Concise Syntheses of Hyrtioreticulins C and D via a C-4 Pictet-Spengler Reaction: Revised Signs of Specific Rotations

Supporting Information

Takumi Abe* and Koji Yamada*

Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-tobetsu, Hokkaido 0610293, Japan

E-mail: abe-t@hoku-iryo-u.ac.jp
E-mail: kyamada@hoku-iryo-u.ac.jp

Contents

EXPERIMENTAL

1. General Methods

Optical rotations were recorded on a JASCO P-2200 polarimeter. Melting points were recorded with a Yamato MP21 and are uncorrected. High-resolution MS spectra were recorded with a Micromass AutoSpec 3100 and a JEOL JMS-T100LP mass spectrometers. IR spectra were measured with a Shimadzu IRAffinity-1 spectrometer. The NMR experiments were performed with a JEOL JNM-ECA500 $(500 \mathrm{MHz})$ spectrometer, and chemical shifts are expressed in ppm (d) with TMS as an internal reference. Column chromatography, Flash column chromatography and Medium Pressure Liquid Chromatography (MPLC) were performed on silica gel (Silica Gel 60N, Kanto Chemical Co., Ltd.). Microwave irradiation was performed with a Green-Motif I (IMCR-25003) monomode microwave reactor (IDX Corporation). All microwave irradiation experiments were carried out in glass tubes with microwave power at 50 W or 80 W .

2. Synthesis of 14,16 , and 17 (scheme 1).

Acid-promoted Pictet-Spengler reactions at room temperature:

3-Methylbutanal ($60 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$) was added to a solution of tryptophan $\mathbf{1 3}(47 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{MeOH}(4 \mathrm{~mL})$ and stired at room temperature. After 120 h , the mixture was added to saturated NaHCO_{3} solution at $0{ }^{\circ} \mathrm{C}$, extracted with $\mathrm{AcOEt}(50 \mathrm{~mL})$, washed with brine, and dried over MgSO_{4}. The solvent was removed, and the residue was purified by silica gel column chromatography with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(2 / 1)$ to give $\mathbf{1 6}(12 \mathrm{mg}, 20 \%$ yield) and $\mathbf{1 7}(11 \mathrm{mg}, 18 \%$ yield).

Acid-promoted Pictet-Spengler reactions under reflux:

3-Methylbutanal ($60 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$) was added to a solution of tryptophan $13(47 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{MeOH}(4 \mathrm{~mL})$ and stirred for 48 h under reflux. After the mixture had cooled, the mixture was added to saturated NaHCO_{3} solution at $0{ }^{\circ} \mathrm{C}$, extracted with AcOEt (50 mL), washed with brine, and dried over MgSO_{4}. The solvent was removed, and the residue was purified by silica gel column chromatography with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(2 / 1)$ to give $\mathbf{1 4}(8 \mathrm{mg}, 14 \%$ yield), $\mathbf{1 6}$ ($29 \mathrm{mg}, 48 \%$ yield), and $\mathbf{1 7}(14 \mathrm{mg}, 23 \%$ yield).

Methyl (1R,3S)-6-hydroxy-1-isobutyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylate (16).

 $14 \mathrm{mg}, 23 \%$ yield, an amorphous white powder. $[\alpha]_{\mathrm{D}}{ }^{24}=+26.2(c=0.10$ in MeOH$) . \mathrm{Mp}: 114-117{ }^{\circ} \mathrm{C}$ $\left(\mathrm{CHCl}_{3} \mathrm{MeOH}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3471,1734 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta: 0.98,0.99,1.01,1.02(4 \mathrm{~s}, 6 \mathrm{H})$, $1.49(\mathrm{dd}, J=4.6,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{dd}, J=4.6,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=7.5,15.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.99 (dd, $J=5.2,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{dd}, J=5.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26$ (dd, $J=4.1,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=2.3,8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO-d d_{6}) $\delta: 21.8,23.7,24.8,25.0,44.5,48.3,52.3,52.5,103.1,106.5,111.2,111.3,128.0,131.1,137.2,149.6,174.3$. HR-EI-MS m / z : Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right]$: 302.1630. Found 302.1632.

