Supporting Material belonging to the manuscript entitled:

Desulfinylation of Ag (I) Sulfinyl Mesoionic Carbenes: Preparation of \boldsymbol{C}-Unsubstituted Au (I)-1,2,3-Triazole Carbene Complexes

María Frutos, ${ }^{\text {a.c }}$ Manuel A. Ortuño, ${ }^{\text {b,dg }}$ Agustí Lledos, ${ }^{\text {b,d }}$ Alma Viso, ${ }^{\text {a,d }}$ Roberto Fernández de la Pradilla, ${ }^{\text {a,d }}$ María C. de la Torre*, ${ }^{\text {a,d }}$ Miguel A. Sierra, ${ }^{\text {co,d }}$ Heinz Gornitzka, ${ }^{\text {e,f }}$ and Catherine Hemmert. ${ }^{\text {eff }}$

[^0]Index
General methods 1
General procedure for the synthesis of 1,2,3-triazoles 2
General procedure for the synthesis of triazolium salts 6
General procedure for the synthesis of silver carbenes 9
General procedure for the desulfinylation process 17
General procedure for the synthesis of gold carbenes 22
Crystal data 28
Computational details 30
NMR spectra 36

General Methods

Unless noted otherwise, all manipulations were carried out under an argon atmosphere using standard Schlenk techniques. DMF and $\mathrm{CH}_{3} \mathrm{CN}$ were dried by passage through solvent purification columns containing activated alumina. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stored on CaCl_{2} for 24 h and dried through a distillation with CaH_{2}. Other solvents were HPLC grade and were used without further purification. All reagents were obtained from commercial sources and used without further purification, unless noted otherwise. Flash column chromatography was performed using silica gel (Merck, $\mathrm{n}^{\circ} 9385,230-400$ mesh). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 300,400 or $500 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right.$ NMR) and at 100 or $125 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right.$ NMR) using CDCl_{3} and DMSO- d_{6} as solvents with the residual solvent signal as internal reference $\left(\mathrm{CDCl}_{3}, 7.26\right.$ and 77.2 ppm) and (DMSO- $d_{6}, 2.50$ and 39.5 $\mathrm{ppm})$. The following abbreviations are used to describe peak patterns when appropriate: s (singlet), d (doublet), t (triplet), q (quadruplet), m (multiplet), and br (broad). Highresolution mass spectrometry (HRMS) by the ESI technique was performed with an Agilent 6500 accurate mass apparatus with a Q-TOF analyser. IR spectra were recorded on a Perkin-Elmer 681 spectrophotometer. Optical rotations were measured on a Jasco P-2000 polarimeter using a sodium lamp. Melting points were determined on a Koffler block.

Alkynes ${ }^{1} \mathbf{9 a} \mathbf{a}$ b and azide ${ }^{2} \mathbf{1 0 a}$ were prepared following a procedure previously described.

10b-e were prepared following a modified procedure previously reported: ${ }^{3}$
Amine ($16 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (20 mL). Ice was then added followed by $\mathrm{HCl} 37 \%$ (3.5 mL). A solution of NaNO_{2} ($24.00 \mathrm{mmol}, 1.50$ equiv) in $\mathrm{H}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$ was added to the solution. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 15 min . In case of acidic pH of the solution crude must be neutralized by $\mathrm{NaHCO}_{3} . \mathrm{NaN}_{3}(24 \mathrm{mmol}$, 1.50 equiv) dissolved in $\mathrm{H}_{2} \mathrm{O}$ was added dropwise. The crude reaction was stirred for 1 h . The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The organic layer is washed with HCl 0.1 M (three times), water (three times), dried over MgSO_{4} and filtered. All the

[^1]volatiles were removed under vacuum affording the corresponding azide, which was purified through a short pad of SiO_{2}.
1,2,3-Triazoles 11aa, 11ab, and their triazolium salts 8aa, 8ab and $\mathbf{1 7}$ were prepared following the same procedure as previously described. ${ }^{4}$

General procedure for the synthesis of 1,2,3-triazoles

A mixture of organic azide (1.20 equiv), alkyne (1.00 equiv), sodium (L)-ascorbate (0.50 equiv) and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (0.25 equiv) in DMF was stirred under Ar at rt until completion of the reaction (TLC analysis). The reaction was quenched with water at $0{ }^{\circ} \mathrm{C}$ and allowed to reach rt . The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The organic layer was dried over MgSO_{4}, filtered and the volatiles were removed under vacuum to afford the corresponding reaction products, which were purified through a short pad of SiO_{2}.

Synthesis of compound 11ba

Following the general procedure a mixture of azide $\mathbf{1 0 b}(623 \mathrm{mg}, 4.17 \mathrm{mmol}$, 1.20 equiv), alkyne 9a ($571 \mathrm{mg}, 3.48 \mathrm{mmol}, 1.00$ equiv), sodium (L)-ascorbate (344 mg , $1.74 \mathrm{mmol}, 0.50$ equiv) and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(217 \mathrm{mg}, 0.87 \mathrm{mmol}, 0.25$ equiv) in DMF (76 mL) was stirred under Ar at rt for 2 h . The resulting residue was purified $\left(\mathrm{SiO}_{2}\right.$, Hex/EtOAc 6:4) to yield 11ba as a white solid ($901 \mathrm{mg}, 80 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}_{3} \mathrm{C}=\mathrm{CH}\right), 7.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$, Ar p-tolyl), $7.56\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar} p-\mathrm{OMeC}_{6} \mathrm{H}_{4}\right), 7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar} p-$ tolyl), $6.98\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} p-\mathrm{OMeC}_{6} \mathrm{H}_{4}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} p-\right.$ tolyl). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.4$ (C, Ar), 153.7 (C, $\mathrm{N}_{3} \mathrm{C}=\mathrm{CH}$), 142.0 (C,

[^2]Ar), 140.0 (C, Ar), 130.2 (2CH, Ar), 129.7 (C, Ar), 124.8 (2CH, Ar), 122.4 (2CH, Ar), $122.2\left(\mathrm{CH}, \mathrm{N}_{3} \mathrm{C}=\mathrm{CH}\right), 114.9(2 \mathrm{CH}, \mathrm{Ar}), 55.7\left(\mathrm{OCH}_{3}\right), 21.5\left(\mathrm{CH}_{3}\right.$, p-tolyl). IR (KBr) $\boldsymbol{\nu}_{\text {máx }} 3435,3124,1595,1520,1312,1253,1049,1039,826,810,631 .[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}+267.3(c$ $0.9, \mathrm{CHCl}_{3}$). HRMS (ESI) m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}: 314.0958[\mathrm{M}+\mathrm{H}]^{+}$, found: 314.0960 . m.p. $94-97^{\circ} \mathrm{C}$.

Synthesis of compound 11ca

Following the general procedure a mixture of azide $\mathbf{1 0 c}(268 \mathrm{mg}, 1.58 \mathrm{mmol}$, 1.30 equiv), alkyne $9 \mathbf{a}$ ($200 \mathrm{mg}, 1.22 \mathrm{mmol}, 1.00$ equiv), sodium (L)-ascorbate (121 mg , $0.61 \mathrm{mmol}, 0.50$ equiv) and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(76 \mathrm{mg}, 0.30 \mathrm{mmol}, 0.25$ equiv) in DMF (27 $\mathrm{mL})$ was stirred under Ar at rt for 3 h . The resulting residue was purified $\left(\mathrm{SiO}_{2}\right.$, Hex/EtOAc 6:4) to yield 11ca as a white solid ($252 \mathrm{mg}, 63 \%$) .
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}_{3} \mathrm{C}=\mathrm{CH}\right), 8.02(\mathrm{dd}, J=7.5 \mathrm{~Hz}, 2.0$ $\mathrm{Hz}, 1 \mathrm{H}$, Ar naph $), 7.95$ (br d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}$ naph), 7.77 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar} p-$ tolyl), $7.55(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 7.37$ (br d, $J=8.0 \mathrm{~Hz}, 0.6 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar} p$-tolyl), $2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ p-tolyl); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.4$ (C, $\mathrm{N}_{3} \mathrm{C}=\mathrm{CH}$), 142.4 (C, Ar), 139.9 (C, Ar), 134.2 (C, Ar), 133.0 (C, Ar), 131.1 (2CH, Ar), 130.3 (2CH, Ar), 128.5 (CH, Ar), $128.3(\mathrm{CH}, \mathrm{Ar}), 128.2(\mathrm{C}, \mathrm{Ar}), 127.4(\mathrm{CH}, \mathrm{Ar}), 126.5\left(\mathrm{CH}, \mathrm{N}_{3} \mathrm{C}=\mathrm{CH}\right), 125.0(\mathrm{CH}, \mathrm{Ar})$, $124.9(2 \mathrm{CH}, \mathrm{Ar}), 123.8(\mathrm{CH}, \mathrm{Ar}), 122.0(\mathrm{CH}, \mathrm{Ar}), 21.6\left(\mathrm{CH}_{3}\right.$, p-tolyl). IR (KBr) $\boldsymbol{v}_{\text {máx }}$ $3435,3104,1490,1085,1054,1033,814,796,768,521 .[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}+243.0\left(c 0.8 \mathrm{CHCl}_{3}\right)$. HRMS (ESI) m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{OS}: 334.1009[\mathrm{M}+\mathrm{H}]^{+}$, found: 334.1006. m.p. $97-100^{\circ} \mathrm{C}$.

Synthesis of compound 11da

Following the general procedure a mixture of azide $\mathbf{1 0 d}(430 \mathrm{mg}, 3.61 \mathrm{mmol}$, 1.30 equiv), alkyne 9a ($456 \mathrm{mg}, 2.78 \mathrm{mmol}, 1.00$ equiv), sodium (L)-ascorbate (275 mg , $1.38 \mathrm{mmol}, 0.50$ equiv) and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(173 \mathrm{mg}, 0.69 \mathrm{mmol}, 0.25$ equiv) in DMF (46 mL) was stirred under Ar at rt for 4 h . The resulting residue was purified $\left(\mathrm{SiO}_{2}\right.$, Hex/EtOAc 6:4) to yield 11da as a white solid ($449 \mathrm{mg}, 57 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.25\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}_{3} \mathrm{C}=\mathrm{CH}\right), 7.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$, Ar p-tolyl), 7.67 (m, 2H, Ar), 7.48 (m, 3H, Ar), 7.33 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} p$-tolyl), 2.39 (s, 3H, $\mathrm{CH}_{3} p$-tolyl). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.1$ (C, $\mathrm{N}_{3} \mathrm{C}=\mathrm{CH}$), 142.4 (C, Ar), 140.0 (C, Ar), 136.5 (C, Ar), 130.3 (2CH, Ar), 130.0 (2CH, Ar), 129.6 (CH, Ar), 124.8 ($2 \mathrm{CH}, \mathrm{Ar}$), $122.1\left(\mathrm{CH}, \mathrm{N}_{3} \mathrm{C}=\mathrm{CH}\right), 120.8(2 \mathrm{CH}, \mathrm{Ar}), 21.6\left(\mathrm{CH}_{3}, p\right.$-tolyl). IR (KBr) $\boldsymbol{v}_{\text {máx }} 3119,1597,1508,1237,1084,1052,1038,811,759,686,549,511 .[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}+$ 254.8 (c 0.8, CHCl_{3}). HRMS (ESI) m / z calculated for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{OS}: 284.0852[\mathrm{M}+\mathrm{H}]^{+}$, found: 284.0859 . m.p. $116-119^{\circ} \mathrm{C}$.

Preparation of compound 11ea

Following the general procedure a mixture of azide $\mathbf{1 0 e}(513 \mathrm{mg}, 3.16 \mathrm{mmol}$, 1.30 equiv), alkyne 9a ($400 \mathrm{mg}, 2.43 \mathrm{mmol}, 1.00$ equiv), sodium (L)-ascorbate (241 mg , $1.22 \mathrm{mmol}, 0.50$ equiv) and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(187 \mathrm{mg}, 0.61 \mathrm{mmol}, 0.25$ equiv) in DMF (40
mL) was stirred under Ar at rt for 2 h 30 . The resulting residue was purified $\left(\mathrm{SiO}_{2}\right.$, $\mathrm{Hex} / \mathrm{EtOAc} 1: 1$) to yield I11ae as a white solid ($513 \mathrm{mg}, 75 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.47\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}_{3} \mathrm{C}=\mathrm{CH}\right), 8.41(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\operatorname{Ar} p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.96\left(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar} p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} p-$ tolyl), 7.36 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$, Ar p-tolyl), 2.41 (s, $3 \mathrm{H}, \mathrm{CH}_{3} p$-tolyl). ${ }^{13} \mathbf{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.4$ (C, $\mathrm{N}_{3} \mathrm{C}=\mathrm{CH}$), 147.9 (C, Ar), 142.8 (C, Ar), 140.6 (C, Ar), 139.7 (C, Ar), 130.5 (2CH, Ar), 125.8 (2CH, Ar), 124.9 (2CH, Ar), 122.1 (CH, $\mathrm{N}_{3} \mathrm{C}=\mathrm{CH}$), 121.0 (2CH, Ar), $21.7\left(\mathrm{CH}_{3}, p\right.$-tolyl). IR (KBr) $\boldsymbol{v}_{\text {máx }} 3145,3101,1598,1532,1505$, 1344, 1235, 1082, 1055, 1032, 855, 573. [$\alpha]_{\mathbf{D}}^{\mathbf{2 5}}+252.2\left(c 0.5 \mathrm{CHCl}_{3}\right)$. HRMS (ESI) m / z calculated for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}: 329.0703[\mathrm{M}+\mathrm{H}]^{+}$, found: 329.0710. m.p. 209-210 ${ }^{\circ} \mathrm{C}$.

