 [= 50700 / (465 + 

1.2×172 + 130 + 0.8×264] of such units.   
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Figure S16. 1H NMR spectra of (a) Compound 1 in CDCl3, (b) alkynyl-SCM in D2O, and (c) 

MINP(FF) in D2O. 

 

Figure S17. Distribution of the hydrodynamic diameters of the nanoparticles in water as determined 

by DLS for (a) alkynyl-SCM, (b) surface-functionalized SCM, and (c) MINP(FF) after purification. 
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Figure S18. Distribution of the molecular weights and the correlation curves for MINP(FF) from the 

DLS. The PRECISION DECONVOLVE program assumes the intensity of scattering is proportional 

to the mass of the particle squared. If each unit of building block for the MINP(FF) is assumed to 

contain one molecule of compound 1 (MW = 465 g/mol), 1.2 molecules of compound 2 (MW = 172 

g/mol), one molecule of DVB (MW = 130 g/mol), and 0.8 molecules of compound 3 (MW = 264 

g/mol), the molecular weight of MINP(FF) translates to 52 [= 52600 / (465 + 1.2×172 + 130 + 

0.8×264] of such units.   
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Figure S19. 1H NMR spectra of (a) Compound 1 in CDCl3, (b) alkynyl-SCM in D2O, and (c) 

MINP(FGL) in D2O. 

 

 

Figure S20. Distribution of the hydrodynamic diameters of the nanoparticles in water as determined 

by DLS for (a) alkynyl-SCM, (b) surface-functionalized SCM, and (c) MINP(FGL) after purification. 
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Figure S21. Distribution of the molecular weights and the correlation curves for MINP(FGL) from 

the DLS. The PRECISION DECONVOLVE program assumes the intensity of scattering is 

proportional to the mass of the particle squared. If each unit of building block for the MINP(FGL) is 

assumed to contain one molecule of compound 1 (MW = 465 g/mol), 1.2 molecules of compound 2 

(MW = 172 g/mol), one molecule of DVB (MW = 130 g/mol), and 0.8 molecules of compound 3 

(MW = 264 g/mol), the molecular weight of MINP(FGL) translates to 51 [= 51200 / (465 + 1.2×172 

+ 130 + 0.8×264] of such units.   
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Figure S22. 1H NMR spectra of (a) Compound 1 in CDCl3, (b) alkynyl-SCM in D2O, and (c) 

MINP(4) in D2O. 

 

 

Figure S23. Distribution of the hydrodynamic diameters of the nanoparticles in water as determined 

by DLS for (a) alkynyl-SCM, (b) surface-functionalized SCM, and (c) MINP(4) after purification. 
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Figure S24. Distribution of the molecular weights and the correlation curves for MINP(4) from the 

DLS. The PRECISION DECONVOLVE program assumes the intensity of scattering is proportional 

to the mass of the particle squared. If each unit of building block for the MINP(4) is assumed to 

contain one molecule of compound 1 (MW = 465 g/mol), 1.2 molecules of compound 2 (MW = 172 

g/mol), one molecule of DVB (MW = 130 g/mol), and 0.8 molecules of compound 3 (MW = 264 

g/mol), the molecular weight of MINP(4) translates to 52 [= 52600 / (465 + 1.2×172 + 130 + 

0.8×264] of such units.   
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Figure S25. 1H NMR spectra of (a) Compound 1 in CDCl3, (b) alkynyl-SCM in D2O, and (c) 

MINP(5) in D2O. 

