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I. FABRICATION OF LONG NEEDLE PROBE

The fabrication of the long needle probe contains two
major parts: (i) connecting a glass fiber to the front
end of a AFM cantilever and (ii) forging the fiber tip
to be sharp and spherical. The assembly of the glass
fiber probe is carried out under a high-magnification
stereomicroscope (Leica MZ16) using a motorized micro-
manipulator system. The thin glass fiber is pulled out
of a glass rod of diameter 1.0 mm using a programmed
pippette puller (P-97, Sutter Instrument). A homemade
tweezer is made to cut off the thin tip of the tapered fiber
with a desired diameter (0.5-5 µm). Commercial gold
coated silicon nitride cantilevers (BL-TR800PB, Asylum)
are used in the experiment. An UV-curable glue (Nor-
land, NOA 81) is used to permanently connect the glass
fiber to the front end of the cantilever beam. The fiber
has a tilt angle of 110 with respect to the cantilever nor-
mal, so that the hanging fiber becomes normal to the
liquid-air interface when the cantilever is mounted to the
AFM holder. The aligned fiber with a desired diameter
is then inserted into the middle of a semi-spherical glue
drop on the cantilever beam and cured under radiation of
a UV light (Lightning Enterprises, ELC-410) for 15 min-
utes. The glass fiber is then cut with a desired length,
typically 100− 300 µm.
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After the assembly of the fiber probe, the tip of the
glass fiber is further forged to a desired shape using
a micro-forge (MF-900, Narishige). The heater of the
micro-forge is used first to melt a glass bead, which is
used as a glass bath. The temperature of the heater is
adjusted to be slightly higher than the melting temper-
ature of the glass, and the fiber tip is then brought into
contact with the glass bath to melt the tip by heating.
Here the adjustment of the temperature should be fast
and precise so that it is high enough to just melt the
fiber tip but not to soften and bend the long fiber. The
fiber is then pulled out of the glass bath and a spike will
form at the tip if the temperature is just right. Finally,
the spike is kept close to the hot glass bath so that it
can be gradually melt and annealed. In this way, the
fiber tip is forged to be sharp and spherical, as shown in
Fig. 1(b) of the main text. Typically, the tip radius R
can be controlled in the range 50-1000 nm using different
temperatures and annealing times.

After the fabrication, the freshly made needle probe is
cleaned using a low vacuum plasma cleaner at the power
40W for 15 minutes. The vacuum chamber is kept at
∼600 milli-torr during the plasma cleaning. The freshly
cleaned fiber probe is hydrophilic with a contact angle ∼
0 degree at the water-air and decane-air interfaces with-
out hysteresis. The wetting properties of the fiber can be
examined using the same AFM setup [1].

II. MEASUREMENT OF POWER SPECTRUM
OF THE LONG NEEDLE PROBE

When the needle probe is positioned stationary at the
liquid-air interface far from the lower surface, the vertical
displacement z(t) of the needle (≡ vertical deflection of
the AFM cantilever) is well described by the Langevin
equation [2, 3]

mz̈ + ξż + kcz = fB(t), (S1)

where fB(t) is the random Brownian force due to thermal
fluctuations of the surrounding fluid. While the mean
value of fB(t) is zero, its autocorrelation function has a
form [4] C(τ) = 〈fB(t+ τ)fB(t)〉 = 2kBTξδ(τ), where
kBT is the thermal energy of the system and δ(τ) is the
δ function. The power spectrum density (PSD), |z(ω̃)|2,
of vertical deflections of the cantilever can be solved an-
alytically from Eq. (S1) [5, 6],

|z(ω̃)|2 =
2kBTξ/m
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FIG. S1. Measured |z(ω̃)|2 as a function of ω̃ for the modified
cantilever. The measurement is made when the glass needle
is partially immersed through the decane-air interface with
immersion length h = 30 µm. The inset shows the bending
modes of the cantilever at the first two resonances and the
corresponding values of the spring constant kc and quality
factor Q.