Synthesis of compound $\mathbf{1 6}^{5}$

In a bottom flask, triazole $\mathbf{7 a a}(90 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.00$ equiv) and mcpba (105 $\mathrm{mg}, 0.61 \mathrm{mmol}, 2.00$ equiv) were dissolved in $\mathrm{CHCl}_{3}(5 \mathrm{~mL}) 1 \mathrm{~h}$ at rt . The reaction was quenched with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} 0.5 \mathrm{M}$. The crude reaction was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were washed with NaOH 1.0 M and the combined aqueous phases were again extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over MgSO_{4}, filtered and the solvent was removed under vacuum to afford the corresponding reaction product $\mathbf{1 6}$ as a white solid (94 mg , quantitative). No further purifications were needed.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.26\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}_{3} \mathrm{C}=\mathrm{CH}\right), 8.22(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$, Ar p-tolyl), 7.68 (br s, 3H, Ar), 7.61 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar} p$-tolyl), 7.58 (br s, 2H, Ar), $5.81\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} p\right.$-tolyl). ${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.7(\mathrm{C}$,

[^3]$\mathrm{N}_{3} \mathrm{C}=\mathrm{CH}$), 145.2 (C, Ar), 137.1 (C, Ar), 133.1 (C, Ar), 130.1 (2CH, Ar), 129.5 (3CH, Ar), 128.7 ($2 \mathrm{CH}, \mathrm{Ar}$), $128.2(2 \mathrm{CH}, \mathrm{Ar}), 125.6\left(\mathrm{CH}, \mathrm{N}_{3} \mathrm{C}=\mathrm{CH}\right), 55.0\left(\mathrm{NCH}_{2}\right), 21.8\left(\mathrm{CH}_{3}\right.$, p-tolyl). IR (KBr) $\boldsymbol{v}_{\text {máx }} 2963,2924,1769,1698,1428,1324,1262,1100,802,720,598$. HRMS (ESI) m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}: 314.0958[\mathrm{M}+\mathrm{H}]^{+}$, found 314.0955. m.p. $140-143{ }^{\circ} \mathrm{C}$.

General procedure for the synthesis of triazolium salts

Triazole (1.00 equiv) and Meerwein's salt (1.30 equiv per triazole) were stirred under Ar at rt in anh $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ until completion of reaction (${ }^{1} \mathrm{H}$ NMR analysis). The reaction was quenched with methanol and filtered through a short pad of NaHCO_{3}. The solvent was removed under vacuum to afford the corresponding reaction product without further purification. In some cases, the product was washed with a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:pentane to remove the starting material traces.

Synthesis of compound 8ba

Following the general procedure a mixture of $\mathbf{1 1 b a}(112 \mathrm{mg}, 0.36 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{Me}_{3} \mathrm{OBF}_{4}\left(69 \mathrm{mg}, 0.46 \mathrm{mmol}, 1.30\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ was stirred under Ar at rt overnight. The reaction was quenched with methanol and filtered through a plug of NaHCO_{3}. The solvent was removed under vacuum to yield $\mathbf{8 b a}$ as a white solid (139 mg, 93\%).
${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.82\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}_{3} \mathrm{C}=\mathrm{CH}\right), 7.91(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH} \mathrm{Ar}$ p - $\mathrm{OMeC}_{6} \mathrm{H}_{4}+2 \mathrm{CH} p$-tolyl), 7.54 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$, Ar p-tolyl), $7.25(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{Ar} p-\mathrm{OMeC}_{6} \mathrm{H}_{4}\right), 4.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} p\right.$-tolyl). ${ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 161.7$ (C, Ar), 146.4 (C, $\mathrm{N}_{3} \mathrm{C}=\mathrm{CH}$), 144.0 ($\mathrm{C}, \mathrm{Ar)}$, 136.5 (C, Ar), 130.8 (2CH, Ar), $129.3\left(\mathrm{CH}, \mathrm{N}_{3} \mathrm{C}=\mathrm{CH}\right), 127.7(\mathrm{C}, \mathrm{Ar}), 126.2(2 \mathrm{CH}, \mathrm{Ar})$,
123.5 (2CH, Ar), 115.3 (2CH, Ar), $56.0\left(\mathrm{OCH}_{3}\right), 39.6\left(\mathrm{NCH}_{3}\right), 21.1\left(\mathrm{CH}_{3}, p\right.$-tolyl). IR (KBr) $\boldsymbol{v}_{\text {máx }} 3436,3124,2923,1607,1595,1514,1260,1184,1057,836,813,520 .[\alpha]_{\mathbf{D}}^{\mathbf{2 5}}$ $+24.6\left(c 0.5, \mathrm{CHCl}_{3}\right)$. HRMS (ESI) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}: 328.1114$ [M$\left.\mathrm{BF}_{4}\right]^{+}$, found: 328.1127 . m.p. $50-52^{\circ} \mathrm{C}$.

Synthesis of compound 8ca

Following the general procedure a mixture of 11ca $(430 \mathrm{mg}, 1.29 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{Me}_{3} \mathrm{OBF}_{4}\left(248 \mathrm{mg}, 1.68 \mathrm{mmol}, 1.30\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was stirred under Ar at rt overnight. The reaction was quenched with methanol and filtered through a plug of NaHCO_{3}. The solvent was removed under vacuum to yield 8ca as a white solid ($477 \mathrm{mg}, 85 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}$ naph $), 7.95(\mathrm{~m}, 5 \mathrm{H}$, Ar p-tolyl, $\mathrm{N}_{3} \mathrm{C}=\mathrm{CH}$ and Ar naph $), 7.61$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{Ar}$ naph), 7.43 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar} p$ tolyl), $4.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} p\right.$-tolyl) ${ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 148.4 (C, $\mathrm{N}_{3} \mathrm{C}=\mathrm{CH}$), 145.0 (C, Ar), 134.4 (C, Ar), 133.9 (C, Ar), 133.3 (CH, Ar), 131.8 (C, Ar), 131.2 ($2 \mathrm{CH}, \mathrm{Ar}$), 130.6 (C, Ar), 129.7 (CH, Ar), 128.8 (CH, Ar), 128.1 (CH, Ar), 126.9 (CH, Ar), 125.9 ($2 \mathrm{CH}, \mathrm{Ar}$), $125.7(\mathrm{CH}, \mathrm{Ar}), 125.2\left(\mathrm{CH}, \mathrm{N}_{3} \mathrm{C}=\mathrm{CH}\right), 120.6$ (2CH, Ar), $40.2\left(\mathrm{NCH}_{3}\right), 21.8\left(\mathrm{CH}_{3}, p\right.$-tolyl). IR (KBr) $\boldsymbol{v}_{\text {máx }} 3436,3108,3061,1059$, 807, 772, 519. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}+136.0$ (c $0.5 \mathrm{CHCl}_{3}$). HRMS (ESI) m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{OS}: 348.1165\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$, found: 348.1165 . m.p. $140-143{ }^{\circ} \mathrm{C}$.

Synthesis of compound 8da

Following the general procedure a mixture of 11da $(91 \mathrm{mg}, 0.32 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{Me}_{3} \mathrm{OBF}_{4}\left(62 \mathrm{mg}, 0.42 \mathrm{mmol}, 1.30\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was stirred under Ar at rt overnight. The reaction was quenched with methanol and filtered through a plug of NaHCO_{3}. The solvent was removed under vacuum to yield 8da as a white solid (123 mg , quantitative).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.63\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}_{3} \mathrm{C}=\mathrm{CH}\right), 7.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$, Ar p-tolyl), 7.79 (m, 2H, Ar), 7.54 (m, 3H, Ar), 7.42 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} p$-tolyl), $4.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} p\right.$-tolyl). ${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.1(\mathrm{C}$, $\mathrm{N}_{3} \mathrm{C}=\mathrm{CH}$), 144.9 (C, Ar), 135.0 (C, Ar), 134.6 (C, Ar), 132.4 (CH, Ar), 131.3 (2 CH , Ar), 130.5 ($2 \mathrm{CH}, \mathrm{Ar}$), 128.9 (CH, $\mathrm{N}_{3} \mathrm{C}=\mathrm{CH}$), 125.8 ($2 \mathrm{CH}, \mathrm{Ar}$), 122.3 (2CH, Ar), 40.0 $\left(\mathrm{NCH}_{3}\right), 21.7\left(\mathrm{CH}_{3}, p\right.$-tolyl). IR (KBr) $\boldsymbol{v}_{\text {máx }} 3414,3037,1084,1062,817,772,521$. $[\alpha]_{\mathbf{D}}^{\mathbf{2 5}}+55.4\left(c \quad 0.7 \mathrm{CHCl}_{3}\right)$. $\mathbf{H R M S}$ (ESI) m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{OS}: 298.1009[\mathrm{M}-$ $\left.\mathrm{BF}_{4}\right]^{+}$, found: 298.1018. m.p. $110-112{ }^{\circ} \mathrm{C}$.

Synthesis of compound 8ea

Following the general procedure a mixture of 11ea ($263 \mathrm{mg}, 0.80 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{Me}_{3} \mathrm{OBF}_{4}$ ($154 \mathrm{mg}, 1.04 \mathrm{mmol}$, 1.30 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL}$) was stirred under Ar at rt overnight. The reaction was quenched with methanol and filtered through a plug of NaHCO_{3}. The solvent was removed under vacuum to yield 8ea as a white solid ($210 \mathrm{mg}, 76 \%$).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 10.05\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}_{3} \mathrm{C}=\mathrm{CH}\right), 8.58(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{Ar} p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.29\left(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.91(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$, Ar p-tolyl), 7.56 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} p$-tolyl), 4.46 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$), 2.44 (s, 3H, $\mathrm{CH}_{3} p$ tolyl). ${ }^{13}$ C NMR (100 MHz, DMSO- d_{6}) $\delta 149.1$ (C, Ar), 147.1 (C, $\mathrm{N}_{3} \mathrm{C}=\mathrm{CH}$), 144.1 (C, Ar), 138.6 (C, Ar), 136.3 (C, Ar), 130.8 ($2 \mathrm{CH}, \mathrm{Ar}$), 130.5 (CH, $\mathrm{N}_{3} \mathrm{C}=\mathrm{CH}$), 126.2 (2 CH , $\mathrm{Ar}), 125.7(2 \mathrm{CH}, \mathrm{Ar}), 123.3(2 \mathrm{CH}, \mathrm{Ar}), 40.0\left(\mathrm{NCH}_{3}\right), 21.1\left(\mathrm{CH}_{3}, p\right.$-tolyl). IR (KBr)
$\boldsymbol{v}_{\text {máx }} 3401,3126,1536,1350,1062,856,573 .[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}+67.5\left(c \quad 0.2, \mathrm{MeOH} / \mathrm{CHCl}_{3} 4: 1\right)$. HRMS (ESI) m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}: 343.0859\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$, found: 343.0861. m.p. $209-211^{\circ} \mathrm{C}$.

Synthesis of compound $[16 \mathrm{Me}]^{+} \mathrm{BF}_{4}{ }^{-}$

Following the general procedure a mixture of $\mathbf{1 6}(70 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{Me}_{3} \mathrm{OBF}_{4}$ ($43 \mathrm{mg}, 0.29 \mathrm{mmol}, 1.30$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ was stirred under Ar at rt overnight. The reaction was quenched with methanol and filtered through a plug of NaHCO_{3}. The solvent was removed under vacuum to yield $[\mathbf{1 6 M e}]^{+} \mathbf{B F}_{4}{ }^{-}$as a white solid (91 mg , quantitative).
${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.82\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}_{3} \mathrm{C}=\mathrm{CH}\right), 8.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ar} p$-tolyl), 7.60 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} p$-tolyl), 7.51 (m, 2H, Ar), 7.45 (m, 3H, Ar), $5.85\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} p\right.$-tolyl). ${ }^{13} \mathbf{C} \mathbf{~ N M R ~ (~} 100 \mathrm{MHz}$, DMSO- d_{6}) $\delta 147.8$ (C, Ar), 141.1 ($\mathrm{C}, \mathrm{N}_{3} \mathrm{C}=\mathrm{CH}$), $134.2\left(\mathrm{CH}, \mathrm{N}_{3} \mathrm{C}=\mathrm{CH}\right), 133.7$ (C, Ar), 132.0 (C, Ar), 130.9 (2CH, Ar), 129.4 (CH, Ar), 129.3 (2CH, Ar), 129.1 (2CH, Ar), $129.0(2 \mathrm{CH}, \mathrm{Ar}), 57.1\left(\mathrm{NCH}_{2}\right), 40.2\left(\mathrm{NCH}_{3}\right), 21.3\left(\mathrm{CH}_{3}, p\right.$-tolyl). IR (KBr) $\boldsymbol{v}_{\text {máx }} 3420$, 1594, 1456, 1353, 1169, 1083, 813, 738, 690, 651, 597, 534. HRMS (ESI) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$: $328.1114\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$, found: 328.1123. m.p. $180-183{ }^{\circ} \mathrm{C}$.

General procedure for the synthesis of silver carbenes

In a schlenk flask charged with $4 \AA$ molecular sieves, a mixture of triazolium salt (1.00 equiv), $\mathrm{NMe}_{4} \mathrm{Cl}$ (1.50 equiv) and $\mathrm{Ag}_{2} \mathrm{O}$ (0.75 equiv) was stirred at rt in the
dark in anh $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:10) until the formation of the silver carbene (${ }^{1} \mathrm{H}$ NMR analysis). The reaction was filtered through a pad of Celite and the volatiles were removed under vacuum. The solid was then redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered again through a pad of Celite to separate the product form $\mathrm{NMe}_{4} \mathrm{Cl}$. The residue was precipitated in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:pentane to afford the corresponding reaction products.