Methyl (1S,3S)-6-hydroxy-1-isobutyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylate (17). $29 \mathrm{mg}, 48 \%$ yield, an amorphous white powder. $[\alpha]_{\mathrm{D}}{ }^{24}=-71.1(c=0.10$ in MeOH$) . \mathrm{Mp}: 154-156{ }^{\circ} \mathrm{C}$ $\left(\mathrm{CHCl}_{3} \mathrm{MeOH}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3480,1718 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta: 0.89(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.42$ (ddd, $J=2.9,9.8,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.76$ (ddd, $J=2.9,9.8,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H})$,
 2.53 (ddd, $J=1.7,12.1,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=2.9,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=4.0,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~d}, J=$ $9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{dd}, J=1.8,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta: 22.0,24.2,24.5,26.3,43.6,51.0,52.2,56.7,102.2,105.6,110.9,111.8,128.0,130.8,138.2,150.8$, 174.1. HR-EI-MS m / z : Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right]$: 302.1630. Found 302.1631.

Base-promoted Pictet-Spengler reaction:

3-Methylbutanal ($60 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$) was added to a solution of tryptophan $13(47 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{Et}_{3} \mathrm{~N} / \mathrm{MeOH}(1 / 1, \mathrm{v} / \mathrm{v}, 4 \mathrm{~mL})$ and stirred for 48 h under reflux. After the mixture had cooled, the mixture was added to saturated NaHCO_{3} solution at $0{ }^{\circ} \mathrm{C}$, extracted with AcOEt $(50 \mathrm{~mL})$, washed with brine, and dried over MgSO_{4}. The solvent was remoed, and the residue was purified by silica gel column chromatography with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(2 / 1)$ to give $\mathbf{1 4}(41 \mathrm{mg}, 67 \%$ yield $)$.
methyl (1R,3S)-9-hydroxy-1-isobutyl-2,3,4,6-tetrahydro-1H-azepino[5,4,3-cd]indole-3-carboxylate (14).
$41 \mathrm{mg}, 67 \%$ yield, an amorphous white powder. $[\alpha]_{\mathrm{D}}{ }^{24}=-22.8(c=0.10$ in MeOH$) . \mathrm{Mp}: 171-173{ }^{\circ} \mathrm{C}$ $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}\right) . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): 3480,1718 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta: 1.48(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.79(\mathrm{t}, J=$
 $13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=2.3,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{dd}, J=2.3,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{dd}, J=3.5$, $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{dd}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta: 21.4,24.6,24.7,34.8,40.8,52.3,53.3,54.0,109.4,111.4,111.8,123.0,124.8,125.7,132.2,145.2,175.2$. HR-EI-MS m/z: Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right]$: 302.1630. Found 302.1637.

3. Synthesis of 20 and 21 (Table 1).

Acid-promoted Pictet-Spengler reaction at room temperature (entry 3):

Acetaldehyde ($0.17 \mathrm{~mL}, 3 \mathrm{mmol}$) was added to a solution of tryptophan $13(234 \mathrm{mg}, 1 \mathrm{mmol})$ in $\mathrm{AcOH} / \mathrm{MeOH}(1 / 10, \mathrm{v} / \mathrm{v}, 10$ mL) and stirred at room temperature. After 1.5 h , the mixture was added to saturated NaHCO_{3} solution at $0{ }^{\circ} \mathrm{C}$, extracted with AcOEt (100 mL), washed with brine, and dried over MgSO_{4}. The solvent was removed, and the residue was purified by silica gel column chromatography with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(2 / 1)$ to give $20(45 \mathrm{mg}, 17 \%$ yield) and $21(150 \mathrm{mg}, 58 \%$ yield).
Acid-promoted Pictet-Spengler reaction at $50^{\circ} \mathrm{C}$ (entry 4):
Acetaldehyde ($0.17 \mathrm{~mL}, 3 \mathrm{mmol}$) was added to a solution of tryptophan $13(234 \mathrm{mg}, 1 \mathrm{mmol})$ in $\mathrm{AcOH} / \mathrm{MeOH}(1 / 10, \mathrm{v} / \mathrm{v}, 10$ mL) at room temperature and stirred for 1 h at $50^{\circ} \mathrm{C}$. After the mixture had cooled, the mixture was added to saturated NaHCO_{3} solution at $0{ }^{\circ} \mathrm{C}$, extracted with $\mathrm{AcOEt}(100 \mathrm{~mL})$, washed with brine, and dried over MgSO_{4}. The solvent was removed, and the residue was purified by silica gel column chromatography with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(2 / 1)$ to give $20(42 \mathrm{mg}, 16 \%$ yield) and 21 (105 $\mathrm{mg}, 40 \%$ yield).