FIG. S2. Measured |z(ω̃)|2 for the modified cantilever with
the long glass needle in air (blue circles) and in decane with
immersion length h = 30 µm (black triangles). Only the
second resonant peak is shown in the plot. The red solid line
is a fit of Eq. (S2) to the black triangles with m = 6.43×10−9

g, ξ = 4.38× 10−7 Nm/s, and ω0 = 2.30579 MHz.

where ω̃ = 2πf is the angular frequency arriving from
the Fourier transform of the measured time-varying can-
tilever signal and ω0 = (kc/m)1/2 is the mechanical res-
onant frequency of the cantilever system.

Figure S1 shows measured |z(ω̃)|2 as a function of ω̃
for the modified cantilever. The measurement is made
when the glass needle is partially immersed through the
decane-air interface with immersion length h = 30 µm.
The two resonant peaks correspond to the first two nor-
mal bending modes of the modified cantilever, as illus-
trated in the inset of Fig. S1. Equation (S2) is used to
fit the data for each peak, from which one obtains the
spring constant kc and quality factor Q of each mode [7].
The fitting results are listed in the inset of Fig. S1. It is
found that the quality factor Q2 of the second bending
mode is improved significantly. Because the accuracy of

FIG. S3. Measured oscillation amplitude Z0 (black circles)
as a function of driving frequency ω for the modified can-
tilever under a constant driving force F0. The measurement
is made when the glass needle is partially immersed through
the decane-air interface with h = 30 µm, and the applied ac
voltage to the cantilever holder is kept at a constant amplitude
V0 = 0.2 V. The red solid line is a fit of Eq. (2) of the main
text to the data points with F0 = 0.59 nN, ξ = 4.13 × 10−7

Nm/s, and ω0 = 2.31057 MHz.

the resonant frequency locking in the FM mode is deter-
mined by the Q-factor [8, 9], we use the second resonance
mode for the FM-AFM in the liquid medium.

Figure S2 shows a magnified plot of the second reso-
nant peak for the modified cantilever with the long glass
needle in air (blue circles) and in decane with h = 30 µm
(black triangles). The measured |z(ω̃)|2 in decane is well
described by Eq. (S2) (red solid line). It is seen that the
resonant peak in decane is only shifted by 2% compared
with that in air, indicating that the effects of the added
mass and viscous damping to the long needle are rela-
tively small. With the fitted values of m, ξ, and ω0, we
obtain the spring constant kc = mω2

0 = 34.19 N/m and
quality factor Q = ω0m/ξ = 34 in decane. The frequency
resolution of the FM-AFM mode is given by [8, 9]

ωmin =

√
2kBTω0∆B

kcQZ0
2 , (S3)

where ∆B ' 1.5 kHz is a typical value of the bandwidth
set by the FM-AFM, and the oscillation amplitude Z0 '
2 nm. From Eq. (S3) we find ωmin ' 78 Hz for our setup,
which is sufficient to resolve the large variations of the
measured ω′0, as shown in Fig. 2(b) of the main text.

III. CALIBRATION OF THE DRIVING FORCE

In the experiment, the long needle probe is mounted
on the cantilever holder with an electromagnetic actuator
(iDrive, Asylum Research), which has a better frequency
response than the conventional piezo-electric actuator for
the dynamic mode AFM. Figure S3 shows the measured
oscillation amplitude Z0 as a function of driving fre-
quency ω for the modified cantilever under a constant
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FIG. S4. Fitted values of the driving force F0 as a function
of the applied voltage V0. The solid line is a linear fit to the
data points.