Synthesis of compound 7aa

Following the general procedure a mixture of triazolium salt 8aa ($168 \mathrm{mg}, 0.47$ mmol, 1.00 equiv), $\mathrm{NMe}_{4} \mathrm{Cl}\left(77 \mathrm{mg}, 0.70 \mathrm{mmol}, 1.50\right.$ equiv) and $\mathrm{Ag}_{2} \mathrm{O}(81 \mathrm{mg}, 0.35$ mmol, 0.75 equiv) in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(26 \mathrm{~mL})$ was stirred under Ar at rt overnight until the formation of the silver carbene (${ }^{1} \mathrm{H}$ NMR analysis). The reaction was filtered through a pad of Celite and the solvent was removed under vacuum. The solid was then redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered again through a pad of Celite. The residue was precipitated in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:pentane to afford the corresponding reaction product 7aa as a brownish solid ($170 \mathrm{mg}, 89 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar} p$-tolyl), $7.21(\mathrm{~m}, 4 \mathrm{H}$, Ar), 7.35 ($\mathrm{m}, 10 \mathrm{H}, 6 \mathrm{H}$ Ar and 4 H Ar p-tolyl), 5.67 (d, $J=14.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}$), 5.62 (d, $\left.J=14.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.16\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.42\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} p\right.$-tolyl). ${ }^{13} \mathbf{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.4$ (2C, $\mathrm{N}_{3} \mathrm{C}=\mathrm{CAg}$, observed in HMBC), 149.0 ($2 \mathrm{C}, \mathrm{N}_{3} \mathrm{C}=\mathrm{CAg}$), 143.5 (2C, Ar), 136.7 (2C, Ar), 133.2 (2C, Ar), 130.9 ($4 \mathrm{CH}, \mathrm{Ar}$), 129.6 (2CH, Ar), 129.4 ($4 \mathrm{CH}, \mathrm{Ar}$), 128.9 ($4 \mathrm{CH}, \mathrm{Ar}$), $124.7(4 \mathrm{CH}, \mathrm{Ar}), 60.6\left(2 \mathrm{NCH}_{2}\right), 38.1\left(2 \mathrm{NCH}_{3}\right), 21.7$ $\left(2 \mathrm{CH}_{3}, p\right.$-tolyl). IR (KBr) $\boldsymbol{v}_{\text {máx }} 3440,3031,2950,1492,1456,1316,1083,1052,811$,

745, 708. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}-40.6\left(c 0.2, \mathrm{CHCl}_{3}\right)$. HRMS (ESI) m / z calculated for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{AgN}_{6} \mathrm{O}_{2} \mathrm{~S}_{2}$: $731.1228\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$, found: 731.1229. m.p. decomposes before melting.

Synthesis of compound 7ba

Following the general procedure a mixture of triazolium salt $\mathbf{8 b a}(150 \mathrm{mg}, 0.46$ mmol, 1.00 equiv), $\mathrm{NMe}_{4} \mathrm{Cl}\left(75 \mathrm{mg}, 0.69 \mathrm{mmol}, 1.50\right.$ equiv) and $\mathrm{Ag}_{2} \mathrm{O}(79 \mathrm{mg}, 0.34$ mmol, 0.75 equiv) in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(24 \mathrm{~mL})$ was stirred under Ar at rt overnight until the formation of the silver carbene (${ }^{1} \mathrm{H}$ NMR analysis). The reaction was filtered through a pad of Celite and the solvent was removed under vacuum. The solid was then redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered again through a pad of Celite. The residue was precipitated in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford the corresponding reaction product 7ba as a brownish solid ($171 \mathrm{mg}, 88 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 4 \mathrm{H}, \operatorname{Ar} p-\mathrm{OMeC}_{6} \mathrm{H}_{4}\right), 7.62(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 4 \mathrm{H}$, Ar p-tolyl), $7.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \operatorname{Ar} p$-tolyl), $6.92(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 4 \mathrm{H}$, Ar $\left.p-\mathrm{OMeC}_{6} \mathrm{H}_{4}\right), 4.24\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.77\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.34\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right.$ p-tolyl). ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 161.3$ (2C, Ar), 149.8 (2C, $\mathrm{N}_{3} \mathrm{C}=\mathrm{CAg}$), 143.1 (2C, Ar), 137.0 (2C, Ar), 132.6 (2C, Ar), 130.9 (4CH, Ar), 125.0 (4CH, Ar), 124.9 (4CH, Ar), $114.9(4 \mathrm{CH}, \mathrm{Ar}), 55.8\left(2 \mathrm{OCH}_{3}\right), 38.2\left(2 \mathrm{NCH}_{3}\right), 21.5\left(2 \mathrm{CH}_{3}, p\right.$-tolyl), $\mathrm{C}_{\text {carbene }}$ not observed. IR (KBr) $\boldsymbol{v}_{\text {máx }} 3456,3050,2957,2841,1606,1512,1258,1084,1055,837$, 813, 738, 612. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}-157.2\left(c \quad 0.2 \quad \mathbf{C H C l}_{3}\right)$. HRMS (ESI) m / z calculated for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{AgN}_{6} \mathrm{O}_{4} \mathrm{~S}_{2}$: $763.1127\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$, found: 763.1118. m.p. decomposes before melting.

Synthesis of compound 7ca

Following the general procedure a mixture of triazolium salt 8ca ($186 \mathrm{mg}, 0.43$ mmol, 1.00 equiv), $\mathrm{NMe}_{4} \mathrm{Cl}(70 \mathrm{mg}, 0.64 \mathrm{mmol}, 1.50)$ and $\mathrm{Ag}_{2} \mathrm{O}(74 \mathrm{mg}, 0.32 \mathrm{mmol}$, 0.75 equiv) in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was stirred under Ar at rt overnight until the formation of the silver carbene (${ }^{1} \mathrm{H}$ NMR analysis). The reaction was filtered through a pad of Celite and the solvent was removed under vacuum. The solid was then redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered again through a pad of Celite. The residue was precipitated in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:pentane to afford the corresponding reaction product 7ca as a brownish solid ($170 \mathrm{mg}, 89 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}$ naph $), 7.86(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}$, Ar naph), 7.63 (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}$ naph), 7.55 (m, 2H, Ar naph), 7.46 (m, 6H, Ar naph), 7.39 (d, $J=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \operatorname{Ar} p$-tolyl), 7.29 (d, $J=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \operatorname{Ar} p-$ tolyl) 4.20 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{NCH}_{3}$), 2.37 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3} p$-tolyl). ${ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 172.9 (2C, $\mathrm{N}_{3} \mathrm{C}=\mathrm{CAg}$), 149.1 ($2 \mathrm{C}, \mathrm{N}_{3} \mathrm{C}=\mathrm{CAg}$), 142.8 (2C, Ar), 136.5 (2C, Ar), 135.8 (2C, Ar), 134.0 (2C, Ar), 131.7 (2CH, Ar), 130.8 ($4 \mathrm{CH}, \mathrm{Ar}$), 128.7 (2CH, Ar), 128.6 (2CH, Ar), 127.6 (2CH, Ar), 127.5 (2C, Ar), 125.2 (2CH, Ar), 125.0 (2CH, Ar), 124.7 ($4 \mathrm{CH}, \mathrm{Ar}$), $121.6(2 \mathrm{CH}, \mathrm{Ar}), 38.3\left(2 \mathrm{NCH}_{3}\right), 21.6\left(2 \mathrm{CH}_{3}, p\right.$-tolyl). IR (KBr) $\boldsymbol{v}_{\text {máx }} 3054$, 2922, 1598, 1084, 1055, 806, 773. [$\alpha]_{\mathbf{D}}^{\mathbf{2 5}}-119.3$ (c $0.8 \mathrm{CHCl}_{3}$). HRMS (ESI) m / z calculated for $\mathrm{C}_{40} \mathrm{H}_{34} \mathrm{AgN}_{6} \mathrm{O}_{2} \mathrm{~S}_{2}$: $803.1230 \quad\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$, found: 803.1236. m.p. decomposes before melting.

Synthesis of compound 7da

Following the general procedure a mixture of triazolium salt 8da ($153 \mathrm{mg}, 0.40$ mmol, 1.00 equiv), $\mathrm{NMe}_{4} \mathrm{Cl}\left(65 \mathrm{mg}, 0.59 \mathrm{mmol}, 1.50\right.$ equiv) and $\mathrm{Ag}_{2} \mathrm{O}(69 \mathrm{mg}, 0.30$ mmol, 0.75 equiv) in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(19 \mathrm{~mL})$ was stirred under Ar at rt overnight until the formation of the silver carbene (${ }^{1} \mathrm{H}$ NMR analysis). The reaction was filtered through a pad of Celite and the solvent was removed under vacuum. The solid was then redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered again through a pad of Celite. The residue was precipitated in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:pentane to afford the corresponding reaction product 7da as a brownish solid ($139 \mathrm{mg}, 88 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 7.67(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}, \operatorname{Ar} p-$ tolyl), 7.52 (m, 6H, Ar), 7.39 (d, $J=8.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar} p$-tolyl), 4.29 (s, $6 \mathrm{H}, \mathrm{NCH}_{3}$), 2.42 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3} p$-tolyl). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.4$ (2C, $\mathrm{N}_{3} \mathrm{C}=\mathrm{CAg}$), 143.4 (2C, Ar), 139.2 (2C, Ar), 136.9 (2C, Ar), 131.1 (2CH, Ar), 131.0 ($4 \mathrm{CH}, \mathrm{Ar}$), 130.0 (4 CH , $\mathrm{Ar}), 124.8(4 \mathrm{CH}, \mathrm{Ar}), 123.3(4 \mathrm{CH}, \mathrm{Ar}), 38.3\left(2 \mathrm{NCH}_{3}\right), 21.7\left(2 \mathrm{CH}_{3}, p\right.$-tolyl), $\mathrm{C}_{\text {carbene }}$ not observed. IR (KBr) $\boldsymbol{v}_{\text {máx }} 3467,3045,1594,1493,1325,1084,1054,813,766,687$. $[\alpha]_{\mathbf{D}}^{\mathbf{2 5}}-140.9$ (c $0.3 \mathrm{CHCl}_{3}$). HRMS (ESI) m / z calculated for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{AgN}_{6} \mathrm{O}_{2} \mathrm{~S}_{2}$: $703.0915\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$, found: 703.0911. m.p. decomposes before melting.

Synthesis of compound 7ea

Following the general procedure a mixture of triazolium salt 8ea ($107 \mathrm{mg}, 0.25$ mmol, 1.00 equiv), $\mathrm{NMe}_{4} \mathrm{Cl}\left(41 \mathrm{mg}, 0.38 \mathrm{mmol}, 1.50\right.$ equiv) and $\mathrm{Ag}_{2} \mathrm{O}(43 \mathrm{mg}, 0.19$ mmol, 0.75 equiv) in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(11 \mathrm{~mL})$ was stirred under Ar at rt overnight until the formation of the silver carbene (${ }^{1} \mathrm{H}$ NMR analysis). The reaction was filtered through a pad of Celite and the solvent was removed under vacuum. The solid was then redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered again through a pad of Celite. The residue was precipitated in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:pentane to afford the corresponding reaction product 7ea as a yellow solid ($104 \mathrm{mg}, 94 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.38\left(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar} p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.30(\mathrm{~d}$, $\left.J=9.1 \mathrm{~Hz}, 4 \mathrm{H}, \operatorname{Ar} p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.77(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar} p$-tolyl), 7.38 (d, $J=8.3 \mathrm{~Hz}$, 4 H, Ar p-tolyl), 4.25 (s, $6 \mathrm{H}, \mathrm{NCH}_{3}$), 2.40 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3} p$-tolyl). ${ }^{13} \mathbf{C}$ NMR (100 MHz , CDCl_{3}) $\delta 170.2\left(2 \mathrm{C}, \mathrm{N}_{3} \mathrm{C}=\mathrm{CAg}\right.$), 149.7 (2C, $\mathrm{N}_{3} \mathrm{C}=\mathrm{CAg}$), 148.7 (2C, Ar), 143.5 (2C, Ar), 143.4 (2C, Ar), 136.7 (2C, Ar), 131.0 ($4 \mathrm{CH}, \mathrm{Ar}$), 125.3 ($2 \mathrm{CH}, \mathrm{Ar)}$,125.0 (4 CH , Ar), $124.6(4 \mathrm{CH}, \mathrm{Ar}), 38.5\left(2 \mathrm{NCH}_{3}\right), 21.6\left(2 \mathrm{CH}_{3}, p\right.$-tolyl), $\mathrm{C}_{\text {carbene }}$ not observed. IR (KBr) $\boldsymbol{v}_{\text {máx }} 3435,3050,1595,1530,1493,1345,1081,1050,855,812,751,543 .[\alpha]_{\mathrm{D}}^{25}$ $-141.0\left(c 0.4 \mathrm{CHCl}_{3}\right)$. HRMS (ESI) m / z calculated for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{AgN}_{8} \mathrm{O}_{6} \mathrm{~S}_{2}$: 793.0617 [M$\left.\mathrm{BF}_{4}\right]^{+}$, found: 793.0643. m.p. decomposes before melting.

Synthesis of compound 15

Following the general procedure a mixture of triazolium salt $[\mathbf{1 6 M e}]^{+} \mathbf{B F}_{\mathbf{4}}{ }^{-}(40$ $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv), $\mathrm{NMe}_{4} \mathrm{Cl}\left(16 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.50\right.$ equiv) and $\mathrm{Ag}_{2} \mathrm{O}(17$ $\mathrm{mg}, 0.07 \mathrm{mmol}, 0.75$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ was stirred under Ar at rt overnight until the formation of the silver carbene (${ }^{1} \mathrm{H}$ NMR analysis). The reaction was filtered through a pad of Celite and the solvent was removed under vacuum. The solid was then redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered again through a pad of Celite. The residue was precipitated in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:pentane to afford the corresponding reaction product 15 as a brownish solid ($29 \mathrm{mg}, 94 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96$ (d, $J=8.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar} p$-tolyl), 7.43 (m, 8 H , Ar), 7.34 ($\mathrm{m}, 6 \mathrm{H}, 2 \mathrm{H} \mathrm{Ar}$ and $4 \mathrm{H} \mathrm{Ar} p$-tolyl), 5.67 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{NCH}_{2}$), 4.39 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{NCH}_{3}$), 2.47 (s, $6 \mathrm{H}, \mathrm{CH}_{3} p$-tolyl). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.2$ (2C, Ar), 147.7 (2C, $\mathrm{N}_{3} \mathrm{C}=\mathrm{CAg}$), 134.8 (2C, Ar), 133.2 (2C, Ar), 131.1 ($4 \mathrm{CH}, \mathrm{Ar)}$,129.6 (2CH, Ar), 129.4 ($4 \mathrm{CH}, \mathrm{Ar}$), 129.1 ($6 \mathrm{CH}, 4 \mathrm{CH} \mathrm{Ar}$ and 2 CH Ar), 129.0 ($2 \mathrm{CH}, \mathrm{Ar)} ,60.9\left(2 \mathrm{NCH}_{2}\right) 39.6$ $\left(2 \mathrm{NCH}_{3}\right), 22.1\left(2 \mathrm{CH}_{3}, p\right.$-tolyl), $\mathrm{C}_{\text {carbene }}$ not observed. IR (KBr) $\boldsymbol{v}_{\text {máx }} 3027,2955,2923$, 1594, 1337, 1152, 1079, 814, 747, 687, 652, 599, 533. HRMS (ESI) m/z calculated for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{AgN}_{6} \mathrm{O}_{4} \mathrm{~S}_{2}: 763.1136\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$, found: 763.1127. m.p. decomposes before melting.