Methyl (1R,3S)-6-hydroxy-1-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylate (16). ${ }^{1}$ $45 \mathrm{mg}, 17 \%$ yield (entry 3 , table 1), an amorphous white powder. $[\alpha]_{\mathrm{D}}{ }^{24}=+18.2(c=0.11 \mathrm{in} \mathrm{MeOH}) . \mathrm{Mp}$: $104-107{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3471,1736 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta: 1.43(\mathrm{~d}, J=6.9 \mathrm{~Hz}$,
 3 H), 2.89 (ddd, $J=1.2,6.9,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.98$ (ddd, $J=1.2,5.5,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{t}, J=$ $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{dd}, J=2.3,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO-d d_{6}) $\delta: 19.7,24.2,45.7,51.2,52.3,101.8,104.2,110.4,110.9,127.6,131.4,136.8,149.9,173.9$. HR-ESI-MS m / z : Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}\left[(\mathrm{M}+\mathrm{H})^{+}\right]:$261.1239. Found 261.1239.

Methyl ($1 S, 3 S$)-6-hydroxy-1-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylate (17). ${ }^{2}$ $150 \mathrm{mg}, 58 \%$ yield (entry 3, table 1), an amorphous white powder. $[\alpha]_{\mathrm{D}}{ }^{24}=-54.5(c=0.11 \mathrm{in} \mathrm{MeOH})$. Mp: 172-174 ${ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3472,1735 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta: 1.32(\mathrm{~d}, J=$ $6.3 \mathrm{~Hz}, 3 \mathrm{H}$), 2.54 (ddd, $J=1.7,14.9,14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=2.9,14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=4.0$, $10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=2.3,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J$
 $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta: 20.5,26.1,48.8,52.2,56.7,102.3,105.3,110.9,111.8$, 128.0, 130.8, 138.7, 150.8, 173.8. HR-ESI-MS m / z : Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NaN}_{2} \mathrm{O}_{3}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$: 283.1059. Found 283.1055.

4. Synthesis of 18 and 19 (Table 1).

Base-promoted Pictet-Spengler reactions under microwave irradiation (entry 7):

Acetaldehyde ($0.17 \mathrm{~mL}, 3 \mathrm{mmol}$) was added to a solution of tryptophan $13(234 \mathrm{mg}, 1 \mathrm{mmol})$ in $\mathrm{Et}_{3} \mathrm{~N} / \mathrm{MeOH}(1 / 1, \mathrm{v} / \mathrm{v}, 10 \mathrm{~mL})$ and stirred for 5 min at room temperature. Then, the mixture was heated under reflux for 6 h using microwave irradiation (50 W). After the mixture had cooled, the mixture was evaporated. The residue was purified by silica gel column chromatography with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(2 / 1)$ to give $\mathbf{1 8}(84 \mathrm{mg}, 32 \%$ yield) and 19 ($45 \mathrm{mg}, 17 \%$ yield).

Changing MeOH to EtOH (entry 8):