driving force F0. The measurement is made when the
glass needle is partially immersed through the decane-
air interface with immersion length h = 30 µm, and the
applied AC voltage to the cantilever holder is kept at a
constant amplitude V0 = 0.2 V. The red solid line is a
fit of Eq. (2) of the main text (with K∗(D) = 0) to the
data points with three fitting parameters: the amplitude
of the driving force F0, the damping coefficient ξ, and the
resonant frequency ω0. The effective mass m is already
obtained from the measured PSD, as shown in Fig. S2. It
is seen that the data are well described by Eq. (2) of the
main text and the fitted values of ξ = 4.1310×10−7 Nm/s
and ω0 = 2.31057 MHz agree well with those obtained
from the measured PSD, as shown in Fig. S2. From the
resonance curve as shown in Fig. S3, we obtain the value
of F0 = 0.59 nN for a given applied voltage V0 = 0.2 V.

Figure S4 shows the calibration curve F0(V0) as a func-
tion of the applied voltage V0. The data are well de-
scribed by a linear function F0 = a + bV0 with a = 0.95
pN and b = 2.93 nN/V (solid line). With the calibrated
curve F0(V0), one can control the driving force F0 at the
accuracy of nano-Newtons by varying the applied voltage
V0.

IV. DETERMINATION OF CONTACT POINT

In the experiment, we use two separate methods to
determine the contact point between the needle tip and
PDMS film. The first method is to directly measure the
deflection z of the cantilever as the needle tip slowly
moves toward the lower PDMS surface at a constant
speed u. Figure S5(a) shows the measured z as a func-
tion of surface separation D′ between the needle tip and
PDMS film. When the needle tip touches the PDMS
surface, the hard-wall repulsion forces the cantilever to
reverse its bending direction and the deflection z reveals
a sharp linear rise as the z-axis piezo goes down further.
This sharp upturn point is used to define the contact
point D′ = 0. For D′ > 0, the measured deflection z

FIG. S5. Simultaneously measured deflection z, driving volt-
age V0, and resonant frequency ω′0 of the AFM cantilever as a
function of surface separation D′ between the needle tip and
PDMS film. The measurement is made with the needle tip
approaching the PDMS surface at a constant speed u = 100
nm/s. The red vertical dotted line indicates the contact point
D′ = 0.

shows some fluctuations around zero, which are caused
by the stick-slip motion (pinning and depinning) of the
moving contact line between the liquid interface and nee-
dle surface.

During the steady-state DC measurement of deflection
z, the cantilever is also frequency modulated at its res-
onance with a small amplitude Z0 (∼2 nm), from which
we simultaneously measure the driving voltage V0 and
resonant frequency ω′0 as a function of D′. Figure S5(b)
and S5(c) show, respectively, how the measured V0 and
ω′0 rapidly increase with the needle tip approaching the
PDMS surface. As discussed above, V0 is linked to
the driving force F0, which is related to the dissipation
ξ′ = F0/Z0ω

′
0 at resonance. To avoid direct contact and

damaging the PDMS surface by the hard press of the
needle tip, the cantilever is set to automatically retreat
from the PDMS surface once V0 reaches a chosen set-
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FIG. S6. Measured 1/K′′(D) as a function of tip-sample dis-
tance D. The red solid line is a linear fit to the data points
at large values of D with D > 200 nm.

point value, such as 5.9 V as shown in Fig. S5(b).

The second method to determine the contact point is
to take extrapolation of the measured 1/K ′′(D) at large
values of tip-sample distance D to the limit of small D,
as shown in Fig. S6. For D > Dc, the Reynolds damping
force is given by [10, 11], 1/K ′′(D) = D/(6πη0ω

′
0R

2),
which is a linear function of D and fits the data at
large D very well (red solid line). By extrapolating
this linear function to the limit of infinite dissipation
(1/K ′′(D) = 0), we find the contact point D = 0. The
experimental uncertainty in determining the actual con-
tact point is typically δD = |D′ −D| ' ±5 nm, which is
small compared with the cut-off distance Dc(' 90 nm),
below which the measured response functions, K ′(D) and
K ′′(D), saturate at a contact value, as shown in Figs. 3
and 4 of the main text. In the data analysis presented in
the main text, we use the second method to determine
the contact point (D = 0).