 

 

Figure S26. Distribution of the hydrodynamic diameters of the nanoparticles in water as determined 

by DLS for (a) alkynyl-SCM, (b) surface-functionalized SCM, and (c) MINP(5) after purification. 
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Figure S27. Distribution of the molecular weights and the correlation curves for MINP(5) from the 

DLS. The PRECISION DECONVOLVE program assumes the intensity of scattering is proportional 

to the mass of the particle squared. If each unit of building block for the MINP(5) is assumed to 

contain one molecule of compound 1 (MW = 465 g/mol), 1.2 molecules of compound 2 (MW = 172 

g/mol), one molecule of DVB (MW = 130 g/mol), and 0.8 molecules of compound 3 (MW = 264 

g/mol), the molecular weight of MINP(5) translates to 49 [= 49700 / (465 + 1.2×172 + 130 + 

0.8×264] of such units.   
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Figure S28. 1H NMR spectra of (a) Compound 1 in CDCl3, (b) alkynyl-SCM in D2O, and (c) 

MINP(6) in D2O. 

 

 

Figure S29. Distribution of the hydrodynamic diameters of the nanoparticles in water as determined 

by DLS for (a) alkynyl-SCM, (b) surface-functionalized SCM, and (c) MINP(6) after purification. 
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Figure S30. Distribution of the molecular weights and the correlation curves for MINP(6) from the 

DLS. The PRECISION DECONVOLVE program assumes the intensity of scattering is proportional 

to the mass of the particle squared. If each unit of building block for the MINP(6) is assumed to 

contain one molecule of compound 1 (MW = 465 g/mol), 1.2 molecules of compound 2 (MW = 172 

g/mol), one molecule of DVB (MW = 130 g/mol), and 0.8 molecules of compound 3 (MW = 264 

g/mol), the molecular weight of MINP(6) translates to 49 [= 49900 / (465 + 1.2×172 + 130 + 

0.8×264] of such units.   
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Figure S31. 1H NMR spectra of (a) Compound 1 in CDCl3, (b) alkynyl-SCM in D2O, and (c) 

MINP(7) in D2O. 

 

 

Figure S32. Distribution of the hydrodynamic diameters of the nanoparticles in water as determined 

by DLS for (a) alkynyl-SCM, (b) surface-functionalized SCM, and (c) MINP(7) after purification. 
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Figure S33. Distribution of the molecular weights and the correlation curves for MINP(7) from the 

DLS. The PRECISION DECONVOLVE program assumes the intensity of scattering is proportional 

to the mass of the particle squared. If each unit of building block for the MINP(7) is assumed to 

contain one molecule of compound 1 (MW = 465 g/mol), 1.2 molecules of compound 2 (MW = 172 

g/mol), one molecule of DVB (MW = 130 g/mol), and 0.8 molecules of compound 3 (MW = 264 

g/mol), the molecular weight of MINP(7) translates to 52 [= 52800 / (465 + 1.2×172 + 130 + 

0.8×264] of such units.   
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Figure S34. 1H NMR spectra of (a) Compound 1 in CDCl3, (b) alkynyl-SCM in D2O, and (c) 

MINP(8) in D2O. 

 

 

Figure S35. Distribution of the hydrodynamic diameters of the nanoparticles in water as determined 

by DLS for (a) alkynyl-SCM, (b) surface-functionalized SCM, and (c) MINP(8) after purification. 
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Figure S36. Distribution of the molecular weights and the correlation curves for MINP(8) from the 

DLS. The PRECISION DECONVOLVE program assumes the intensity of scattering is proportional 

to the mass of the particle squared. If each unit of building block for the MINP(8) is assumed to 

contain one molecule of compound 1 (MW = 465 g/mol), 1.2 molecules of compound 2 (MW = 172 

g/mol), one molecule of DVB (MW = 130 g/mol), and 0.8 molecules of compound 3 (MW = 264 

g/mol), the molecular weight of MINP(8) translates to 51 [= 51300 / (465 + 1.2×172 + 130 + 

0.8×264] of such units.   
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Figure S37. ITC titration curves obtained at 298 K for the titration of MINP(WWGG)  (5 µM) with 