Acetaldehyde ($0.17 \mathrm{~mL}, 3 \mathrm{mmol}$) was added to a solution of tryptophan $13(234 \mathrm{mg}, 1 \mathrm{mmol})$ in $\mathrm{Et}_{3} \mathrm{~N} / \mathrm{EtOH}(1 / 1, \mathrm{v} / \mathrm{v}, 10 \mathrm{~mL})$ and stirred for 5 min at room temperature. Then, the mixture was heated under reflux for 6 h using microwave irradiation (50 W). After the mixture had cooled, the mixture was evaporated. The residue was purified by silica gel column chromatography with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(2 / 1)$ to give 18 ($45 \mathrm{mg}, 17 \%$ yield), 19 ($31 \mathrm{mg}, 12 \%$ yield), 20 ($48 \mathrm{mg}, 18 \%$ yield), and 21 ($28 \mathrm{mg}, 11 \%$ yield). Changing $\mathrm{Et}_{3} \mathrm{~N}$ to N, N-diisopropylethylamine (entry 9):
Acetaldehyde ($0.17 \mathrm{~mL}, 3 \mathrm{mmol}$) was added to a solution of tryptophan $13(234 \mathrm{mg}, 1 \mathrm{mmol})$ in DIEA/MeOH ($1 / 1, \mathrm{v} / \mathrm{v}, 10 \mathrm{~mL}$) and stirred for 5 min at room temperature. Then, the mixture was heated under reflux for 6 h using microwave irradiation (50 W). After the mixture had cooled, the mixture was evaporated. The residue was purified by silica gel column chromatography with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(2 / 1)$ to give 18 ($121 \mathrm{mg}, 46 \%$ yield) and 19 ($27 \mathrm{mg}, 10 \%$ yield).
Changing 50W to 80W in microwave irradiation (entry 10):
Acetaldehyde ($0.17 \mathrm{~mL}, 3 \mathrm{mmol}$) was added to a solution of tryptophan $13(234 \mathrm{mg}, 1 \mathrm{mmol})$ in DIEA/MeOH ($1 / 1, \mathrm{v} / \mathrm{v}, 10 \mathrm{~mL}$) and stirred for 5 min at room temperature. Then, the mixture was heated under reflux for 6 h using microwave irradiation (80 W). After the mixture had cooled, the mixture was evaporated. The residue was purified by silica gel column chromatography with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(2 / 1)$ to give $\mathbf{1 8}(154 \mathrm{mg}, 59 \%$ yield) and $19(10 \mathrm{mg}, 4 \%$ yield).

Methyl (1R,3S)-9-hydroxy-1-methyl-2,3,4,6-tetrahydro-1H-azepino[5,4,3-cd]indole-3-carboxylate (18). $154 \mathrm{mg}, 59 \%$ yield (entry 10 , table 1), an amorphous white powder. $[\alpha]_{\mathrm{D}}{ }^{24}=-5.0(\mathrm{c}=0.49 \mathrm{in} \mathrm{MeOH}) . \mathrm{Mp}$: $183-185{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3468,1726,1711 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta: 1.29(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}$), 2.82 (ddd, $J=1.7,12.6,14.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.27 (dd, $J=2.3,14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{dd}, J=1.7$, $12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 8.41$
 (br s, 1 H), 10.52 (br s, 1 H). ${ }^{13} \mathrm{C}$-NMR (DMSO- d_{6}) $\delta: 20.1,34.7,51.3,52.2,54.4,109.5,111.4,111.7,123.0$, 124.9, 125.4, 132.2, 145.5, 175.1. HR-ESI-MS m / z : Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NaN}_{2} \mathrm{O}_{3}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$: 283.1059. Found 283.1056.

Methyl (1S,3S)-9-hydroxy-1-methyl-2,3,4,6-tetrahydro-1H-azepino[5,4,3-cd]indole-3-carboxylate (19). $10 \mathrm{mg}, 4 \%$ yield (entry 10 , table 1), an amorphous white powder. $[\alpha]_{\mathrm{D}}{ }^{24}=-31.9(\mathrm{c}=0.50$ in MeOH$) . \mathrm{Mp}$: $80-83{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}\right)$. $\mathbb{R}\left(\mathrm{CHCl}_{3}\right): 3346,1734 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.61(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 3.16$ (ddd, $J=1.7,12.0,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=2.9,14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{dd}, J=2.9,12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.65(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.02$
 (br s, 1 H). ${ }^{13} \mathrm{C}$-NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 23.3,34.5,52.4,54.1,59.2,109.5,112.9,113.0,122.7,124.0,125.9,132.6$, 145.7, 175.1 HR-ESI-MS m / z : Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: 261.1239. Found 261.1238 .

5. Synthesis of 3-6 (scheme 3).

Typical procedure for hydrolysis: $10 \% \mathrm{NaOH}(0.25 \mathrm{~mL})$ was added to a solution of methyl ester $(0.1 \mathrm{mmol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ at room temperature, and the mixture was stirred at room temperature. After 15 min or 30 min , oxalic acid $\bullet 2 \mathrm{H}_{2} \mathrm{O}(63 \mathrm{mg}, 0.5$ mmol) was added to the mixture and stirred for 10 min at room temperature. The mixture was passed through Celite and the residue was washed with MeOH . The solvent was removed, and the residue was purified by silica gel column chromatography with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(2 / 1)$ to give the carboxylic acid.

