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Description of the fitting algorithm

The algorithm used in this work to fit the geometry of the EFs is an adaptation of the one presented

by Ciesielski et al.1. The selected tomographic subvolume is initially normalized and rotated so

that one of the axes (here chosen to be z) is roughly aligned to the filamentous structural patterns

that can be distinguished by visual inspection. The tomographic density is then fitted by parametric

space curves of the form:
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Where h(t) is an xyz triple that defines the point of a space curve h at the parameter value of t. The

trigonometric operators allow the space curve to adopt a helical geometry with x and y amplitudes

(c1, c2), angular frequency (ω),  and  phase  shift  (φ). The terms Px(t) and Py(t) are polynomials,

which  confer  the  curve  flexibility  to  deviate  from  a  straight  helix.  The  algorithm  places  space

curves in the regions of the subvolume with the highest relative density, by varying the parameters

of equation (1) while optimizing an appropriate cost function.

The mass enclosed within a chosen distance L on the x and y dimensions from the curve h(t) is

given by:
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where t0 and tf are the lower and upper bounds of the parametric variable domain, hx and hy are the

x and y components of the ordered triplet generated by h(t) and ρ(h(t)) the density of the voxel at

the location h(t). For a discrete tomographic volume, this expression may be approximated as:
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In order to further attract the space curves to the densest regions of the tomogram, the L3 term was

neglected from equation (3) and the tomographic density was weighted by the inverse square of

its distance from the space curve, as:
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The cost function used to optimize the parameters of h(t) consisted thus of the term C, sometimes

with the addition of a case-dependent penalty term that avoided solutions known to be unrealistic

(see below).

The optimization was carried out employing two different methods in sequence: i) Particle Swarm

Optimization (PSO)2 and ii) Nelder-Mead simplex method3. The former is one of the so-called

“global optimization” methods, which performs a wide exploration in the variable space to find

(or at least attempt at finding) the global optimum of the cost function. Its result depends very little

on the starting value and is therefore more suitable for the initial search. However, since it tends

to explore with such freedom that it can easily yield extreme and unphysical solutions, its search

space is limited to the phase shift φ and the constant terms in Px and Py (which  determine  the

location of the helix for t = 0), with the remaining parameters manually set to reasonable values.

For the S1 layer containing fibrous structures, these values were: c1 = c2 = 4.5 nm, ω = 1.12 deg

nm-1 and all polynomial terms set to zero. For the subvolumes containing bundles, they were: c1 =

c2 = 13.4 nm, ω = 1.12 deg nm-1 and all polynomial terms set to zero.

The result from PSO was used as starting point for the second part of the optimization using the

simplex method. The latter is more efficient at converging to a nearby local minimum and was

thus employed to optimize all the parameters of the space curve. The cost function’s penalty terms

mentioned above were added in this phase: for bundles we penalized excessively high ω (which

could generate a single curly path fitting the whole bundle).

Once an optimal space curve was found, the tomographic density within 6 nm of the curve was

removed from the dataset, a new curve was added and the whole process was repeated, until a

designated fraction of the density was removed or a user-defined maximum number of curves were

placed. This procedure is illustrated also in the Supporting Videos V1 and V2.
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Calculation of Nearest-Neighbor distances

For each space curve fitted to a subvolume, the average distance between its position and that of

the other curves was approximated by equation (5), and the minimum of these was reported as the

nearest-neighbor spacing. For a space curve of the form given by equation (1), the average

Euclidian distance average between the ith and jth space curves is approximated over the parametric

interval [t0,tf] as:
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Where ,is the average Euclidian distance 〈௜,௝ܦ〉 hi(t) and hj(t) are the xyz triples of the ith and jth

space curves, respectively, at the parametric value of t, and n is the number of discrete values in

the interval [t0,tf]. Large deviations in the axial direction of the space curve from the parametric

axis can result in an overestimate of the spacing calculated by equation (12), thus the nearest-

neighbor spacing values represent an approximation of the upper limit of the distance between the

curves.
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Supplementary Figure 2. Tomographic slices through the subvolumes and the resultant fitted space
curves show fibrous structure (a) and helical bundles (b-f); plot units are nm. Color bar in g
represent tomographic density for all tomographic slices.