Synthesis of compound 7ab

Following the general procedure a mixture of triazolium salt $\mathbf{8} \mathbf{a b}(88 \mathrm{mg}, 0.22$ mmol, 1.00 equiv), $\mathrm{NMe}_{4} \mathrm{Cl}\left(36 \mathrm{mg}, 0.33 \mathrm{mmol}, 1.50\right.$ equiv) and $\mathrm{Ag}_{2} \mathrm{O}(38 \mathrm{mg}, 0.17$ mmol, 0.75 equiv) in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ was stirred under Ar at rt overnight until the formation of the silver carbene (${ }^{1} \mathrm{H}$ NMR analysis). The reaction was filtered through a pad of Celite and the solvent was removed under vacuum. The solid was then redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered again through a pad of Celite. The residue was precipitated in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:pentane to afford the corresponding reaction products $\mathbf{7 a b}$ as a brownish solid ($87 \mathrm{mg}, 97 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.50\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} 2-\mathrm{OCH}_{3} \mathrm{naph}\right), 8.14$ (d, $J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} 2-\mathrm{OCH}_{3}$ naph), 7.87 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} 2-\mathrm{OCH}_{3}$ naph), 7.52 (br $\mathrm{s}, 2 \mathrm{H}, \mathrm{Ar}), 7.42$ (t, $J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}), 7.30(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}), 5.40\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.53$ (s, $6 \mathrm{H}, \mathrm{OCH}_{3}$), $4.03\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.8$ (2C, Ar), 148.6 (2C, $\mathrm{N}_{3} \mathrm{C}=\mathrm{CAg}$), 137.3 (2CH, Ar), 133.2 (2C, Ar), 131.3 (2C, Ar), 129.7 (2C, Ar), 129.6 (2CH, Ar) 129.3 (2CH, Ar), 129.2 (4CH, Ar), 129.1 (2CH, Ar), 128.6 (4CH, Ar), 125.0 ($2 \mathrm{CH}, \mathrm{Ar}$), 122.3 ($2 \mathrm{CH}, \mathrm{Ar}$), 119.3 ($2 \mathrm{C}, \mathrm{Ar}$), 113.1 ($2 \mathrm{CH}, \mathrm{Ar)} ,60.5\left(2 \mathrm{NCH}_{2}\right.$), $57.0\left(2-\mathrm{OCH}_{3} \mathrm{naph}\right), 38.7\left(2 \mathrm{NCH}_{3}\right) \mathrm{C}_{\text {carbene }}$ not observed. IR (KBr) $\boldsymbol{v}_{\text {máx }} 3435,1620$, 1507, 1275, 1252, 1059, 818, 746. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}+51.5$ (c 1.0, CHCl_{3}). HRMS (ESI) m / z calculated for $\mathrm{C}_{42} \mathrm{H}_{38} \mathrm{AgN}_{6} \mathrm{O}_{4} \mathrm{~S}_{2}$: $863.1442 \quad\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$, found: 863.1471. m.p. decomposes before melting.

General procedure for the desulfinylation process

In a bottom flask, silver carbene was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Alcohol was then added dropwise and the reaction was stirred at rt . Once the sulfinate was formed, volatiles were removed under vacuum. The sulfinate was separated from the carbene mixture washing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:pentane (twice).

Synthesis of compound 12a

Following the general procedure silver carbene $7 \mathbf{7 a}(81 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL}) . \mathrm{MeOH}$ was added dropwise. The solution started to become darker instantaneously. After 5 min of stirring at rt , the crude reaction was filtered through a pad of Celite. Volatiles were removed under vaccum yielding a brownish solid. To separate the sulfinate from the solid, the crude mixture was dissolved in the minimum volume of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and precipitated in pentane. The mixture was stirred for 5 min . Solvents were separated from the solid, which was dried under vacuum affording silver carbenes 12a as a brownish solid ($36 \mathrm{mg}, 67 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{~m}, \mathrm{Ar}), 5.98\left(\mathrm{~s}, \mathrm{NCH}_{2}\right), 5.63\left(\mathrm{~s}, \mathrm{NCH}_{2}\right)$, $5.58\left(\mathrm{~s}, \mathrm{NCH}_{2}\right), 4.46\left(\mathrm{~s}, \mathrm{NCH}_{2}\right), 4.24\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 4.18\left(\mathrm{~s}, \mathrm{NCH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 166.0\left(\mathrm{C}, \mathrm{N}_{3} \mathrm{C}=\mathrm{CAg}\right.$, observed in HMBC), 165.2 (C, $\mathrm{N}_{3} \mathrm{C}=C \mathrm{Ag}$, observed in HMBC), 134.5 (C), 132.7 (C), 131.9 (C), 130.6 (CH), 129.8 (CH, Ar), 129.5 (CH, Ar), 129.4 (CH, Ar), 129.3 (2CH, Ar), 129.0 (CH, Ar), 128.9 (CH, Ar), 128.8 (2CH, Ar), $128.4(2 \mathrm{CH}, \mathrm{Ar}), 59.4\left(\mathrm{NCH}_{2}\right), 57.2\left(\mathrm{NCH}_{2}\right), 55.5\left(\mathrm{NCH}_{2}\right), 43.0\left(\mathrm{NCH}_{3}\right), 40.4\left(\mathrm{NCH}_{3}\right)$, $38.4\left(\mathrm{NCH}_{3}\right)$. HRMS (ESI) m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{AgN}_{6}: 453.0951\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$, found: 453.0938. m.p. decomposes before melting.

Synthesis of compound 12b

Following the general procedure silver carbene $7 \mathbf{b a}(115 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.00$ equiv) was dissolved in of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL}) . \mathrm{MeOH}$ was added dropwise. The solution started to become darker instantaneously. After 5 min of stirring at rt , the crude reaction was filtered through a pad of Celite. Volatiles were removed under vaccum yielding a brownish solid. To separate the sulfinate from the solid, the crude mixture was dissolved in the minimum volume of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and precipitated in pentane. The mixture was stirred for 5 min . Solvents were separated from the solid, which was dried under vacuum affording silver carbenes 12b as a brownish solid ($73 \mathrm{mg}, 94 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98$ (s, Ar), $7.94(\mathrm{~d}, J=9.0 \mathrm{~Hz}, \mathrm{Ar} p-$ $\left.\mathrm{OMeC}_{6} \mathrm{H}_{4}\right), 7.88(\mathrm{~s}, \mathrm{Ar}), 7.78\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, \operatorname{Ar} p-\mathrm{OMeC}_{6} \mathrm{H}_{4}\right), 7.64(\mathrm{~d}, J=9.0 \mathrm{~Hz}, \operatorname{Ar} p-$ $\left.\mathrm{OMeC}_{6} \mathrm{H}_{4}\right), 7.06\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, \operatorname{Ar} p-\mathrm{OMeC}_{6} \mathrm{H}_{4}\right), 6.98\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, \operatorname{Ar} p-\mathrm{OMeC}_{6} \mathrm{H}_{4}\right)$, $4.57\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 4.31\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 4.28\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 3.88\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 3.86\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 3.85(\mathrm{~s}$, $\left.\mathrm{OCH}_{3}\right) \cdot{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.7\left(\mathrm{C}, \mathrm{N}_{3} \mathrm{C}=\mathrm{CAg}\right), 162.2(\mathrm{C}, \mathrm{Ar}), 161.5(\mathrm{C}$, Ar), 161.0 (C, Ar), 136.6 (CH, Ar), 134.1 (CH, Ar), 133.2 (CH, Ar), 133.0 (CH, Ar), 129.2 (C, Ar), 128.6 (C, Ar), 124.7 (2CH, Ar), 123.0 (CH, Ar), 122.9 (CH, Ar), 115.6 (CH, Ar), $115.4(2 \mathrm{CH}, \mathrm{Ar}), 114.8(2 \mathrm{CH}, \mathrm{Ar}), 56.0\left(\mathrm{NCH}_{2}\right), 55.9\left(\mathrm{NCH}_{2}\right), 55.8\left(\mathrm{OCH}_{3}\right)$, $43.4\left(\mathrm{NCH}_{3}\right), 40.8\left(\mathrm{NCH}_{3}\right), 38.6 \quad\left(\mathrm{NCH}_{3}\right)$. HRMS (ESI) m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{AgN}_{6} \mathrm{O}_{2}: 485.0850\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$, found: 485.0883. m.p. decomposes before melting.

Synthesis of compound 12c

Following the general procedure silver carbene $7 \mathbf{c a}(164 \mathrm{mg}, 0.18 \mathrm{mmol}, 1.00$ equiv) was dissolved in of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. MeOH was added dropwise. The solution started to become darker instantaneously. After 5 min of stirring at rt , the crude reaction was filtered through a pad of Celite. Volatiles were removed under vaccum yielding a brownish solid. To separate the sulfinate from the solid, the crude mixture was dissolved in the minimum volume of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and precipitated in pentane. The mixture was stirred for 5 min . Solvents were separated from the solid, which was dried under vacuum affording silver carbenes $\mathbf{1 2 c}$ as a brownish solid ($95 \mathrm{mg}, 85 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.91(\mathrm{~s}, \mathrm{Ar}), 8.60(\mathrm{~s}, \mathrm{Ar}), 8.10(\mathrm{~m}, \mathrm{Ar}), 7.91(\mathrm{~m}$, $\mathrm{Ar}), 7.59(\mathrm{~m}, \mathrm{Ar}), 4.58\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 4.34\left(\mathrm{~s}, \mathrm{NCH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 137.6 (C, Ar), 134.2 (C, Ar), 134.1 (C, Ar), 134.0 (C, Ar), 132.9 (CH, Ar), 132.8 (C, $\mathrm{Ar}), 132.6$ (CH, Ar), 132.1 (CH, Ar), 131.9 (CH, Ar), $131.0(\mathrm{CH}, \mathrm{Ar}), 129.5(\mathrm{CH}, \mathrm{Ar})$, 128.8 (CH, Ar), 128.7 (CH, Ar), 128.6 (CH, Ar), 128.4 (CH, Ar), 128.1 (CH, Ar), 128.0 (CH, Ar), $127.7(\mathrm{CH}, \mathrm{Ar}), 127.6(\mathrm{H}, \mathrm{Ar}), 127.3(\mathrm{CH}, \mathrm{Ar}), 127.1(\mathrm{C}, \mathrm{Ar}), 125.2(\mathrm{CH}$, $\mathrm{Ar}), 125.1(\mathrm{CH}, \mathrm{Ar}), 124.1(\mathrm{CH}, \mathrm{Ar}), 121.2(\mathrm{CH}, \mathrm{Ar}), 120.9(\mathrm{CH}, \mathrm{Ar}), 43.2\left(\mathrm{NCH}_{3}\right)$, $41.1\left(\mathrm{NCH}_{3}\right), 38.8\left(\mathrm{NCH}_{3}\right)$. HRMS (EI) m/z calculated for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{AgN}_{6}: 525.0951[\mathrm{M}-$ $\left.\mathrm{BF}_{4}\right]^{+}$, found: 525.0942 . m.p. decomposes before melting.

Synthesis of compound 12d

Following the general procedure silver carbene 7da ($139 \mathrm{mg}, 0.18 \mathrm{mmol}, 1.00$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. MeOH was added dropwise. The solution started to become darker instantaneously. After 5 min of stirring at rt , the crude reaction was filtered through a pad of Celite. Volatiles were removed under vaccum yielding a brownish solid. To separate the sulfinate from the solid, the crude mixture was dissolved in the minimum volume of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and precipitated in pentane. The mixture was stirred for 5 min . Solvents were separated from the solid, which was dried under vacuum affording silver carbenes $\mathbf{1 2 d}$ as a brownish solid ($76 \mathrm{mg}, 86 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~m}, \mathrm{Ar}), 7.51(\mathrm{~m}, \mathrm{Ar}), 4.64\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 4.38$ $\left(\mathrm{s}, \mathrm{NCH}_{3}\right), 4.37\left(\mathrm{~s}, \mathrm{NCH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.3\left(\mathrm{C}, \mathrm{N}_{3} \mathrm{C}=\mathrm{CAg}\right.$, observed in HMBC), 140.0 (C, Ar), 135.4 (C, Ar), 131.8 (CH, Ar), 131.2 (CH, Ar), 130.7 (CH, Ar), 130.5 (CH, Ar), 130.2 (2CH, Ar), $130.0(\mathrm{CH}, \mathrm{Ar}), 129.5$ (2CH, Ar), $123.2(2 \mathrm{CH}, \mathrm{Ar}), 121.4(2 \mathrm{CH}, \mathrm{Ar}), 121.2(2 \mathrm{CH}, \mathrm{Ar}), 43.4\left(\mathrm{NCH}_{3}\right), 40.9\left(\mathrm{NCH}_{3}\right), 38.8$ $\left(\mathrm{NCH}_{3}\right)$. HRMS (ESI) m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{AgN}_{6}: 425.0638\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$, found: 425.0643. m.p. decomposes before melting.

Synthesis of compound 12e

Following the general procedure silver carbene $7 \mathbf{e a}(94 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.00$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL}) . \mathrm{MeOH}$ was added dropwise. The solution started to become darker instantaneously. After 5 min of stirring at rt , the crude reaction was filtered through a pad of Celite. Volatiles were removed under vaccum yielding a brownish solid. To separate the sulfinate from the solid, the crude mixture was dissolved in the minimum volume of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and precipitated in pentane. The mixture was stirred for 5 min . Solvents were separated from the solid, which was dried under vacuum affording silver carbenes 12e as a brownish solid ($34 \mathrm{mg}, 53 \%$).

