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I. The correlation coefficient in reciprocal space, Ck.  

In the text, we pointed that the expressions in eq. 3 and eq. 5 in the main text form a parallel set 

in real and reciprocal space: 

Real Space Reciprocal Space 
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Where c is related to the covariance of the two edges in a line: 
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And the covariance is given by: 
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And Ck is a corresponding correlation coefficient in reciprocal space. In this section, we will 

demonstrate that the parallel relations hold true at every frequency and we will also demonstrate 

that Ck is the Cosine of the phase difference between the Fourier components of the opposite 

edges at frequency fk. 

Eq S1 and eq S2 are straightforward to derive
1
 substituting the width and placement definitions 

(eq 1 in the main text) into the definition of variance (eq 2 in the main text). We illustrate here 

the example of eq S1. According to eq 1 and 2 in the main text: 
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Where in the last line of eq S9 we substituted eq S8 in the last term. Then we substitute the linear 

correlation coefficient from eq S7 into the last line of eq S9 to obtain: 



 3

21

2

2

2

1

2

21

212

2

2

1

2

2

)2,1cov(2

εεεε

εε

εε
εε

σσσσσ

σσ

σσ
εεσσσ

cw

w

−+=

⋅−+=
  (S10) 

Recalling that for self-similar lines in the limit of large N: 
22

2

2

1 εεε σσσ == , then we obtain the 

familiar form of eq S1: 
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Now, to obtain eq S3, we first rewrite eq S1: 
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Now we rewrite eq S2: 
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Equating eq S12 to S13 and solving for 
2

εσ : 
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Which is the same as eq S3. 

Now we proceed to do a similar exercise in reciprocal space. First we start with the power 

spectral density (PSD) of the width roughness, Gw. From the definition of the PSD explained in 

eq 4 of the main text: 
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Where Wk are the Fourier coefficients given by: 
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Recall from the definition of eq 1 in the main text: jjjw 12 εε −= , 
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Note that each term in eq S17 corresponds to the Fourier coefficients of each line edge, thus: 

kkk EEW 12 −=   (S18) 

Note the parallel form of eq (S18) with the definition of eq 1 in the main text: jjjw 12 εε −= .  

Next we substitute eq S18 into eq S15 (in what follows, to simplify the notation, we restrict the 

expressions to the range � = 1, 2…	
� − 1. We will leave the special cases of k = 0 and k =N/2 

as an exercise to the interested reader): 
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Note that the first two terms in eq S20 are the PSD of each line edge: �ε���� = �∆

� |��|�, 

therefore, eq S20 can be written as: 
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Note the parallel relationship of eq S21 with the last line of eq S9. If we take the last term in eq 

S21 to be the parallel representation of the covariance, it is therefore natural to propose the 

parallel correlation coefficient in reciprocal space: 
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Substituting eq S22 into eq S21, 

������ = �ε����� + �ε����� − �� �∆

� �|E1�|� + |E2�|�� (S23) 

Recalling that for self-similar lines in the limit of large N, |E1�| = |E2�| = |E�| and �ε����� =

�ε����� = �ε����, then eq S23 becomes 

������ = 2�ε���� − 2�� �∆

� |E�|� (S24) 

And using the definition of the PSD: �ε���� = �∆

� |��|� and substituting into eq S24: 

������ = 2�ε���� − 2���ε���� (S25) 

Which demonstrates eq S4. 

We leave it as an exercise for the interested reader to show the corresponding relationships for 

the PSD of the line placement Gp: First, it can be shown that in analogy to eq 1 in the main text: 
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Then one can prove eq S5. Next, combining eq S4 and S5 one obtains eq S6. 

Experimentally, once Gw and Gp are computed, one can obtain Ck without keeping track of the 

complex Fourier coefficients Ε1�∗  or Ε2�∗ . By solving for Gε in eq S4 and substituting into eq S5, 

one arrives at the convenient expression for Ck: 
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Which is what we used in the main text eq 6 (naturally, there is a parallel expression in real 

space: ' = !(#�%(&�
!(#��(&�

 ). 

Now, to understand the meaning of Ck, we proceed to simplify eq S22. Since every Fourier 

coefficient is a complex number, let’s define: 

k

k

i

i

e

e

2

kk

1

kk

E2E2

E1E1

α

α

=

=
 (S28) 

Where α1k and α2k are the phase values of the Fourier components of the first and second line 

edges at frequency k. Then we substitute eq S28 into eq S22: 

�� = |���||���|�)*+,-�.,��/�).*�,-�.,����
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 (S29) 

Recalling again that for self-similar lines in the limit of large N: |E1�| = |E2�| = |E�| and thus 

eq S29 can be simplified as: 

 �� = |��|�	�012�3��%3���
�|��|�

 (S30) 
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�� = Cos�71� − 72�� (S31) 

Therefore, Ck represents the Cosine of the phase difference between the Fourier components of 

opposite edges at frequency k. In the same way as its real space analog (c), Ck ranges from 1 to -

1. When the two Fourier components of opposite edges are perfectly in phase (α1k = α2k), they 

are fully correlated and Ck=1. When |α1k - α2k |= π, they are fully anti-correlated and Ck=-1. 

It is interesting to note that while the phase information of each Ek is lost in the PSDs, the phase 

difference is still preserved in Ck and can be recovered from the PSDs through eq S27. 

 

II Thermal fluctuation in a 1D membrane.  