WWGG (50 µM) (a) Millipore water and  (b) HEPES at pH 7.4. The data correspond to entries 1‒2, 

respectively, in Table 1. The top panel shows the raw calorimetric data. The area under each peak 

represents the amount of heat generated at each ejection and is plotted against the molar ratio of 

MINP to the substrate. The solid line is the best fit of the experimental data to the sequential binding 

of N equal and independent binding sites on the MINP. The heat of dilution for the substrate, 

obtained by adding the substrate to the buffer, was subtracted from the heat released during the 

binding. Binding parameters were auto-generated after curve fitting using Microcal Origin 7. 
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Figure S38. ITC titration curves obtained at 298 K for the titration of MINP(WWGG) (25 µM) with 

(a) GWWG (0.5 mM) , (b) WGWG (0.5 mM), and  (c) WGGW (0.5 mM)  in Millipore water. The 

data correspond to entries 3‒5, respectively, in Table 1. The top panel shows the raw calorimetric 

data. The area under each peak represents the amount of heat generated at each ejection and is 

plotted against the molar ratio of MINP to the substrate. The solid line is the best fit of the 

experimental data to the sequential binding of N equal and independent binding sites on the MINP. 

The heat of dilution for the substrate, obtained by adding the substrate to the buffer, was subtracted 

from the heat released during the binding. Binding parameters were auto-generated after curve fitting 

using Microcal Origin 7. 
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Figure S39. ITC titration curves obtained at 298 K for the titration of (a) MINP(GWWG) (6 µM)  

with GWWG (50 µM)  , (b) MINP(WGWG) (5 µM)  with WGWG (40 µM), and  (c) MINP(WGGW) 

(5 µM)  with WGGW (50 µM) in Millipore water. The data correspond to entries 6‒8, respectively, 

in Table 1. The top panel shows the raw calorimetric data. The area under each peak represents the 

amount of heat generated at each ejection and is plotted against the molar ratio of MINP to the 

substrate. The solid line is the best fit of the experimental data to the sequential binding of N equal 

and independent binding sites on the MINP. The heat of dilution for the substrate, obtained by 

adding the substrate to the buffer, was subtracted from the heat released during the binding. Binding 

parameters were auto-generated after curve fitting using Microcal Origin 7. 

Table S1: Fluorescence Binding Data. 
  

Entry Host Guest Ka 
(104 M-1) 

1 MINP(WWGG) WWGG 914 ± 61 
2 MINP(GWWG) GWWG 786 ± 29 
3 MINP(WGWG) WGWG 638 ± 24 
4 MINP(WGGW) WGGW 480 ± 10 
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Figure S40. Fluorescence emission spectra of WWGG with different concentrations of 

MINP(WWGG) with an emission (a) ranging from 300 nm- 450 nm and (b)  at 360 nm wavelength. 

The excitation wavelength (λex) is 280 nm and [WWGG] = 1.0 µM. The data correspond to entry 1 in 

Table S1. 

 

  
 

Figure S41. Fluorescence emission spectra of GWWG with different concentrations of 

MINP(GWWG) with an emission (a) ranging from 300 nm- 450 nm and (b)  at 360 nm wavelength. 

The excitation wavelength (λex) is 280 nm and [GWWG] = 1.5 µM. The data correspond to entry 2 in 

Table S1. 
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Figure S42. Fluorescence emission spectra of WGWG with different concentrations of 

MINP(WGWG) with an emission (a) ranging from 300 nm- 450 nm and (b)  at 360 nm wavelength. 

The excitation wavelength (λex) is 280 nm and [WGWG] = 2.0 µM. The data correspond to entry 3 in 

Table S1. 

 

    
 

Figure S43. Fluorescence emission spectra of WGGW with different concentrations of 

MINP(WGGW) with an emission (a) ranging from 300 nm- 450 nm and (b)  at 360 nm wavelength. 

The excitation wavelength (λex) is 280 nm and [WGGW] = 2.0 µM. The data correspond to entry 4 in 

Table S1. 
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Table S2: Job plot for the MINP(WWGG) ([H]) with different [WWGG] ([G]). 
 