Due to the insolubility and instability of the Ag-MICs 12e, characterisation of the products could not be carried out. Reaction was confirmed to happen through the ${ }^{1} \mathrm{H}$ NMR spectrum analysis of the sulfinate formed.

Synthesis of methyl (\boldsymbol{R})-4-methylbenzenesulfinate ${ }^{6}$

[^4]${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar} p$-tolyl), $7.34(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} p$-tolyl), 3.46 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.43 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} p$-tolyl).

Synthesis of ethyl (\boldsymbol{R})-4-methylbenzenesulfinate ${ }^{7}$

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} p$-tolyl), $7.33(\mathrm{~m}, 2 \mathrm{H}$, Ar p-tolyl), $4.10\left(\mathrm{dq}, J=10.0 \mathrm{~Hz}, 7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.72(\mathrm{dq}, J=10.0 \mathrm{~Hz}, 7.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} p\right.$-tolyl), $1.28\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.

Synthesis of isopropyl (\boldsymbol{R})-4-methylbenzenesulfinate ${ }^{8}$

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar} p$-tolyl), $7.33(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} p$-tolyl), $4.60\left(\mathrm{~h}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right.$), $2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} p\right.$-tolyl), $1.38(\mathrm{~d}$, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$.

Synthesis of methyl (\boldsymbol{R})-2-methoxynaphthalene-1-sulfinate ${ }^{9}$

${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.09(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.97(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ar}), 7.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.57$ (ddd, $J=8.6 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar})$, 7.42 (ddd, $J=8.1 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.25(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 4.01(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$.

[^5]
General procedure for the synthesis of gold carbenes

To a solution of Ag -MIC (1.00 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2},\left[\mathrm{AuCl}\left(\mathrm{SMe}_{2}\right)\right]$ (2.00 equiv) was added. The mixture was stirred at rt until the formation of the gold carbenes (TLC analysis). The crude reaction was filtered trough a Celite pad and volatiles were removed under vacuum. Both regioisomers were separated through a chromatography column.

Synthesis of compounds 13a-14a

Following the general procedure, to a solution of $\mathrm{Ag}-\mathrm{MIC}$ 12a ($36 \mathrm{mg}, 0.07$ mmol, 1.00 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL}),\left[\mathrm{AuCl}\left(\mathrm{SMe}_{2}\right)\right]$ ($39 \mathrm{mg}, 0.13 \mathrm{mmol}, 2.00$ equiv) was added. The mixture was stirred at rt for 2 h . The reaction was filtered through a pad of Celite and the volatiles were removed under vacuum. The two regioisomers 13a-14a were obtained as white solids in a mixture of 3:4. They were separated by a short pad of SiO_{2} for their characterisation ($53 \mathrm{mg}, 98 \%$).

13a

${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}_{3} \mathrm{C}=\mathrm{CH}\right), 7.43(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.35$ $(\mathrm{m}, 2 \mathrm{H}, \mathrm{Ar}), 5.52\left(\mathrm{~s}, \mathrm{NCH}_{2}\right), 4.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.6$ (C, AuC=CH), 133.7 (CH, AuC=CH), 131.7 (C, Ar), 130.0 (CH, Ar), 129.7 (2CH, Ar), $128.9(2 \mathrm{CH}, \mathrm{Ar}), 56.4\left(\mathrm{NCH}_{2}\right), 42.2\left(\mathrm{NCH}_{3}\right)$. IR (KBr) $\boldsymbol{v}_{\text {máx }} 3106,1497,1458,1276$, 1094, 725, 694. HRMS (ESI) m / z calculated for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{AuN}_{3}: 370.0613$ [M-Cl] ${ }^{+}$, found: 370.0610 . m.p. decomposes before melting.

14a

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}_{3} \mathrm{C}=\mathrm{CH}\right), 7.21(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.53$ (m, 2H, Ar), 7.37 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{Ar}$), $5.64\left(\mathrm{~s}, \mathrm{NCH}_{2}\right), 4.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.0(\mathrm{C}, \mathrm{AuC=CH}), 134.9(\mathrm{CH}, \mathrm{AuC=CH}), 133.7(\mathrm{C}, \mathrm{Ar}), 129.3(\mathrm{CH}$, $\mathrm{Ar}), 129.2(2 \mathrm{CH}, \mathrm{Ar}), 129.1(2 \mathrm{CH}, \mathrm{Ar}), 59.2\left(\mathrm{NCH}_{2}\right), 39.0\left(\mathrm{NCH}_{3}\right)$. IR $(\mathbf{K B r}) \boldsymbol{v}_{\text {máx }}$ 3413, 3105, 2320, 1496, 1456, 1431, 1331, 1319, 1160, 1093, 1073, 1040, 1030, 842, 735, 842, 735, 700, 658, 569. HRMS (ESI) m / z calculated for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{AuN}_{3}: 370.0613$ $[\mathrm{M}-\mathrm{Cl}]^{+}$, found: 370.0595. m.p. decomposes before melting.

Synthesis of compounds 13b-14b

Following the general procedure, to a solution of Ag-MIC 12b ($64 \mathrm{mg}, 0.11$ mmol, 1.00 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$, $\left[\mathrm{AuCl}\left(\mathrm{SMe}_{2}\right)\right](66 \mathrm{mg}, 0.22 \mathrm{mmol}, 2.00$ equiv) was added. The mixture was stirred at rt for 2 h . The reaction was filtered through a pad of Celite and the volatiles were removed under vacuum. The two regioisomers 13b-14b were obtained as 23 hite solids in a mixture of $3: 2$. They were separated by a short pad of SiO_{2} for their characterisation ($66 \mathrm{mg}, 71 \%$).

13b

${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}_{3} \mathrm{C}=\mathrm{CH}\right), 7.63(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\operatorname{Ar} p-\mathrm{OMeC}_{6} \mathrm{H}_{4}\right), 7.08\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar} p-\mathrm{OMeC}_{6} \mathrm{H}_{4}\right), 4.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.90(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.7(\mathrm{C}, \mathrm{Ar}), 158.9\left(\mathrm{C}, \mathrm{N}_{3} \mathrm{C}=\mathrm{CAu}\right), 131.5$
$(\mathrm{CH}, \mathrm{CAu}=\mathrm{CH}), 128.5(\mathrm{C}, \mathrm{Ar}), 122.8(2 \mathrm{CH}, \mathrm{Ar}), 115.5(2 \mathrm{CH}, \mathrm{Ar}), 56.0\left(\mathrm{OCH}_{3}\right), 42.4$ $\left(\mathrm{NCH}_{3}\right)$. IR (KBr) $\boldsymbol{\nu}_{\text {máx }} 3107,2958,2924,2853,1716,1641,1611,1592,1519,1496$, 1464, 1378, 1316, 1263, 1214, 1173, 1166, 1099, 1032, 830, 819, 807, 720, 710, 654, 611, 553, 485. HRMS (ESI) m/z calculated for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{AuN}_{3} \mathrm{O}: 386.0562[\mathrm{M}-\mathrm{Cl}]^{+}$, found: 386.0562 . m.p. decomposes before melting.

14b

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94\left(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar} p-\mathrm{OMeC}_{6} \mathrm{H}_{4}\right), 7.72(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{N}_{3} \mathrm{C}=\mathrm{CH}$), $7.01\left(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} p-\mathrm{OMeC}_{6} \mathrm{H}_{4}\right), 4.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.88$ (s , $3 \mathrm{H}, \mathrm{OCH}_{3}$). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.1$ (C, Ar), $157.2\left(\mathrm{C}, \mathrm{N}_{3} \mathrm{C}=\mathrm{CAu}\right), 135.0$ $(\mathrm{CH}, \mathrm{CAu}=\mathrm{CH}), 132.1(\mathrm{C}, \mathrm{Ar}), 125.4(2 \mathrm{CH}, \mathrm{Ar}), 114.7(2 \mathrm{CH}, \mathrm{Ar}), 55.9\left(\mathrm{OCH}_{3}\right), 39.0$ $\left(\mathrm{NCH}_{3}\right)$. IR (KBr) $\boldsymbol{v}_{\text {máx }} 3146,3117,3100,2958,2924,2853,1723,1606,1592,5119$, $1463,1414,1378.1333,1304,1255,1171,1114,1093,1059,1027,982,833,807,752$, 720, 610, 551, 518.HRMS (ESI) m / z calculated for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{AuN}_{3} \mathrm{O}: 386.0562[\mathrm{M}-\mathrm{Cl}]^{+}$, found: 386.0550 . m.p. decomposes before melting.

Synthesis of compounds 13c-14c

Following the general procedure, to a solution of Ag-MIC 12c (223 mg, 0.36 mmol, 1.00 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}),\left[\mathrm{AuCl}\left(\mathrm{SMe}_{2}\right)\right](215 \mathrm{mg}, 0.73 \mathrm{mmol}, 2.00$ equiv $)$ was added. The mixture was stirred at rt for 2 h . The reaction was filtered through a pad of Celite and the volatiles were removed under vacuum. The two regioisomers $\mathbf{1 3 c} \mathbf{c} \mathbf{1 4 c}$ were obtained as white solids in a mixture of 5:4. They were separated by a short pad of SiO_{2} for their characterisation ($188 \mathrm{mg}, 59 \%$).

13c

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}$ napht), 8.03 (m, 1 H, Ar napht), $7.91\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}_{3} \mathrm{CH}=\mathrm{CAu}\right), 7.66(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}$ napht), 7.53 (m, 1H, Ar napht), 4.42 (s, 3H, $\left.\mathrm{NCH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 158.6\left(\mathrm{C}, \mathrm{N}_{3} \mathrm{CH}=\mathrm{CAu}\right), 136.2(\mathrm{CH}$, $\left.\mathrm{N}_{3} \mathrm{CH}=\mathrm{CAu}\right), 134.3(\mathrm{C}, \mathrm{Ar}), 132.5(\mathrm{CH}, \mathrm{Ar}), 131.8(\mathrm{C}, \mathrm{Ar}), 129.1(\mathrm{CH}, \mathrm{Ar}), 128.9(\mathrm{CH}$, Ar), $128.0(\mathrm{CH}, \mathrm{Ar}), 127.6(\mathrm{C}, \mathrm{Ar}), 125.0(\mathrm{CH}, \mathrm{Ar}), 124.2(\mathrm{CH}, \mathrm{Ar}), 121.1(\mathrm{CH}, \mathrm{Ar})$, $42.7\left(\mathrm{NCH}_{3}\right)$. IR (KBr) $\boldsymbol{\nu}_{\text {máx }} 3098,1513,1411,1271,801,769,687$. HRMS (ESI) m / z calculated for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{AuN}_{3}$: $406.0613[\mathrm{M}-\mathrm{Cl}]^{+}$, found: 406.0622. m.p. decomposes before melting.

14c

${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.49\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}_{3} \mathrm{CH}=\mathrm{CAu}\right), 8.29(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, 1 H, Ar napht $), 8.16$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$, Ar napht), 7.89 (br d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, Ar napht), $7.75(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, Ar napht), 7.69 (ddd, $J=8.2 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 1.3 \mathrm{~Hz}, 1 \mathrm{H}$, Ar napht), $7.64(\mathrm{td}, J=7.6 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 1.3 \mathrm{~Hz}, 1 \mathrm{H}$, Ar napht), 7.41 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, Ar napht), $4.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR (125 MHz, DMSO-d $\left.d_{6}\right) \delta 158.6\left(\mathrm{C}, \mathrm{N}_{3} \mathrm{CH}=\mathrm{CAu}\right), 135.5$ $\left(\mathrm{CH}, \mathrm{N}_{3} \mathrm{CH}=\mathrm{CAu}\right), 135.4(\mathrm{C}, \mathrm{Ar}), 133.4(\mathrm{C}, \mathrm{Ar}), 131.2(\mathrm{CH}, \mathrm{Ar}), 128.4(\mathrm{CH}, \mathrm{Ar}), 128.2$ (CH, Ar), $128.1(\mathrm{CH}, \mathrm{Ar}), 127.4(\mathrm{CH}, \mathrm{Ar}), 125.4(\mathrm{C}, \mathrm{Ar}), 125.3(\mathrm{CH}, \mathrm{Ar}), 121.8(\mathrm{CH}$, Ar), $39.0\left(\mathrm{NCH}_{3}\right)$. IR (KBr) $\boldsymbol{v}_{\text {máx }} 3430,3114,2923,1501,1330,1078,799,771$.

HRMS (ESI) m / z calculated for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{AuN}_{3}: 406.0613[\mathrm{M}-\mathrm{Cl}]^{+}$, found: 406.0623. m.p. decomposes before melting.

Synthesis of compounds 13d-14d

Following the general procedure, to a solution of Ag-MIC $\mathbf{1 2 d}(77 \mathrm{mg}, 0.15$ mmol, 1.00 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}),\left[\mathrm{AuCl}\left(\mathrm{SMe}_{2}\right)\right](89 \mathrm{mg}, 0.30 \mathrm{mmol}, 2.00$ equiv) was added. The mixture was stirred at rt for 2 h . The reaction was filtered through a pad of Celite and the volatiles were removed under vacuum. The two regioisomers $\mathbf{1 3 d} \mathbf{- 1 4 d}$ were obtained as 26 hite solids in a mixture of $4: 3$. They were separated by a short pad of SiO_{2} for their characterisation ($87 \mathrm{mg}, 74 \%$).

13d

${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}_{3} \mathrm{C}=\mathrm{CH}\right), 7.74(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.62$ (m, 3H, Ar), $4.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.2(\mathrm{C}, \mathrm{AuC}=\mathrm{CH})$, 135.4 (C, Ar), 131.7 ($\mathrm{CH}, \mathrm{CH}=\mathrm{CAu}$), $131.4(\mathrm{CH}, \mathrm{Ar}), 130.5$ (2CH, Ar), 121.4 (2CH, Ar), $42.6\left(\mathrm{NCH}_{3}\right)$. IR (KBr) $\boldsymbol{v}_{\text {máx }} 3435,3119,2923,1595,1561,1498,1464.1339$, 1308, 1262, 1212, 1094, 1032, 982, 820, 760, 732, 682, 669. HRMS (ESI) m / z calculated for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{AuN}_{3}: 356.0457[\mathrm{M}-\mathrm{Cl}]^{+}$, found: 356.0499 . m.p. decomposes before melting.