V. MEASURED DAMPING COEFFICIENT
AND ADDED MASS OF LONG NEEDLE PROBE

When the glass fiber is in contact with a liquid inter-
face, the resonant peak broadens while the peak height
decreases and peak position shifts toward a lower fre-
quency. These changes continue when the immersion
length h of the fiber increases [3]. This is caused by
the increasing viscous damping ξ and added mass ∆m
resulting from a thin layer of fluid in the vicinity of the
fiber surface, which oscillates with the fiber probe. For
a long cylindrical fiber of diameter d partially immersed
in an infinite liquid of viscosity η0, its friction coefficient
ξ parallel to the long axis of the cylinder takes the form

[6, 12]

ξ ' απdη0 +
2πη0h

ln(h/d) + ε
+

1

2
πdh

√
2η0ρω, (S4)

where the first term is the contribution from the contact
line between the fiber surface and liquid-air interface with
α = 1.1 ± 0.3. The second term is the zero-frequency
contribution from the bulk liquid, where h is the fiber
immersion length in the liquid and ε ' −0.55 is a cor-
rection factor for the cylinder with h/d > 4 [13]. The
last term is the frequency-dependent contribution from
the bulk liquid, where ρ is the fluid density and ω is the
oscillation frequency. For large values of h, the friction
coefficient ξ is approximately a linear function of h (i.e.,
ξ ' a+ bh), as ln(h/d) does not change much with h and
the last term dominates in our working frequency range.

For a liquid film of thickness h0 above the PDMS
surface, the fiber immersion length can be written as
h = h0 −D, where D is the tip-sample distance. There-
fore, we have

ξ(D) ' a+ b(h0−D) = (a+ bh0)− bD = a′− bD, (S5)

which is used to fit the data, as shown by the red line in
Fig. 2(a) of the main text.

The added mass ∆m is given by [14]

∆m = π(d/2)2hρ+
1

2
πdh

√
2η0ρ/ω, (S6)

where the first term represents the mass of the displaced
fluid. The second term is the frequency-dependent con-
tribution resulting from a thin layer of fluid of thickness
δ ' (2η0/ρω)1/2 oscillating with the fiber. The added
mass ∆m is proportional to the fiber immersion length,
h = h0 − D, and thus changes the resonant frequency
from ω0 = (kc/m0)1/2 (in air) to,

ω0(D) =

(
kc

m0 + ∆m(D)

)1/2

' ω0

(c− eD)1/2
, (S7)

where c and e are two fitting parameters which depend on
the fiber diameter d and liquid film thickness h0. Equa-
tion (S7) is used to fit the data, as shown by the green
line in Fig. 2(b) of the main text.

VI. NUMERICAL CALCULATION OF THE
CORRECTION FUNCTION p̃∗(D/Dc)

The linear response theory of the elasto-hydro-
dynamics (EHD) under the sphere-plane geometry, which
has been described in Ref. [11], predicted that the com-
plex response function K∗(D) ≡ K ′(D) + iK ′′(D) has a
scaling form

K∗(D) = i
6πη0ωR

2

D
p̃∗
(
D

Dc

)
, (S8)
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where R is the radius of the fiber tip, ω is the driving
angular frequency, and D is the tip-sample distance. The
correction function p̃∗(D/Dc), which describes the film
compliance, is obtained from the solution of the integral
equation [11]

p̃∗(ζ) = ζK1(ζ)

− 3i

(
Dc

D

)3/2 ∫ ∞
0

dζ ′p̃∗(ζ ′)X(ζ ′τ ′)M(ζ, ζ ′),

(S9)
where τ ′ = τ/(2RD)1/2 is the reduced film thickness,

Dc = 8R

[
(1− ν2)η0ω

E

]2/3
(S10)

is a cut-off distance with E being the Young’s modu-
lus and ν the Poisson ratio of the film, and the kernel
M(ζ, ζ ′) is an integral function