[G]/([G]+[H]) λem=360 nm 
F(Guest) 

λem=360 nm 
F(H+G) ∆F 

0.1 53.4 49.9 3.51 
0.2 137.8 118.9 18.9 
0.3 188.8 156.8 31.9 
0.4 264.7 214.3 50.4 
0.5 313.6 248.7 64.9 
0.6 367.9 313.5 54.5 
0.7 434.8 390.5 44.2 
0.8 496.9 484.6 12.3 
0.9 580.8 574.6 6.11 

 
 

 
 
Figure S44. Job plot for the MINP(WWGG) with different molar ratio of [WWGG]. 
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Figure S45. ITC titration curves obtained at 298 K for the binding of (a) FF (75 µM) by MINP(FF) 

(6.0 µM), (b) Boc-FF (60 µM) by MINP(Boc-FF) (5.0 µM), and (c) FGL (60 µM) by MINP(FGL)  

(5.0 µM). The data correspond to entries 1, 8, and 10 in Table 2, respectively. The top panel shows 

the raw calorimetric data. The area under each peak represents the amount of heat generated at each 

ejection and is plotted against the molar ratio of MINP to the substrate. The solid line is the best fit 

of the experimental data to the sequential binding of N equal and independent binding sites on the 

MINP. The heat of dilution for the substrate, obtained by adding the substrate to the buffer, was 

subtracted from the heat released during the binding. Binding parameters were auto-generated after 

curve fitting using Microcal Origin 7. 
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Figure S46. ITC titration curves obtained at 298 K for the binding of (a) FA (120 µM) by 

MINP(FF) (10 µM), (b) FI (120 µM) by MINP(FF) (10 µM), and (c) FL (60 µM) by MINP(FF) (5.0 

µM). The data correspond to entries 2, 3, and 4 in Table 2, respectively. The top panel shows the raw 

calorimetric data. The area under each peak represents the amount of heat generated at each ejection 

and is plotted against the molar ratio of MINP to the substrate. The solid line is the best fit of the 

experimental data to the sequential binding of N equal and independent binding sites on the MINP. 

The heat of dilution for the substrate, obtained by adding the substrate to the buffer, was subtracted 

from the heat released during the binding. Binding parameters were auto-generated after curve fitting 

using Microcal Origin 7. 
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Figure S47. ITC titration curves obtained at 298 K for the binding of (a) FW (0.6 mM) by 

MINP(FF) (50 µM) and (b) FY (120 µM) by MINP(FF) (10 µM). The data correspond to entries 5 

and 6 in Table 2, respectively. The top panel shows the raw calorimetric data. The area under each 

peak represents the amount of heat generated at each ejection and is plotted against the molar ratio of 

MINP to the substrate. The solid line is the best fit of the experimental data to the sequential binding 

of N equal and independent binding sites on the MINP. The heat of dilution for the substrate, 

obtained by adding the substrate to the buffer, was subtracted from the heat released during the 

binding. Binding parameters were auto-generated after curve fitting using Microcal Origin 7. 
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Figure S48. ITC titration curves obtained at 298 K for the binding of (a) Boc-FF (0.8 mM) by 

MINP(FF) (50 µM), (b) FF (250 µM) by MINP(Boc-FF) (10 µM). The data correspond to entries 

7and 9 in Table 2, respectively. The top panel shows the raw calorimetric data. The area under each 

peak represents the amount of heat generated at each ejection and is plotted against the molar ratio of 

MINP to the substrate. The solid line is the best fit of the experimental data to the sequential binding 

of N equal and independent binding sites on the MINP. The heat of dilution for the substrate, 

obtained by adding the substrate to the buffer, was subtracted from the heat released during the 

binding. Binding parameters were auto-generated after curve fitting using Microcal Origin 7. 
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Figure S49. ITC titration curves obtained at 298 K for the binding of (a) FGI (0.6 mM) by 