14d

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.81\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}_{3} \mathrm{C}=\mathrm{CH}\right), 7.54$ $(\mathrm{m}, 3 \mathrm{H}, \mathrm{Ar}), 4.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.3(\mathrm{C}, \mathrm{AuC}=\mathrm{CH})$,
139.0 (C, Ar), $135.4(\mathrm{CH}, \mathrm{CH}=\mathrm{CAu}), 130.6(\mathrm{CH}, \mathrm{Ar}), 129.7$ (2CH, Ar), 124.1 (2CH, Ar), $39.2\left(\mathrm{NCH}_{3}\right)$. IR (KBr) $\boldsymbol{v}_{\text {máx }} 3424,3111,2922,1595,1494,1456,1333,1317$, $1261,1216,1173,1072,1008,916,835,769,689,556$. HRMS (ESI) m / z calculated for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{AuN}_{3}: 356.0457[\mathrm{M}-\mathrm{Cl}]^{+}$, found: 356.0457. m.p. decomposes before melting.

Synthesis of compounds $13 \mathrm{e}-14 \mathrm{e}$

Following the general procedure, to a solution of Ag-MIC 12e (34 mg, 0.06 mmol, 1.00 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 mL), $\left[\mathrm{AuCl}\left(\mathrm{SMe}_{2}\right)\right](33 \mathrm{mg}, 0.11 \mathrm{mmol}, 2.00$ equiv) was added. The mixture was stirred at rt for 2 h . The reaction was filtered through a pad of Celite and the volatiles were removed under vacuum. Compound $\mathbf{1 4 e}$ was obtained together with traces of the regioisomer $13 \mathbf{e}$, which could not be isolated. $\mathbf{1 4 e}$ was purified by a short pad of SiO_{2} for their characterisation ($35 \mathrm{mg}, 71 \%$).

$14 e$

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.51\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.43$ $\left(\mathrm{s}, 1 \mathrm{H}, \mathrm{N}_{3} \mathrm{C}=\mathrm{CH}\right), 8.30\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar} p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), 4.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 155.8(\mathrm{C}, \mathrm{CH}=\mathrm{CAu}), 148.2(\mathrm{C}, \mathrm{Ar}), 143.1(\mathrm{C}, \mathrm{Ar}), 136.5$ $(\mathrm{CH}, \mathrm{CAu}=\mathrm{CH}), 125.7(2 \mathrm{CH}, \mathrm{Ar}), 125.1(2 \mathrm{CH}, \mathrm{Ar}), 39.5\left(\mathrm{NCH}_{3}\right.$, overlaped with deuterated solvent). IR (KBr) $\boldsymbol{v}_{\text {máx }} 3435,3113,2923,1612,1597,1530,1494,1360$, $1343,1316,1261,1222,1173,1109,1076,1025,1005,857,826,755,701,689,654$, 499. HRMS (ESI) m / z calculated for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{AuN}_{4} \mathrm{O}_{2}$: 401.0307 [M-Cl] ${ }^{+}$, found: 401.0291 . m.p. decomposes before melting.

Synthesis of compound $\mathbf{1 8}^{10}$

A mixture of $\mathbf{1 7}\left(92 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.00\right.$ equiv) and $\mathrm{Me}_{3} \mathrm{OBF}_{4}(56 \mathrm{mg}, 0.38$ mmol, 1.50 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was stirred under Ar at rt overnight. The reaction was quenched with methanol (15 mL) and filtered through a plug of NaHCO_{3}. The solvent was removed under vacuum. The crude reaction was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through cotton to remove the NaHCO_{3} dissolved by MeOH . The volatiles were removed under vacuum. The triazolium salt was separated from the methyl sulfinate washing with pentane. 18 was obtained as a white solid (52 mg , quantitative).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.45\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N}_{3} \mathrm{CH}=\mathrm{CH}\right), 7.44(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.35$ (m, 3H, Ar), $5.68\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$.

Crystal data for compound 13d:

Crystallization: Slow difussion of a concentrate solution of complex 13d in dichloromethane into hexanes.

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{AuClN}_{3}, \mathrm{Mr}=361.61$, crystal dimensions $0.4 \times 0.4 \times 0.1 \mathrm{~mm} 3$, triclinic, $\mathrm{P} \overline{1}, \mathrm{a}=6.5022(3) \AA, \mathrm{b}=7.7532(3) \AA, \mathrm{c}=11.0346(6) \AA, \alpha=77.138(3)^{\circ}, \beta=$

[^6]$82.169(3)^{\circ}, \gamma=83.193(2)^{\circ}$, cell volume $=535.02(4) \AA 3, Z=2, \varrho_{\text {calcd }}=2.431 \mathrm{Mg} / \mathrm{m3}, \mu$ $=13.960 \mathrm{~mm}^{-1}, \mathrm{~T}=173(2) \mathrm{K}, 2 \theta_{\max }=61.1^{\circ}, 17088$ reflections collected, 3185 independent, $\mathrm{R}_{\text {int }}=0.1016, \mathrm{R} 1=0.0356$ and $\mathrm{wR} 2=0.0488$ for $\mathrm{I}>2 \sigma(\mathrm{I}), \mathrm{R} 1=0.0670$ and $w R 2=0.0541$ for all data, residual electron density $=1.345 \mathrm{eA}^{-3}$.

Crystal data for compound 14d:

Crystallization: Slow difussion of a concentrate solution of complex 14d in dichloromethane into hexanes.

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{AuClN}_{3}, \mathrm{Mr}=391.61$, crystal dimensions $0.5 \times 0.4 \times 0.4 \mathrm{~mm}^{3}$, monoclinic, $P 2_{l} / n, a=11.668(2) \AA, b=7.578(1) \AA, c=12.803(2) \AA, \beta=115.593(4)^{\circ}$, cell volume $=$ $1020.9(2) \AA^{3}, \mathrm{Z}=4, \varrho_{\text {calcd }}=2.548 \mathrm{Mg} / \mathrm{m}^{3}, \mu=14.633 \mathrm{~mm}^{-1}, \mathrm{~T}=100(2) \mathrm{K}, 2 \theta_{\max }=$ $90.8^{\circ}, 82542$ reflections collected, 8589 independent, $\mathrm{R}_{\text {int }}=0.0435, \mathrm{R} 1=0.0175$ and $\mathrm{wR} 2=0.0396$ for $\mathrm{I}>2 \sigma(\mathrm{I}), \mathrm{R} 1=0.0280$ and $\mathrm{wR} 2=0.0442$ for all data, residual electron density $=2.087 \mathrm{eA}^{-3}$.

Crystal data for Ag-monocarbene grown from 7aa ${ }^{11}$

Crystallization: Slow difussion of a concentrate solution of silver complex 7aa in ethyl acetate into hexanes.

[^7]
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{AgClN}_{3} \mathrm{OS}, \mathrm{Mr}=454.71$, crystal dimensions $0.5 \times 0.1 \times 0.05 \mathrm{~mm}^{3}$, monoclinic, $P 2_{l}, a=10.565(2) \AA, b=6.892(1) \AA, c=12.256(2) \AA, \beta=95.573(5)^{\circ}$, cell volume $=888.1(2) \AA^{3}, \mathrm{Z}=2, \varrho_{\text {calcd }}=1.700 \mathrm{Mg} / \mathrm{m}^{3}, \mu=1.411 \mathrm{~mm}^{-1}, \mathrm{~T}=100(2) \mathrm{K}, 2 \theta_{\max }$ $=55.7^{\circ}, 12999$ reflections collected, 4199 independent, $\mathrm{R}_{\text {int }}=0.0735, \mathrm{R} 1=0.0500$ and $\mathrm{wR} 2=0.1114$ for $\mathrm{I}>2 \sigma(\mathrm{I}), \mathrm{R} 1=0.0712$ and $\mathrm{wR} 2=0.1215$ for all data, residual electron density $=1.779 \mathrm{eA}^{-3}$, absolute structure parameter $\mathrm{x}=-0.03(4)$.

Computational Details

Density functional theory (DFT) calculations were performed using the M06 density functional ${ }^{12}$ with an ultrafine grid as implemented in Gaussian09. ${ }^{13}$ This functional performs well for main-group chemistry and noncovalent interactions. ${ }^{14}$ All intermediates and transition states were fully optimized in dichloromethane solution

[^8](DCM, $\varepsilon=8.93$) using the continuum method SMD 15 and $6-31 \mathrm{G}^{* *}$ basis set $(\mathbf{B S 1}) .{ }^{16}$ Final single-point calculations were performed with the $6-311++\mathrm{G}^{*} *$ basis set (BS2). ${ }^{17}$ Transition states were identified by having one imaginary frequency in the Hessian matrix. It was confirmed that transition states connect with the corresponding intermediates by means of application of the eigenvector of the imaginary frequency and subsequent optimization of the resulting structures. All energy values reported in the main text correspond to Gibbs energies in DCM in $\mathrm{kcal} \mathrm{mol}^{-1}$.

[^9]
Energies and XYZ coordinates for all species

$(\mathrm{MeOH})_{2}$		
$\begin{aligned} & \mathrm{E}(\mathrm{BS} 1)=-231.321766 ; \mathrm{G}(\mathrm{BS} 1)=-231.247511 ; \mathrm{E}(\mathrm{BS} 2) \\ & 231.396522 \end{aligned}$		
C 1.738085	0.564517	-0.245263
H 1.367243	0.644867	-1.272176
H 2.835462	0.612167	-0.270720
H 1.364033	1.426491	0.324755
O 1.277323	-0.669159	0.274025
C -1.727787	0.549130	0.249358
H -2.814255	0.697577	0.214653
H -1.434067	0.542077	1.312947
H -1.265125	1.438362	-0.214942
O -1.419398	-0.64362	-0.413281
H -0.484979	-0.830408	-0.215839
H 1.506500	-0.710751	1.210801
$(\mathrm{MeOH})_{3}$		
$\begin{aligned} & \mathrm{E}(\mathrm{BS} 1)=-346.994886 ; \mathrm{G}(\mathrm{BS} 1)=-346.872413 ; \mathrm{E}(\mathrm{BS} 2)=- \\ & 347.100223 \end{aligned}$		
C 1.795063	-1.735648	0.179629
H 2.580670	-1.804662	-0.579724
H 1.611062	-2.746978	0.569905
H 2.174844	-1.114171	1.004475
O 0.646855	-1.190455	-0.432323
C 1.197618	1.903864	0.334054
H 0.993995	2.949192	0.587451
H 1.075602	1.303819	1.251152
H 2.247059	1.829553	0.013942
O 0.302560	1.514843	-0.688183
H 0.539783	0.591160	-0.906056
C -2.496593	-0.449952	-0.197784
H -2.041432	-0.692176	-1.171221
H -2.948287	-1.364109	0.200956
H -3.300708	0.280367	-0.367498
O -1.544894	0.015500	0.737777
H -1.098858	0.780494	0.323529
H -0.046426	-1.041174	0.239526
A		
$\begin{aligned} & \mathrm{E}(\mathrm{BS} 1)=-1255.630853 ; \mathrm{G}(\mathrm{BS} 1)=-1255.398208 ; \mathrm{E}(\mathrm{BS} 2)= \\ & -1255.868227 \end{aligned}$		
C 0.486318	0.317058	-0.383454
C -0.455799	-0.174903	-1.283614
N -1.224022	-0.890727	-0.400221
N -0.872759	-0.856745	0.888195
N 0.196401	-0.110154	0.886451
C -2.471256	-1.598251	-0.711367
H -2.428618	-1.80505	-1.784216
H -2.466044	-2.547173	-0.165215
C 0.911698	0.137261	2.130261
H 1.760712	-0.548600	2.206967
H 1.267046	1.170522	2.118798
H 0.222063	-0.026979	2.958959
C -3.671285	-0.768451	-0.348942
C -4.025922	0.328318	-1.137148
C -4.411971	-1.059400	0.795543
C -5.113872	1.119827	-0.786712
H -3.436184	0.560171	-2.023800
C -5.504728	-0.27023	1.144982
H -4.127348	-1.91045	1.413588
C -5.856432	0.819567	0.354075
H -5.385731	1.972530	-1.405109
H -6.080675	-0.506305	2.037190
H -6.709968	1.436848	0.626003
S 1.817880	1.428017	-0.785015
C 3.191961	0.313728	-0.372030
C 3.333831	-0.896963	-1.045322
C 4.127667	0.750470	0.555131
C 4.433911	-1.696938	-0.756855
H 2.589738	-1.214950	-1.775344