In this section we derive the thermal fluctuation modes for a 1D interface to show that the 

expression differs from the 2D version only by a constant given by 1/t, where t is the film 

thickness. We follow the treatment shown by Safran
2
. To simplify notation, we calculate here the 

thermal fluctuations of an interface (interfacial or capillary modes only). Extension to the 

membrane is straight forward by adding the curvature term for undulations and curvature and 

volume terms for peristaltic modes.
3
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Consider the surface of Figure S1. The equilibrium flat surface is set to be parallel to the x-y 

plane. The height of the interface is represented as z = h(x,y). or z = ℎ�9:� where 9: is the position 

vector. The dimension of the surface is L along the x-axis and t along the y-axis (in our 

experiments, t is the thickness of the film). We represent the partial derivatives of h as: 

ℎ; = <=
<; ; ℎ> = <=

<> (S32) 

In the Monge gauge, the Area of the surface is: 

? = ∬AB ∙ ADE1 + ℎ;� + ℎ>� ≈ ∬AB ∙ AD�1 + �
� ℎ;

� + �
� ℎ>

��  (S33) 

Given an interfacial energy, γ, the free energy of the interface is given by: 

GH = I? ≈ I∬AB ∙ AD�1 + �
�ℎ;

� + �
�ℎ>

�� (S34) 

Which can be separated in two terms: 

GH ≈ I∬AB ∙ AD + I∬AB ∙ AD J�� ℎ;
� + �

� ℎ>
�K = GL + ∆GH (S35) 

Where the first term is a constant given by the size of the interface on the x-y plane (Fo = γLt). 

The second term is the excess free energy ∆GH arising from the surface roughness. Thus, 

∆GH = I∬AB	AD J��ℎ;
� + �

� ℎ>
�K (S36) 

Now we proceed to calculate the thermal fluctuations of the interface for the one-dimensional 

case. Note that by “one-dimensional” we mean that the interface has no fluctuations along the y-

direction: ℎ> = <=
<> = 0, just like in the schematic of Fig. S1 This interpretation of 1D is needed 
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because γ is still a surface term. We now follow the treatment shown in chapter 3.3 of the 

textbook by Safran
2
 but with the condition that ℎ�9:� = ℎ�B� and hy = 0. 

Let’s start by rewriting the excess free energy of eq S36 for the 1D case: 

∆GH = I NAD NAB �
� ℎ;

�

∆GH = �
� IO NABℎ;

�  (S37) 

We also use the same Fourier pairs as Safran, but noting that they are now 1D: 

ℎ�B� = �
√Q∑ ℎ�S�TUV∙;V

ℎ�S� = �
√Q NAB	ℎ�B�T

%UV∙;  (S38) 

Where L is the length of the interface along the x-axis and q is the 1D wave vector. Note that 

ℎ�B� has units of [length] while ℎ�S:� has units of [length]3/2. Now our goal is to express eq S37 

in reciprocal space. First, we calculate hx using eq S38: 

ℎ; = �
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<; +T
UV∙;/V
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  (S39) 

Now we calculate (hx)
2
: 

ℎ;� = J �
√QK

�
+∑ ℎ�S�	WS	TUV∙;V /+∑ ℎ�SX�	WSX	TUVY∙;VY /
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Q ∑ ∑ ℎ�S�ℎ�SX�	S	SX	TU;�V�VY�VYV

  (S40) 

Now substituting back into eq S37: 
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∆GH = %�
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Note that N AB	TU;�V�VY� = Z	[�S + SX�, so the integral is equal to L when q’ = -q and it is zero 

otherwise. Thus, we can rewrite eq S41: 

∆GH = �
� IO ∑ ℎ�S�	S�	ℎ�−S�		V  (S42) 

Following the thermodynamic arguments explained by Safran
2
, if the Hamiltonian (the energy of 

the system) is of the form: 

\ = �
�∑ ℎ�S:�	]�S:�	ℎ�−S:�		V  (S43) 

Then by virtue of the equipartition theorem, the power spectrum of the fluctuations is given by: 

〈|ℎ�S:�|�〉 = �`a
b�Vc:�  (S44) 

Where kB is the Boltzmann constant. The corresponding average in real space is given by: 

〈ℎ�9:��〉 = �
Qd∑ 〈|ℎ�S:�|�〉V  (S45) 

Where, according to Safran, d is the dimensionality of the system. We point out that eq S44 is 

the power spectral density of the fluctuations as presented in the main text. Similarly, eq S45 

corresponds to the variance. 

Going back to our particular example, by comparing eq S42 to eq S43, we see that for our 

problem, the function g(q) is given by: 
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]�S� = IOS�  (S46) 

Therefore the PSD of the fluctuations from eq S44 is given by: 

〈|ℎ�S:�|�〉 = �`a
efV�

〈|ℎ�S:�|�〉 = �`a/f
eV�

 (S47) 

Comparing eq S47 with the 2D result by Safran
2
, we see that the only difference is the factor 1/t 

that was a consequence of the fact that hy = 0. Other than that, the functional form is the same 

with the same available modes. 

The exercise done here can be extended to include the energy from the curvature of a membrane 

(see Safran) to obtain the expression for the undulatory modes Gund(fk) as shown in the main text 

(eq 10 main text), but the reader can quickly identify the 1/t term that has the same origin as in 

this simpler example.  

Finally note that the PSD units in the 1D case (eq S47) are [length]
3
 while in the corresponding 

2D case (see Safran) they would be [length]
4
. 
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