MINP(FGL) (50 µM), (b) FLG (0.5 mM) by MINP(FGL) (20 µM), and (c) FGGL (0.12 mM) by 

MINP(FGL) (5.0 µM). The data correspond to entries 10, 11, and 12 in Table 2, respectively. The 

top panel shows the raw calorimetric data. The area under each peak represents the amount of heat 

generated at each ejection and is plotted against the molar ratio of MINP to the substrate. The solid 

line is the best fit of the experimental data to the sequential binding of N equal and independent 

binding sites on the MINP. The heat of dilution for the substrate, obtained by adding the substrate to 

the buffer, was subtracted from the heat released during the binding. Binding parameters were auto-

generated after curve fitting using Microcal Origin 7. 
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Figure S50. ITC titration curves obtained at 298 K for the binding of (a) 4 (70 µM) by MINP(4) 

(6.0 µM), (b) 5 (60 µM) by MINP(5) (6.0 µM), and (c) 6 (90 µM) by MINP(6) (10 µM). The data 

correspond to entries 14, 15, and 16 in Table 2, respectively. The top panel shows the raw 

calorimetric data. The area under each peak represents the amount of heat generated at each ejection 

and is plotted against the molar ratio of MINP to the substrate. The solid line is the best fit of the 

experimental data to the sequential binding of N equal and independent binding sites on the MINP. 

The heat of dilution for the substrate, obtained by adding the substrate to the buffer, was subtracted 

from the heat released during the binding. Binding parameters were auto-generated after curve fitting 

using Microcal Origin 7. 
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Figure S51. ITC titration curves obtained at 298 K for the binding of (a) 7 (70 µM) by MINP(7)  

(5.0 µM) and (b) 8 (100 µM) by MINP(8) (8.0 µM). The data correspond to entries 17 and 18 in 

Table 2, respectively. The top panel shows the raw calorimetric data. The area under each peak 

represents the amount of heat generated at each ejection and is plotted against the molar ratio of 

MINP to the substrate. The solid line is the best fit of the experimental data to the sequential binding 

of N equal and independent binding sites on the MINP. The heat of dilution for the substrate, 

obtained by adding the substrate to the buffer, was subtracted from the heat released during the 

binding. Binding parameters were auto-generated after curve fitting using Microcal Origin 7. 
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Figure S52. Cross reactivity studies: ITC titration curves obtained at 298 K for the binding of 4 

(a), 6 (b), 7 (c), and 8 (d) by MINP(5). The concentration of each guest was (60 µM) while that of 

MINP(5) was 6.0 µM. The top panel shows the raw calorimetric data. The area under each peak 

represents the amount of heat generated at each ejection and is plotted against the molar ratio of 

MINP to the substrate. The solid line is the best fit of the experimental data to the sequential binding 

of N equal and independent binding sites on the MINP. The heat of dilution for the substrate, 

obtained by adding the substrate to the buffer, was subtracted from the heat released during the 

binding. Binding parameters were auto-generated after curve fitting using Microcal Origin 7. 
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 Figure S53. Cross reactivity studies: ITC titration curves obtained at 298 K for the binding of 6 by 

(a) MINP(4), (b) MINP(5), (c) MINP(7), and (d) MINP(8). The concentration of the guest was (90 

µM) and that of each MINP was 10 µM. The top panel shows the raw calorimetric data. The area 

under each peak represents the amount of heat generated at each ejection and is plotted against the 

molar ratio of MINP to the substrate. The solid line is the best fit of the experimental data to the 

sequential binding of N equal and independent binding sites on the MINP. The heat of dilution for 

the substrate, obtained by adding the substrate to the buffer, was subtracted from the heat released 

during the binding. Binding parameters were auto-generated after curve fitting using Microcal Origin 

7. 

 