$\begin{array}{lrrr}\text { C } & 5.224267 & -0.061231 & 0.837217 \\ \text { H } & 3.982348 & 1.709275 & 1.049290 \\ \text { C } & 5.375913 & -1.280286 & 0.183342 \\ \text { H } & 4.557082 & -2.649028 & -1.267750 \\ \text { H } & 5.962068 & 0.262615 & 1.567723 \\ \text { H } & 6.234922 & -1.909913 & 0.403500 \\ \text { O } & 1.853671 & 2.535522 & 0.241005\end{array}$
TS-A
$\mathrm{E}(\mathrm{BS} 1)=-1602.643947 ; \mathrm{G}(\mathrm{BS} 1)=-1602.269841 ; \mathrm{E}(\mathrm{BS} 2)=$
-1602.980333
C $-1.367077-0.787052-0.174498$
C $-0.235616 \quad-0.7032550 .612557$
N $0.453528-1.8692500 .465200$
N -0.154232 $-2.679532-0.374368$
$\mathrm{N}-1.232265-2.013130-0.743369$
$\begin{array}{llll}\text { C } & 1.748745 & -2.292626 & 1.018920\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.749177 & -2.040295 & 2.081340\end{array}$
H $1.760413-3.382052 \quad 0.907169$
C $-2.129361-2.617436-1.721823$
H -2.130493 -3.698467 -1.571706
H $-3.135576-2.207881-1.571248$
H $-1.773999-2.381296-2.728692$
$\begin{array}{llll}\text { C } & 2.905608 & -1.641010 & 0.310593\end{array}$
C $4.007209-1.220166 \quad 1.055745$
$\begin{array}{llll}\text { C } & 2.910086 & -1.478180 & -1.075374\end{array}$
C $5.107998-0.6527770 .421119$
H $3.994702-1.330262 \quad 2.138699$
C $4.006744-0.900917-1.708048$
H $2.050966-1.796943-1.665155$
C $5.108775-0.490333-0.962080$
H $5.963044-0.3289161 .010222$
H $3.999679-0.771692-2.788005$
H $5.966037-0.040365-1.457836$
$\begin{array}{llll}\mathrm{S} & 0.187303 & 0.663135 & 1.720575\end{array}$
$\begin{array}{llll}\text { C } & 0.744253 & 1.776203 & 0.408643\end{array}$
$\begin{array}{llll}\text { C } & -0.219218 & 2.576088 & -0.197929\end{array}$
$\begin{array}{llll}\text { C } & 2.090015 & 1.832616 & 0.067423\end{array}$
C 0.185007 3.441034 -1.210990
H -1.260154 2.5247550 .132923
$\begin{array}{llll}\text { C } & 2.477037 & 2.712337 & -0.939041\end{array}$ $\begin{array}{llll}\text { H } & 2.814684 & 1.201409 & 0.581512\end{array}$
$\begin{array}{llll}\text { C } & 1.527276 & 3.507150 & -1.578456\end{array}$
H $-0.549067 \quad 4.074233-1.704160$
H 3.524447 2.776969 -1.225535
$\begin{array}{llll}\mathrm{H} & 1.838429 & 4.190982 & -2.364877\end{array}$
$\begin{array}{llll}\text { O } & 1.384418 & 0.230754 & 2.520005\end{array}$
H -2.381003 $-0.034073-0.435349$
$\begin{array}{llll}\text { C } & -3.037913 & 1.072085 & -2.124098\end{array}$
H -3.097145 $2.167192-2.256536$
H -3.682675 $0.622025-2.902381$
H -1.995302 $0.783431-2.379690$
O $-3.388139 \quad 0.665506-0.841867$
C $-4.935781-1.8391350 .445703$
H $-5.506226-2.768500 \quad 0.568608$
H -3.890326 -2.059263 0.735688
H $-5.332183-1.1113281 .174321$
O $-5.059623-1.403862-0.878161$ H -4.550490 -0.556097 -0.926732
$\begin{array}{llll}\text { C } & -3.389817 & 1.366946 & 2.249445\end{array}$
H $-2.9859321 .771588 \quad 3.186837$
H $-4.4535411 .128448 \quad 2.426234$
H -2.867777 $0.410630 \quad 2.059372$
$\begin{array}{llll}\text { O } & -3.208219 & 2.305902 & 1.230167\end{array}$
H $-3.387074 \quad 1.823159 \quad 0.385523$

B
$\mathrm{E}(\mathrm{BS} 1)=-1602.645855 ; \mathrm{G}(\mathrm{BS} 1)=-1602.267220 ; \mathrm{E}(\mathrm{BS} 2)=$ -1602.985914
C 1.661803 -1.063947 0.436058

	-	-	
	-0.159029		
	7	-2	
N	1.415358	-2	
	-1.467219	-2.280910	-0.
	-1.421316		
	-1.565947	-3	
	2.246130	-2.	1.
	2.942736	-2	2.405356
	1.604205		
H	2.796893	-3.7	8
	-2.587786	-1.567265	
	-3.785646	-1	-0
	-2.	-1.122	1.
C	-4	-0	-0.268978
	-3	-1	
	-3.558510	-0.4959	1.733188
	-1	-1	1.667811
	-4	-0	1.045946
	-5.799229	-0.	-0
	-3.460037	-0.	
	-5	0.	
S	0.366847	0.470149	
	-0.688112	.	-0.575334
C	-0.193946	2.082252	
C	-1.991275	1.	-1.006377
	-1.049242	2.	1
H	0.8		
C	-2.83	2.5	-0.235835
	-2.3	1.	-1.
C	-2	3.	0.
	-0.681203	3.328486	
	-3.858208	2.6	-0.557861
	-3	3.7	1.
O	-0.583560	-0.111902	
	2.523092	-0.461986	0.711961
C	2.6	2.6	-0.945290
	3.712426	2	-1
	2.452640	3.527	-0.250565
	2.0126	2.8	-1.
O	2.582508	1.	-0
C	2.959852	1.2	2.778014
	3.395276		3.765440
	2.758	2.2	2.
	1.976749	0.6	2.748728
	3.8382	0.769708	1.783892
	3.485607	1.146	0.921722
	4.608395	-0.97414	-1.272
	4.350125	-1.486805	-0.322680
	5.094026	-1.723790	-1.
	5.371988	-0.216519	-1.022027
	3.507019	-0.444605	-1.940138
	3.178193	0.328418	-1.399688

TS-B

$\mathrm{E}(\mathrm{BS} 1)=-1602.623169 ; \mathrm{G}(\mathrm{BS} 1)=-1602.246251 ; \mathrm{E}(\mathrm{BS} 2)=$ -1602.967497
C $-0.826722 \quad 2.256203 \quad 0.626812$
C $-0.188649 \quad 1.455689-0.288507$
$\begin{array}{llll}\mathrm{N} & 1.032284 & 2.028535 & -0.460739\end{array}$
$\begin{array}{llll}\mathrm{N} & 1.194577 & 3.100069 & 0.285753\end{array}$
$\begin{array}{llll}\mathrm{N} & 0.066169 & 3.222564 & 0.943865\end{array}$
C $2.152745 \quad 1.561615-1.280801$
H $1.706935 \quad 1.065036-2.151215$
$\begin{array}{llll}\text { H } & 2.673352 & 2.462149 & -1.623564\end{array}$
C $-0.120373 \quad 4.3437721 .858890$
$\begin{array}{llll}\mathrm{H} & -0.462298 & 3.957627 & 2.820369\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.839654 & 4.847805 & 1.969475\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.862393 & 5.026097 & 1.439345\end{array}$
$\begin{array}{llll}\text { C } & 3.073661 & 0.633810 & -0.531101\end{array}$
C $4.069372-0.010711-1.268547$ $\begin{array}{llll}\text { C } & 2.971813 & 0.399167 & 0.837918\end{array}$ C $4.954139-0.879620-0.642398$ $\begin{array}{llll}\mathrm{H} & 4.143725 & 0.170606 & -2.340424\end{array}$ C $3.852357-0.482478 \quad 1.460938$

H 2.196394	0.885034	1.429424
C 4.845337	-1.120890	0.725973
H 5.726870	-1.375550	-1.225404
H 3.755923	-0.670886	2.528003
H 5.531699	-1.807486	1.216075
S -0.923433	0.042949	-1.210798
C -0.011810	-1.205293	-0.260119
C -0.365973	-1.448286	4
C 0.982384	-1.926694	-0.902366
C 0.321028	-2.429319	1.766951
H -1.184098	-0.895926	5
C 1.660097	-2.913218	-0.187196
H 1.215688	-1.715337	-1.944324
C 1.332667	-3.160438	1.141826
H 0.058131	-2.634255	2.802416
H 2.446544	-3.486185	-0.673428
H 1.862731	-3.932480	1.695134
O -0.280920	0.075063	-2.569915
H -1.822773	2.210494	1.049664
C -3.261590	-2.813547	-0.125169
H -4.100661	-3.046150	0.573448
H -2.377331	-3.345303	0.303481
H -3.505067	-3.367939	-1.059558
O -3.055422	-1.472987	-0.305711
C -3.674998	-0.411213	2.599953
H -4.222359	-0.122591	3.509694
H -3.221257	-1.401212	2.802542
H -2.833189	0.308107	2.505268
O -4.535926	-0.409920	1.513908
H -4.000035	-0.793154	0.745341
C -4.109089	1.236091	-1.533084
H -3.204584	1.879845	-1.572864
H -4.926904	1.830105	-1.970543
H -4.348307	1.084060	-0.466024
O -3.959785	0.039662	-2.226956
H -3.644636	-0.640260	-1.561947

$\mathrm{PhS}(\mathrm{O}) \mathrm{OMe}$
$\mathrm{E}(\mathrm{BS} 1)=-819.831342 ; \mathrm{G}(\mathrm{BS} 1)=-819.730200 ; \mathrm{E}(\mathrm{BS} 2)=-$ 819.965609

S	-1.435362	-0.351238	-0.604612
C	0.322002	-0.164426	-0.274551
C	1.007414	0.878869	-0.887838
C	0.957965	-1.056396	0.584057
C	2.366102	1.038734	-0.624917
H	0.487589	1.556109	-1.565961
C	2.312970	-0.889257	0.839023
H	0.389110	-1.871316	1.028340
C	3.012774	0.156922	0.236166
H	2.919105	1.847586	-1.096177
H	2.829375	-1.575500	1.506209
H	4.074407	0.280897	0.437507
O	-1.740834	-1.789610	-0.415621
C	-1.967552	1.774601	0.775957
H	-0.948200	2.161699	0.911998
H	-2.380876	2.172266	-0.161841
H	-2.588986	2.117282	1.606725
O	-1.994888	0.351674	0.805571

C
$\mathrm{E}(\mathrm{BS} 1)=-551.453283 ; \mathrm{G}(\mathrm{BS} 1)=-551.296229 ; \mathrm{E}(\mathrm{BS} 2)=-$
551.591436

C $2.661403-0.659491-1.252674$
C $1.485052-1.258173-0.799321$
$\mathrm{N} \quad 1.103377-0.680828 \quad 0.373343$
$\begin{array}{llll}\mathrm{N} & 1.929010 & 0.268483 & 0.741880\end{array}$
N $2.835444 \quad 0.254280-0.240464$
C $-0.096333-0.9432041 .170695$
H $-0.203372-2.0298241 .251181$
$\begin{array}{llll}\text { H } & 0.106068 & -0.540959 & 2.168600\end{array}$
C $\quad 3.942323 \quad 1.185327-0.106619$
$\begin{array}{llll}\mathrm{H} & 4.679402 & 0.800731 & 0.605086\end{array}$
$\begin{array}{llll}\text { H } & 4.406981 & 1.293469 & -1.087041\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.573081 & 2.152802 & 0.242681\end{array}$
С -1.319136 $-0.323849 \quad 0.551884$

C	-2.351232	-1.127484	0.071538
C	-1.422329	1.065204	0.446294
C	-3.482130	-0.550321	-0.501544
H	-2.267546	-2.210980	0.149956
C	-2.547836	1.641318	-0.130079
H	-0.610736	1.691425	0.816548
C	-3.580955	0.833525	-0.603281
H	-4.284734	-1.184318	-0.871850
H	-2.622234	2.723706	-0.208537
H	-4.462696	1.285595	-1.052160
H	0.877999	-2.052303	-1.219139

TS-C

$\mathrm{E}(\mathrm{BS} 1)=-782.787531 ; \mathrm{G}(\mathrm{BS} 1)=-782.538201 ; \mathrm{E}(\mathrm{BS} 2)=-$ 782.991607
$\begin{array}{llll}\text { C } & 1.913962 & -0.532452 & 0.029051\end{array}$
C $0.774699-0.254506-0.695991$
N $0.057764-1.400764-0.759645$
N $0.641800-2.393134-0.127691$
$\begin{array}{lllll}\text { N } & 1.757801 & -1.848797 & 0.334470\end{array}$
C $-1.287381-1.574358-1.325002$
H $-1.234530-1.324662-2.389349$
H -1.522526 $-2.637980-1.222026$
C $2.687111 \quad-2.6936371 .068480$
$\begin{array}{llll}\text { H } & 3.531786 & -2.954667 & 0.426142\end{array}$
H $3.045803-2.1442981 .940738$
H $2.161629-3.5969671 .381002$
$\begin{array}{llll}\text { C } & -2.260484 & -0.692765 & -0.595084\end{array}$
C $-2.760803 \quad 0.460111-1.197413$
C $-2.615013-0.996360 \quad 0.721218$
C $-3.6187191 .300974-0.492613$
H $-2.473421 ~ 0.698523-2.220974$
C $-3.468729-0.1557631 .425182$
H -2.209628 $-1.893228 \quad 1.190237$
C $-3.971630 \quad 0.9941230 .817815$
H -4.008337 2.198512 -0.967365
H -3.744007 $-0.396520 \quad 2.449470$
H -4.639942 1.6515271 .369434
H $0.4418740 .687592-1.118578$
$\begin{array}{llll}\text { C } & 0.287410 & 2.659379 & 0.835827\end{array}$
$\begin{array}{llll}\text { H } & -0.542851 & 3.359842 & 0.668400\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.783696 & 2.957589 & 1.774459\end{array}$
H $-0.168338 \quad 1.663818 \quad 1.013553$
$\begin{array}{llll}\text { O } & 1.148479 & 2.684026 & -0.262498\end{array}$
H $2.017432 \quad 2.295188 \quad 0.046405$
C 4.169371 1.549549 -0.602541
H 3.989847 2.446484 -1.234033
$\begin{array}{llll}\text { H } & 3.998292 & 0.678162 & -1.282878\end{array}$
H $5.258791 \quad 1.544839-0.387327$
$\begin{array}{llll}\text { O } & 3.386200 & 1.507966 & 0.525820\end{array}$
$\begin{array}{llll}\text { H } & 2.736676 & 0.343416 & 0.392607\end{array}$
D1
$\mathrm{E}(\mathrm{BS} 1)=-782.789037 ; \mathrm{G}(\mathrm{BS} 1)=-782.537322 ; \mathrm{E}(\mathrm{BS} 2)=-$ 782.995597

C $1.888338-0.5925960 .076620$
C $0.771838-0.250007-0.646946$ N $0.038075-1.380926-0.755091$ $\begin{array}{llll}\text { N } & 0.597205 & -2.407115 & -0.153176\end{array}$ $\begin{array}{llll}\mathrm{N} & 1.717188 & -1.911620 & 0.340798\end{array}$ C $-1.301640-1.516945-1.347699$ H -1.224447 -1.239772 -2.403563 H -1.550726 $-2.579947-1.277196$ C 2.625901 -2.795590 1.056341 $\begin{array}{llll}\text { H } & 3.467017 & -3.054415 & 0.408994\end{array}$ $\begin{array}{llll}\text { H } & 2.988674 & -2.277403 & 1.945558\end{array}$ H 2.077407 -3.694535 1.339231 C $-2.275984-0.642418-0.611580$ C $-2.754140 \quad 0.529761-1.194319$ $\begin{array}{llll}\text { C } & -2.657748 & -0.975384 & 0.689843\end{array}$ $\begin{array}{llll}\text { C } & -3.620027 & 1.359310 & -0.485885\end{array}$ $\begin{array}{llll}\text { H } & -2.444844 & 0.791351 & -2.205709\end{array}$ C -3.518876 -0.145769 1.397598 H $-2.269364-1.8873621 .143961$ C $-4.001725 \quad 1.022289 \quad 0.808904$