M(ζ, ζ ′) =

∫ ∞
0

dx
xJ1(ζx)J1(ζ ′x)

ζζ ′(1 + x3)2
. (S11)

Here M(ζ, ζ ′) satisfies the conditions M(ζ, ζ ′) = M(ζ ′, ζ)
and

M(ζ < ζ ′) =
ζ2 + ζ ′2

8ζζ ′
I1(ζ)K1(ζ ′)− I2(ζ)K2(ζ ′)

4
, (S12)

where J1 is the first order Bessel function and In and Kn

are the nth order modified Bessel functions. Finally, the
function X(ζτ ′) in Eq. (S9) describes the film response
to an axial symmetric pressure field and is given by [15]

X(ζτ ′) =
1 + 4be−2ζτ

′ − abe−4ζτ ′

1− [a+ b+ 4b(ζτ ′)2]e−2ζτ ′ + abe−4ζτ ′ ,

(S13)
where

a =
βγ − γs
βγ + 1

, b =
β − 1

β + γs
, β =

G

Gs
, γi = 3− 4νi.

In the above, G = E/2(1 + ν) is the shear modulus of
the film and Gs = Es/2(1 + νs) is that of the substrate.

In the original model of EHD [11], the film under
study was assumed to be purely elastic and thus only
the elastic deformation of the film was considered. It is
quite straightforward to include the viscoelasticity effect

of the film by introducing a complex Young’s modulus
E∗ = E + iE′′ in Eqs. (S10) and (S13). In this case, we
keep the Poisson ratio ν = 1/2, and therefore we have
E∗ = 2(1 + ν)G∗ = 3G∗ (with G∗ = G+ iG′′).

For each value of D, the integral equation (S9) can be
discretized into the following linear matrix equation for
a finite number of values ζi with i = 1, 2, ..., N :

p = b− 3iλ ¯̄Kp, (S14)

where p is a vector with the component pi = p̃∗(ζi)
and λ is the complex value of (Dc/D)3/2. The vector
b is given by bi = ζiK1(ζi) and the matrix ¯̄K takes
the form Kij = M(ζi, ζj)X(ζjτ

′)wj with wj being the
Gauss-Legendre weight factor associated with ζj . Equa-
tion (S14) can be solved by the matrix inversion rou-
tine in the Igor Pro software. In practice, we find that
it is adequate to calculate Eq. (S14) over an interval of
ζi ∈ [0, 20], with a number of discretization N = 20.

When D < Dc, however, the direct inversion of the

matrix ¯̄I + 3iλ ¯̄K in Eq. (S14) may become quite inaccu-
rate, giving rise to oscillations in the calculated correction
function. We fix this instability problem by isolating the

diagonal matrix ¯̄Λ from ¯̄K, that is

¯̄K = ¯̄Λ + ¯̄K′, (S15)

with ¯̄Λ = diag( ¯̄K), and obtain p by solving the equation

p = (̄̄I + 3iλ ¯̄Λ)−1b− 3iλ(̄̄I + 3iλ ¯̄Λ)−1 ¯̄K′p. (S16)

Once Eq. (S16) is solved, we obtain the final correction
factor p̃∗(D/Dc) = p̃∗(ζ = 0) [11]. Given the system pa-
rameters η, ω,R, τ, E,E/E′′, Es, ν, and νs, one can nu-
merically calculate the response function K∗(D) for each
value of D, with K ′(D) and K ′′(D) being, respectively,
its real and imaginary parts, which are used to fit the
experimental data. In the fitting, the Young’s modulus
E and viscoelastic ratio E/E′′ are used as two free ad-
justable parameters to best fit the data.

The above numerical calculation of p̃∗(D/Dc) is con-
ducted using the Igor Pro software. Readers who are
interested in the detailed numerical procedures may con-
tact us (dsguan@connect.ust.hk) to have access to our
Igor Pro code for their own applications.
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