Hyrtioreticuline C (3). ${ }^{3}$

According to the typical procedure for hydrolysis, $\mathbf{3}$ ($18 \mathrm{mg}, 72 \%$ yield) was obtained as an amorphous white powder.
$18 \mathrm{mg}, 72 \%$ yield, an amorphous white powder. $[\alpha]_{\mathrm{D}}{ }^{24}=-86.4(\mathrm{c}=0.10 \mathrm{in} \mathrm{MeOH}) . \mathrm{Mp}: 230-232{ }^{\circ} \mathrm{C}$

(-)-hyrtioreticulin C (3) $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3466,1710 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta: 1.41(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.87(\mathrm{dd}, J=12.6,16.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.61(\mathrm{dd}, J=2.9,16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=2.9,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.10(\mathrm{~s}, 1 \mathrm{H}), 8.90(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 10.71$ (br s, 1 H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta: 17.1,29.4,51.8,56.6,110.6,111.4,111.7$, 116.0, 123.6, 124.7, 132.0, 146.4, 169.7. HR-ESI-MS m / z : Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NaN}_{2} \mathrm{O}_{3}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]: 269.0902$. Found 269.0901.

Hyrtioreticulin C (3).

Adding TFA (1 drop) into NMR tube, then ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR experiments were performed. Adding TFA (1 $\mu \mathrm{L}$) into optical rotation cell, then specific rotation experiment was performed.
$[\alpha]_{\mathrm{D}}{ }^{24}=-60.5(\mathrm{c}=0.10 \mathrm{in} \mathrm{MeOH-TFA}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}+\mathrm{TFA}\right) \delta: 1.48(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.12(\mathrm{dd}$,

(-)-hyrtioreticulin C (3) $J=13.2,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=2.9,16.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.71(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 9.19(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 9.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO- $d_{6}+$ TFA) $\delta: 16.9,29.0,53.2,54.5,107.8,111.8,112.0,114.1,124.0,124.4,131.6,146.6,171.9$.

Hyrtioreticulin D (4). ${ }^{3}$

According to the typical procedure for hydrolysis, $\mathbf{4}(17 \mathrm{mg}, 70 \%$ yield) was obtained as an amorphous white

(+)-hyrtioreticulin D (4) powder.
$17 \mathrm{mg}, 70 \%$ yield , an amorphous white powder. $[\alpha]_{\mathrm{D}}{ }^{24}=+14.0(\mathrm{c}=0.55 \mathrm{in} \mathrm{MeOH}) . \mathrm{Mp}: 228-231{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}\right) . \mathrm{IR}$ $\left(\mathrm{CHCl}_{3}\right): 3447,1710 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta: 1.56(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.14(\mathrm{dd}, J=13.2,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=4.0$, $16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=4.0,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~s}$, $1 \mathrm{H}), 8.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta: 21.8,27.8,50.9,62.5,111.0,112.0,112.2,115.0$, 123.5, 126.2, 131.6, 146.8, 170.0. HR-ESI-MS m / z : Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}\left[(\mathrm{M}+\mathrm{H})^{+}\right]:$247.1083. Found 247.1083.

Hyrtioreticulin D (4).

Adding TFA (1 drop) into NMR tube, then ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR experiments were performed. Adding TFA (1 $\mu \mathrm{L}$) into optical rotation cell, then specific rotation experiment was performed.
$[\alpha]_{\mathrm{D}}{ }^{24}=+24.0(\mathrm{c}=0.10 \mathrm{in} \mathrm{MeOH-TFA}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}+\mathrm{TFA}\right) \delta: 1.62(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.42(\mathrm{~d}, J$

(+)-hyrtioreticulin D (4)
$=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.96(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 9.58$ (br s, 1 H), 10.85 (br s, 1 H). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO- $d_{6}+\mathrm{TFA}$) $\delta: 21.0,27.5,52.9,59.5,108.5,112.3,112.4,114.0,124.3$, 125.6, 131.5, 147.1, 171.6.