H	-3.993172	2.271645	-0.945341
H	-3.815737	-0.409468	2.410123
H	-4.676147	1.670888	1.363475
H	0.480700	0.723454	-1.030833
C	0.420695	2.651650	0.894336
H	-0.431839	3.327403	0.729727
H	0.951165	3.010118	1.794053
H	-0.009852	1.661710	1.157031
O	1.232575	2.621544	-0.234619
H	2.134643	2.243468	0.069757
C	4.168803	1.535556	-0.646249
H	3.965236	2.383765	-1.344416
H	3.981566	0.618467	-1.271676
H	5.273814	1.545630	-0.495095
O	3.449566	1.577563	0.509940
H	2.698881	0.120638	0.435837

D2
$\mathrm{E}(\mathrm{BS} 1)=-782.791098 ; \mathrm{G}(\mathrm{BS} 1)=-782.540670 ; \mathrm{E}(\mathrm{BS} 2)=-$ 782.997740

C -2.099363 -0.677975 -0.388542
C $-1.030134 \quad-0.147264 \quad 0.292741$
N $-0.357354 \quad-1.237204 \quad 0.735867$
N -0.905242 $-2.383422 \quad 0.381214$
N - 1.968311 -2.024302 -0.303378
С $0.898342-1.247373 \quad 1.502147$
H $0.715586 \quad-0.695628 \quad 2.429460$
$\begin{array}{llll}\mathrm{H} & 1.086543 & -2.297134 & 1.747463\end{array}$
C $-2.860887-3.048167-0.825862$
H $-3.711695-3.169721-0.151497$
H $-3.208137-2.738378-1.812671$
H -2.302828 -3.982116 -0.897649
$\begin{array}{llll}\text { C } & 2.012848 & -0.633284 & 0.706408\end{array}$
$\begin{array}{llll}\text { C } & 2.517762 & 0.618514 & 1.051431\end{array}$
C $2.519954-1.301872 \quad-0.410064$
$\begin{array}{llll}\text { C } & 3.532659 & 1.195802 & 0.292458\end{array}$
H $2.103539 \quad 1.1462691 .909413$
C $3.528152-0.722810-1.170991$
H $2.114249-2.277537-0.679261$
C $4.036728 \quad 0.526812 \quad-0.818207$
H $3.921843 \quad 2.173923 \quad 0.565967$
$\begin{array}{llll}\text { H } & 3.921781 & -1.245975 & -2.039510\end{array}$
H 4.826828 0.979125 -1.413408
H -0.7447590 .9504960 .461510
$\begin{array}{lllll}\text { C } & 0.228361 & 2.542725 & -0.854092\end{array}$
H 1.186913 3.098630 -0.725180
H $-0.250141 \quad 3.000827-1.754552$
$\begin{array}{llll}\mathrm{H} & 0.547233 & 1.521120 & -1.204039\end{array}$
$\begin{array}{llll}\text { O } & -0.561150 & 2.531836 & 0.256202\end{array}$
H -1.997262 2.387331 -0.311556
$\begin{array}{llll}\text { C } & -3.732216 & 2.265735 & 0.525702\end{array}$
H $-3.638951 \quad 3.234901 \quad 1.048856$
H -3.4999541 .4823391 .275107
H -4.7928392 .1453950 .260638
O -2.947710 $2.186910-0.620526$
H $-2.903974-0.174413-0.909193$

TS-D

$\mathrm{E}(\mathrm{BS} 1)=-782.789814 ; \mathrm{G}(\mathrm{BS} 1)=-782.541611 ; \mathrm{E}(\mathrm{BS} 2)=-$ 782.994044
$\begin{array}{llll}\text { C } & 2.082603 & 0.692033 & -0.394616\end{array}$
$\begin{array}{llll}\text { C } & 1.015510 & 0.130275 & 0.274390\end{array}$
$\begin{array}{llll}\mathrm{N} & 0.345265 & 1.222177 & 0.727255\end{array}$
$\begin{array}{llll}\mathrm{N} & 0.884841 & 2.383563 & 0.393873\end{array}$
$\begin{array}{llll}\text { N } & 1.950073 & 2.038547 & -0.292780\end{array}$
$\begin{array}{llll}\text { C } & -0.907603 & 1.221906 & 1.493671\end{array}$
$\begin{array}{llll}\text { H } & -0.724773 & 0.665170 & 2.418178\end{array}$
H $-1.105065 \quad 2.268132 \quad 1.747836$
$\begin{array}{llll}\text { C } & 2.840358 & 3.071958 & -0.797628\end{array}$
H $3.6781413 .204211 \quad-0.108763$
$\begin{array}{llll}\text { H } & 3.210242 & 2.766531 & -1.777706\end{array}$
H 2.275562 4.001068 -0.881210
C $-2.023215 \quad 0.607855 \quad 0.698861$
C $-2.544937-0.6329541 .058080$
C $-2.518656 \quad 1.266380-0.428826$

C -3.564519	-1.208407	0.303717	C 1.656216	-1.633251	-0.154977
H -2.140576	-1.153267	1.925336	N 1.121191	-0.623832	0.604395
C -3.531261	0.689386	-1.185698	N 1.697379	0.581028	0.532783
H -2.099758	2.233098	-0.710128	N 2.678070	0.369261	-0.309858
C -4.056800	-0.548908	-0.817930	C -0.090739	-0.710907	1.421851
H -3.967055	-2.177634	0.589627	H -0.169747	-1.757289	1.729104
H -3.915198	1.205516	-2.062814	H 0.058627	-0.088734	2.310575
H -4.850608	-0.999441	-1.409608	C 3.599649	1.449740	-0.614209
H 0.734115	-1.091169	0.407904	H 4.300178	1.586718	0.213868
C -0.234773	-2.509176	-0.838168	H 4.148961	1.188799	-1.520545
H -1.174908	-3.071514	-0.655376	H 3.034629	2.369982	-0.774906
H 0.255063	-3.016388	-1.698757	C -1.302963	-0.272850	0.648143
H -0.561151	-1.514493	-1.233225	C -1.921221	-1.155976	-0.238750
O 0.568837	-2.408907	0.271877	C -1.790243	1.028235	0.770420
H 2.092641	-2.370647	-0.344529	C -3.018078	-0.745063	-0.988583
C 3.805758	-2.260140	0.520051	H -1.528892	-2.167449	-0.340234
H 3.713849	-3.218381	1.061162	C -2.889315	1.440707	0.021906
H 3.555877	-1.460230	1.243186	H -1.301630	1.719048	1.457270
H 4.865377	-2.136667	0.257769	C - 3.504551	0.554134	-0.857662
O 3.034293	-2.213473	-0.641698	H -3.496598	-1.440121	-1.675240
H 2.897154	0.213895	-0.924167	H -3.266114	2.455962	0.126062
			H -4.364713	0.874529	-1.441593
E			H 3.468347	-1.227533	-1.447438

$\mathrm{E}(\mathrm{BS} 1)=-551.454096 ; \mathrm{G}(\mathrm{BS} 1)=-551.296648 ; \mathrm{E}(\mathrm{BS} 2)=-$
551.592176

C $2.701322-0.921287-0.746168$
(

1	1	1	1	1	1	1	1	1	1	-	1	1	1	1	1	1	1	1	1	1
190	180	170	160	150	140	130	120	110	100		80	70	60	50	40	30	20	10	0	-10

NNO

1	1	1		1	1	1	1	1	1	1	1	1	1	1	1		1	
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	1

170				1	1			1		10	1		1	1	1	10		
170	160	150	140	130	120	110	100	90	$\mathrm{f} 1(\mathrm{ppm})^{80}$	70	60	50	40	30	20	10	0	-1

16

$\stackrel{0}{\circ}$
∞
$\underset{\sim}{i}$
\sim

1	1	1	1	1	1	1	I	1	1	1	1	1		1		1	1	
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

8ca

$m \frac{m}{u}$
든
\sim
\sim
N

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	T
170	160	150	140	130	120	110	100	90		70	60	50	40	30	20	10	0	-10

8ea

-21.1

1	1	1	1	T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	T
180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

$\stackrel{H}{i}$

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

170	160	150	140	130	120	110	100	90	$\mathrm{f} 1(\mathrm{ppm})^{80}$	70	60	50	40	30	20	10	0	-1

\sum^{\square}

7ba

\qquad
8.Ss-
$\stackrel{\sim}{\infty}$
$\stackrel{\sim}{\sim}$

7ba

1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	T
180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

	1	1	1	1		1	1	1			1	1	1	1					
180	170	160	150	140	130	120	110	100	${ }^{90}$ (ppm)	80	70	60	50	40	30	20	10	0	-10

7da

	1	150		1	1	11				70	1			1	1		
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

7 ea

$\frac{m}{v} \frac{m}{v} \frac{m}{v}$ 는 둔 둔

$7 e a$

1		1		1		1	1	1		1	1	1	1	1	1			
170	160	150	140	130	120	110	100	90	$\begin{array}{r} 80 \\ \mathrm{f} 1(\mathrm{ppm}) \end{array}$	70	60	50	40	30	20	10	0	-10

$\underset{\sim}{\sim}$ 오仿
$\stackrel{n}{\sim}$
n
\vdots
\dot{j}
68

12a

Γ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	T
80	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1C

12b

$\stackrel{+}{i}$

 \int

 A Ω

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
80	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

$\stackrel{-1}{\dot{j}} \underset{\mid}{\infty}$

1	T	1	1	T	1	1	1	1	1	T	T	1	T		T	1		1
180	170	160	150	140	130	120	110	100	${ }_{61} 90$	80	70	60	50	40	30	20	10	0

ถֵÑ

$\stackrel{\underset{\sim}{\dot{j}}}{\stackrel{\infty}{\infty}} \underset{\sim}{\infty}$

89

1	1	1	1	1	1	1	1	1	1	1	,	1	1	1	1	1	1	1
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

13c

14c
$\stackrel{m}{\dot{+}}$

14c

13d

80	170	160	150	140	130	120	110	100	${ }_{\text {f1 }} 9$	80	70	60	50	40	30	20	10	0

 ${ }^{\infty} \infty^{\infty}{ }^{\infty}$ $\stackrel{\sim}{i}$

$14 e$

	1	1	1	1	1	1	1	1	1	-	1	1	1	1	1	1	1		1
30	170	160	150	140	130	120	110	100	90	$\mathrm{f} 1(\mathrm{ppm})^{80}$	70	60	50	40	30	20	10	0	

(

[^0]: [a] Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (CSIC) Juan de la Cierva 3, 28006-Madrid, Spain

 E-mail: mc.delatorre@csic.es
 [b] Departamento de Química Orgánica I, Facultad de Química, Universidad Complutense, 28040-Madrid, Spain

 E-mail: sierraor@ucm.es
 [c] Centro de Innovación en Química Avanzada (ORFEO-CINQA)
 [d] CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
 [e] Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
 [f] Current address: Department of Chemistry, Chemical Theory Center and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA

[^1]: ${ }^{1}$ Kosugi, H.; Kitaoka, M.; Tagami, K.; Takahasi, A.; Uda, H. J. Org. Chem. 1987, 52, 1078.
 ${ }^{2}$ Alvarez, S. G.; Alvarez, M. T. Synthesis 1997, 413.
 ${ }^{3}$ Wilkening, I.; del Signore, G.; Hackenberger, C. P. R. Chem. Commun. 2011, 349.

[^2]: ${ }^{4}$ Frutos, M.; Avello, M. G.; Viso, A.; Fernández de la Pradilla, R.; de la Torre, M. C.; Gornitzka, H.; Hemmet, C. Org. Lett. 2016, 18, 3570.

[^3]: ${ }^{5}$ Bolje, A.; Košmrlj, J. Org. Lett. 2013, 15, 5084.

[^4]: ${ }^{6}$ J. L. Ruano, J. Alemán, M. B. Cid, A. Parra, Org. Lett. 2005, 2, 179.

[^5]: ${ }^{7}$ T. Yoshino, S. Imori, H. Togo, Tetrahedron 2006, 62, 1309.
 ${ }^{8}$ M. Xia, Z.-C. Chen, Synth. Commun. 1997, 27, 1321.
 ${ }^{9}$ K. H. Bell, Aust. J. Chem. 1985, 38, 1209.

[^6]: ${ }^{10}$ For a complete characterisation of the triazolium salt 18 with iodide as contraion see: a) G. Boche, P. Andrews, K. Harms, M. Marsch, K. S. Rangappa, M. Schimeczek, C. Willeke, J. Am. Chem. Soc. 1996, 118, 4925; b) Y. Jeong, J.-S. Ryu, J. Org. Chem. 2010, 75, 4183.

[^7]: ${ }^{11}$ Silver mono(carbene) could not be isolated in enough quantity for complete characterisation. Only X-ray diffraction and HRMS (ESI) (calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{AgN}_{3} \mathrm{OS}$: $418.01378[\mathrm{M}-\mathrm{Cl}]^{+}$, found: 418.0145) could be registered.

[^8]: ${ }^{12}$ Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.
 ${ }^{13}$ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian, Inc.: Wallingford CT, 2009 Gaussian 09 (Revision D.01), Gaussian Inc., Wallingford CT, 2011.
 ${ }^{14}$ (a) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157; (b) Zhao, Y.; Truhlar, D. G. Chem. Phys. Lett. 2011, 502, 1.

[^9]: ${ }^{15}$ Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.
 ${ }^{16}$ (a) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257; (b) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654.
 ${ }^{17}$ (a) Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. J. Comput. Chem. 1983, 4, 294; (b) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650; (c) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639.