Hyrtioreticulin E (5). ${ }^{1-3}$

According to the typical procedure for hydrolysis, $\mathbf{5}(23 \mathrm{mg}, 93 \%$ yield) was obtained as an amorphous white powder.

(-)-hyrtioreticulin E (5)
$23 \mathrm{mg}, 93 \%$ yield, an amorphous white powder. $[\alpha]_{\mathrm{D}}{ }^{24}=-47.9(\mathrm{c}=0.11 \mathrm{in} \mathrm{MeOH}) . \mathrm{Mp}: 236-239{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}\right) . \mathrm{IR}$ $\left(\mathrm{CHCl}_{3}\right): 3446,1668,1658 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta: 1.51(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.82(\mathrm{dd}, J=8.0,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=$ $5.7,16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=5.7,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{dd}, J=2.3,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.06(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta: 18.7,23.2,47.2,53.4,102.6,105.2,112.0$, 112.1, 127.3, 131.1, 133.1, 151.1, 170.1. HR-ESI-MS m / z : Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NaN}_{2} \mathrm{O}_{3}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$: 269.0902. Found 269.0904.

Hyrtioreticuline E (5).

Adding TFA (1 drop) into NMR tube, then ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR experiments were performed. Adding TFA (1 $\mu \mathrm{L}$) into optical rotation cell, then specific rotation experiment was performed.

(-)-hyrtioreticulin E(5)
$[\alpha]_{\mathrm{D}}{ }^{24}=-8.8(\mathrm{c}=0.11 \mathrm{in} \mathrm{MeOH}-\mathrm{TFA}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}+\mathrm{TFA}\right) \delta: 1.61(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.98(\mathrm{dd}$, $J=8.0,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=5.2,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=2.3,8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.74(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}+\right.$ TFA) $\delta: 18.4,22.4,47.9,51.5,102.7,103.3,112.3,112.6,126.8,131.1,131.8,151.1,170.9$.

Hyrtiorectine B (6). ${ }^{3,4}$

According to the typical procedure for hydrolysis, $\mathbf{6}$ ($22 \mathrm{mg}, 91 \%$ yield) was obtained as an amorphous white powder. Adding TFA $(1 \mu \mathrm{~L})$ into optical rotation cell, then specific rotation experiment was performed due to its insolubility in $\mathrm{MeOH}\left\{[\alpha]_{\mathrm{D}}{ }^{24}=0(\mathrm{c}=0.11\right.$ in MeOH$\left.)\right\}$.
$22 \mathrm{mg}, 91 \%$ yield, an amorphous white powder. $[\alpha]_{\mathrm{D}}{ }^{24}=-69.8\left(\mathrm{c}=0.11\right.$ in MeOH-TFA). Mp: 264-266 ${ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}\right) . \mathrm{IR}$ $\left(\mathrm{CHCl}_{3}\right): 3446,1681 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta: 1.54(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.66(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=5.2,16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.55$ (dd, $J=4.6,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{dd}, J=2.3,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, 1 H), 8.78 (br s, 1 H), 10.75 (br s, 1 H). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta: 17.4,23.8,49.7,58.2,102.6,106.4,112.0,112.1,127.3,131.3$, 132.9, 151.2, 170.0. HR-ESI-MS m / z : Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NaN}_{2} \mathrm{O}_{3}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$: 269.0902. Found 269.0900.

References

(1) Brossi, A.; Focella, A.; Teitel, S. J. Med. Chem. 1973, 16, 418-420.
(2) Teital, S.; Brossi, A. Lloydia 1974, 37, 196-211.
(3) Yamanokuchi, R.; Imada, K.; Miyazaki, M.; Kato, H.; Watanabe, T.; Fujimuro, M.; Saeki, Y.; Yoshinaga, S.; Terasawa, H.; Iwasaki, N.; Rotinsulu, H.; Losung, F.; Mangindaan, R. E. P.; Namikoshi, M.; de Voogd, N. J.; Yokosawa, H.; Tsukamoto, S. Bioorg. Med. Chem. 2012, 20, 4437-4442.
(4) Youssef, D. T. A. J. Nat. Prod. 2005, 68, 1416-1419.

(1)

(1)

(1)

82

